the potential of wetlands for treatment of marine ... · loma alta shrimp aquaculture near port...

13
THE POTENTIAL OF WETLANDS FOR TREATMENT OF MARINE AQUACULTURE EFFLUENTS

Upload: others

Post on 28-Jun-2020

7 views

Category:

Documents


1 download

TRANSCRIPT

THE POTENTIAL OF WETLANDS FOR TREATMENT OF MARINE AQUACULTURE EFFLUENTS

AQUACULTURE TODAY

Fastest growing food producing sector worldwide

80% seafood consumed in the US imported

Half from foreign aquaculture!

US marine aquaculture only 1.5% domestic seafood supply

Growth potential, but…

Limited domestic industry due to environmental restrictions

Prohibitively high cost for appropriate sites currently

NOAA Technical Memorandum NMFS F/SPO‐100

MARINE AQUACULTURE:LIMITATIONS

Location, location, location

Seawater source

Cost of land

Competition for space too

Waste management

Recirculating aquaculture

Aids in moving inland to reduce:

Land cost

Resource consumption

Effluent Management is key!Mote Marine Laboratory

LIMITATIONS:EFFLUENT MANAGEMENT

Discharge or reuse

Reuse research lacking

Resource conservation

Where to discharge?

Nutrient limitations

Need “eco‐friendly” filtration

Unit‐process approach

Aerobic/Anaerobic biological filtration

Natural‐type filtration

Constructed wetlands

Marine Aquaculture Research Center:Waste treatment systems

CONSTRUCTED WETLANDS:EFFLUENT TREATMENT ALTERNATIVES

What is a constructed wetland?

Low cost treatment

Low maintenance too!

Wetland “types” based on water flow regime

Free water surface (FWS)

Subsurface flow (SSF)

Constructed wetlands effective “eco‐reactors” Loma Alta Shrimp Aquaculture

CONSTRUCTED WETLANDS:

TYPES AND FUNCTIONS

FWS (“Lowland”)

Anaerobic sediments

Constituent removal area specific

TSS, BOD/COD, N, P 

SSF (“Upland”)

Aerobic and/or anaerobic sediments

Convert and/or remove nitrogen species

Constituent removal

TSS, BOD/COD, PVymazal, 2007

CONSTRUCTED WETLANDS:

PLANTS Role of plants

Medium for biofilm attachment

Gas transport to/from sediments through lacunal structure

Little direct nutrient removal or storage by plants

Selection based on:

Native species

Salinity

Flooding regime

Availability

Sleepy CreekMarshallberg, NC

CASE STUDY:LOMA ALTA SHRIMP

AQUACULTURENEAR PORT MANSFIELD, TX

8.1 ha (~20 ac) shrimp farm

Mesohaline (3‐8 ppt salinity)

Produce 10‐15 MT Litopenaeus vannamei

13,600 m3 d‐1 (3.6MGD) effluent

7.7 ha (~19 ac) of constructed wetland

Constant recirculation

Constituent reductions:

TP: 31%, TSS: 65%, ISS: 76%

BOD < 9 ppm, TAN < 1.8 ppm, NO3‐1‐N < 0.42 ppm

CASE STUDY:LOMA ALTA SHRIMP

AQUACULTURE

Using the k‐C* model 

1st order removal rate eqn

Target levels (NPDES) could be attained when CW operated as recirculation filters

Pond SA : Wetland SA  12:1

New models

“Tanks in series” approach

C* still applies

SUMMARY

Potential for effective nutrient removal prior to discharge

Low maintenance

Low cost – Requires full‐cost analysis

Accounts for environmental costs too!

Value added products

Internalizing environmental costs improves:

Marketing

Local ecosystems

Public relations

More high salinity research needed for marine aquaculture

MARINE AQUACULTURE RESEARCH CENTER

Marine aquaculture effluent treatment

Evaluate new technologies

Model conventional treatment process

All studies replicated in triplicate

Goal: Prevent detrimental environmental impact on local waterways by marine aquaculture through effective waste management

MARINE AQUACULTURE RESEARCH CENTER

QUESTIONS