the physics of atom- surface interactions and its applications ·  · 2016-12-09martial ducloy...

43
Martial Ducloy Laboratoire de Physique des Lasers/CNRS Institut Galilée Université Paris Nord VILLETANEUSE (F) The physics of Atom- Surface interactions and its applications Funding : CNRS; Univ. PXIII; EU FASTNet network, IFRAF Critical Stability, Erice, Oct. 2008

Upload: lydieu

Post on 11-Apr-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

Martial DucloyLaboratoire de Physique des Lasers/CNRS

Institut Galilée Université Paris NordVILLETANEUSE (F)

The physics of Atom- Surface interactions and its applications

Funding : CNRS; Univ. PXIII; EU FASTNet network, IFRAF Critical Stability, Erice, Oct. 2008

ATOM-SURFACE VAN DER WAALS INTERACTION

The model of electrostatic images (perturbative regime, non resonant coupling)

vdW potential (interaction between dipole and dipole-image)

non-retarded and near-field interaction: z-3

D, atomic dipole operator

For a neutral atom , e D e 0 , but e D e 02 (atomic dipole fluctuations)

33 /C - iHi zi

vacuum reflector ( ε)

Dim D

z

3

22

1611

zDD

HvdW

εε

M. Ducloy, Critical Stability, Erice

Long-range interactions between atomic systems and surfaces

Influence of the composite nature of the atomic system (internal energy level, ground/excited state, rotational symmetry, symmetry breaking…)

“real” surfaces: dispersive materials, surface roughness

Atom external dynamics: Quantum mechanical features of atomic motion

(quantum reflection, bound states, interaction with “fast” (thermal) atoms…)

M. Ducloy, Critical Stability, Erice

Long-range interactions between atomic systems and surfaces

Influence of the composite nature of the atomic system (internal energy level, ground/excited state, rotational symmetry, symmetry breaking…)

“real” surfaces: dispersive materials, surface roughness

Atom external dynamics: Quantum mechanical features of atomic motion

(quantum reflection, bound states, interaction with “fast” (thermal) atoms…) Two experimental approaches Laser spectroscopy at vapor-dielectric interfaces (surface potential)

Atom beam passing at surfaces (momentum spectroscopy- surface forces)

M. Ducloy, Critical Stability, Erice

Long-range atom-surface interactions OUTLINE I. Introduction. Distance scaling

II. The surface response: material dispersion, temperature excitations…

III. Symmetry properties: symmetry break, inelastic vW reflection

IV. Quantum mechanical features. Conclusion

M. Ducloy, Critical Stability, Erice

Spectroscopic Measurements

Optical Spectroscopy: DIFFERENCE between potentials C3( j ) – C3( i )

Thermal vapours : spatial integration

Selective Reflection :

Resolution ~ λ/2π ~ 100 nm

ESR 0

+

p(z) exp(2ikz) dz

Thin Cells :

Mechanical confinement

thickness ~ 20-1000 nm

R + ΔR(ω

vapour (ωο

ω

window (n)

z

M. Ducloy, Critical Stability, Erice

104 106 108 110 112 114 116 118 120 122-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

Thin Cell reflection Saturated absorbtion

Cell thickness 65nm

Frequency (GHz)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

100 102 104 106 108 110 112 114 116 118

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04 Thin Cell reflection Saturated absorbtion

Cell thickness 35nm

Frequency (GHz)

-0.02

0.00

0.02

0.04

0.06

0.08

Reflection spectra on vapor nano-cells (FM mode)

65nm 35 nm

Cesium D1 transition (894nm)

Modelling transmission spectra in nanocells

Transmission and Reflection spectra:

2 linearly independent combinations of absorptive and dispersive properties

- 2-wall van der Waals potential (adding 2 walls, or multiple image modeling)

- Spatial integration of transient interaction regimes in the nano-cell

- Velocity distribution i.e. distribution over atom-light interaction times

- Pressure effects (broadening, shift)

M. Ducloy, Critical Stability, Erice

Cs6 S

1/2

AM

reflection Extremely Thin Cell

Probe laser (917-921 nm)

transmission

Experimental set-up for pump-probe to 6D3/2Experimental Principle

852nm(pump)

917nm(probe)

6 P3/2

6 D5/2

6 D3/2

921nm

Pump laser(852 nm)

894nm

6 P1/2

M. Ducloy, Critical Stability, Erice

L=50 nmλ=917 nmT=220°C,

YAG/Cs thin cell transmission and reflection

917 nmtunable probe

Cesium

6 P 3/2

6 S 1/2

852 nmpump

6 D 5/2

frequency detuning

free space resonance

chan

ge o

f tr

ansm

issi

onre

flec

tion

sig

nal

0

0

Fit obtained withC3= 14 kHz.µm3

5 GHz

strong red shift

M. Ducloy, Critical Stability, Erice

YAG/Cs cell ; 6P3/2-6D5/2 experiment

40 60 80 100 120 1400

10

20C

3 (kHz µm3)

d (nm)

160°C 180°C 200°C 220°C 240°C 260°C

C3 is found to be independent of thickness

λ = 917 nm

v = v0 - C3 /z3

M. Fichet et al, Europhysics Letters 77, 54001 (2007)

M. Ducloy, Critical Stability, Erice

Long-range atom-surface interactions OUTLINE I. Introduction. Distance scaling

II. The surface response: material dispersion, temperature excitations…

III. Symmetry properties: symmetry break, inelastic vW reflection

IV. Quantum mechanical features. Conclusion

M. Ducloy, Critical Stability, Erice

vacuum

reflector ( ε)

Dim D

z

ATOM-SURFACE INTERACTION : dielectric interface

The model of Electrostatic images

vW potential : an interaction between dipole and dipole-image

A summing over virtual dipole transitions ωij

<i|D²|i> = Σj r(ωij)<i|D|j> <j|D|i>

For ε(ωij) complex (i.e. dispersion)

How the image coefficient r behaves ?

D² +Dz²

16 z3Hvw = -

ε - 1ε + 1

M. Ducloy, Critical Stability, Erice

IMAGE COEFFICIENT for DISPERSIVE DIELECTRICS

How ( -1)/ ε ( +1) is transformed ?ε

Virtual absorption

ω0 0

|g> Mac Lachlan or Mavroyanis 1963

Virtual emission

ω0 0

(concerns only excited atom)

Wylie & Sipe 1984-85, Fichet et al 1995

0 r 1

r not bounded, r 0 or r 0

pole of [ε(ω)+1] resonant coupling w/ surface mode (polariton)

M. Ducloy, Critical Stability, Erice

0,0 0,1 0,2 0,3 0,4 0,5-20

-10

010

20

ω

r(ω <0 )

(1014

Hz )

0

0,5

1r ( ω > 0 )

THE DIELECTRIC IMAGE COEFFICIENT

Virtual ABSORPTION of the atom (always non resonant)

Virtual EMISSION of the atom : resonant COUPLING to a ABSORPTION in a SURFACE POLARITON MODE: enhancement, van der Waals repulsion?

The case of SAPPHIRE

M. Ducloy, Critical Stability, Erice

Sapphire surface polaritons

21µm

12 µm

Cs

876 nm

12.15 µm

6 P1/2 1.17 GHz 4

3

6 S1/2

894 nm

9.19 GHz 4

3

15.57 µm 6 D3/2

7 P1/2

5

65.2 MHz 81.5 MHz

48.9 MHz

4

3

2

7 P3/2

FM probe(876 nm)

Pump(894 nm)

SR cell

Sapphiree

YAG

SA cell

M. Ducloy, Critical Stability, Erice

YAG

Sapphire

80 MHz

M. Ducloy, Critical Stability, Erice

C3 (kHz.µm3)

0 1 2 3 4 5 6 7 80

10

20

30

40

50

γ (MHz)

Pressure ( mTorr )

0

-50

-100

-150

-200

-250F = 4

F = 3

Cs (6D3/2) and sapphire interface

Evidence of a vW surface repulsion (C3<0) consistent with pressure broadening in spite of phenomenological changes in the line-shapes

Failache et al, PRL, 83, 5467 (1999)

M. Ducloy, Critical Stability, Erice

2

3n

1

12zaE a D nδ

na

B

na

B

Kna

1 nana K

( ) 1 er ( , ) 2Re

( ) 11 e

ω

ω

ε ωω

ε ω

Τ

Τ

Τ

an

B

an2 an

an K

( ) 1 1r ( , ) 2Re

( ) 11 e

ω

ε ωω

ε ω Τ

Τ

p na3 na 2 2

p p na p

(i ) 14r ( , ) '

(i ) 1

k ε ξ ωω

ε ξ ω ξ

Β

ΤΤ

virtual absorption contribution

(null for T=0)

virtual emission contribution increases with T

[stimulated emission ~<N>]

non-resonant contribution

(known since Mac Lachlan 1963)

Matsubara frequency

M-P Gorza & M Ducloy, Eur. Phys. J. D 40, 343 (2006)

with ξp = 2πkBT/ħ

van der Waals energy shift at non-zero temperature

(r1an + r2

an + r3an)

Influence of surface thermal excitations

M-P Gorza & M Ducloy, Eur. Phys. J. D 40, 343 (2006)

Long-range atom-surface interactions OUTLINE I. Introduction. Distance scaling

II. The surface response: material dispersion, temperature excitations…

III. Symmetry properties: symmetry break, inelastic vW reflection

IV. Quantum mechanical features. Conclusion

M. Ducloy, Critical Stability, Erice

D-D ’

z

Non scalar van der Waals potential : a “prism” for atoms

V vdW =−1

4πε 0 [ 4/3 D2

16 z 3 DZ

2 −D2/3

16 z3 ]Scalar T0

0 Anisotropic T20

off-diagonal

Ar*, Kr*

2 metastable states, 3P2 and 3P0

E3P0

3P2

⟨ 3 P0∣V vdW∣3 P2 ⟩≠ 0Boustimi et al., PRL, 86, 2766 (2001)

M. Ducloy, Critical Stability, Erice

Kinematics of inelastic transitions

0v

Conservation of total Energy of the atom: v f =[ v02

2 EΔm ]

1/ 2

ff00 θcosvθcosv

θ 0

θ f

Δ E0

Conservation of the linear momentum in the plane // to the surface:

cos θ f =cos θ 0

1EΔ

E0

v f

M. Ducloy, Critical Stability, Erice

Light Optics

θ

Atom Optics

⟨3 P0∣V vdW∣3 P2 ⟩≠ 0

θ

Surface (metal)

3P0

3P2

Boustimi et al., PRL, 86, 2766 (2001)

Experiment

…...

Ar* source

collimation slitmicro grating(micro slit)

detector

θ 60

van der Waals – Zeeman Transitions

Ne* 3P2

D-D ’ µ

Z

-2

+2

+1

0-1

V =−C3

Z 3 g µB B J . uB η J Z2 −

1

3J 2 /Z 3

quadrupolar

⟨ 3 P2 ,mi∣V ∣3 P2 , m j ⟩≠0

diagonal Karam et al., Europhys. Lett., 74, 36 (2006)

M. Ducloy, Critical Stability, Erice

van der Waals-Zeeman transitions

n B

S

γm0

m < m0

Two quantisation axes :

- scalar + quadrupolar vW interaction (n)

- magnetic interaction (B)

Transitions among Zeeman sublevels m0 m→

For m < m0, repulsive deflection by an angle:

γ (ΔE / E0) 1/2 , where ΔE = gµB B │Δm (internal energy defect) │

γE0 = incident kinetic energy δθ (beam) < mradtypically: γ ~ mrad

Karam et al., Europhys. Lett., 74, 36 (2006)

Ultra narrow metastable Ne* atoms Beam

Supersonic beam Ne ground state

δθ 0 3 mrad

δv/v ~ 1 %Ne* δθ 10 mrad

δv/v ~ 7 %

Ne* + Ne Ne + Ne*

Metastability ExchangeNe*

Metastable +

Initial beam

qualities

e- GUN

Karam et al, J. Phys. B, 2005

M. Ducloy, Critical Stability, Erice

Experiment

Grating several slits covered : larger available surface

Tilted Grating Better contrast of scattered signal

γ∣J=2,mi ⟩

∣J=2,m j ⟩

Cu micro-grating Λ = 80 µm

B Position sensitive detector

B = 100 to 600 G

ANGULAR SPECTRA

Metastable Ne*(3P2) atoms traverse a micrometric copper grating

submitted to a static magnetic field B. Exo-energetic transitions (Δm = -1, -2, -3, -4) are identified by the deflection angles γ

B = 289 Gauss

In blue: incident beam profile (δθ = 0.35 mrad)

Peaks are widened by diffraction (dotted line)

This is a multiple & tunable beam splitter

-15 -10 -5 0 5 10 1510

20

30

40

50

60

70

80

90

background

zero line

coun

ts

angle γ (mrad)

M. Ducloy, Critical Stability, Erice

γ≈ EΔE 0

=gμ B

E 0B∣ mΔ ∣ B∝

1

∣ mΔ ∣γ

Evidence for vdW – Zeeman

transitions

0 -2 -4 -6 -8 -10 -12 -140

5

10

15

20

25

X

X

XXXXX

(B (

G))

1/2

angle γ (mrad)

Δm=- 1

-3

-2

-4

?

γ∣J=2, mi ⟩

∣J=2,m j ⟩B

Karam et al., Europhys. Lett., 74, 36 (2006)

No adjustable parameter

Avoided crossings between Zeeman sublevels of Ar (J=2)

β= −ηg μ B B z3

Level crossings for β=1/3, 1/2,1

B strictly normal to the surface (θ=0)

Avoided crossings θ=(uB, uS) = 17°

Vq

β β

For B=1G, the first level crossing appears at z~20 nm

Vq

B off-normal

V =−C3

z3 g µB B J . uB η J Z

2 −1

3J 2 / z3

0

z ∞ z 0→

M. Ducloy, Critical Stability, Erice

Karam et al., Europhysics Letters, 74, 36 (2006)

Theoretical description of vW-Z transitions

•Large velocity: short interaction time (<0.1ns), sudden approximation for the vW potential

•Small velocity: potential energy surfaces with anticrossings explored in the adiabatic regime

M. Ducloy, Critical Stability, Erice

Long-range atom-surface interactions OUTLINE I. Introduction. Distance scaling

II. The surface response: material dispersion, temperature excitations…

III. Symmetry properties: symmetry break, inelastic vW reflection

IV. Quantum mechanical features. Conclusion

M. Ducloy, Critical Stability, Erice

Diffraction experiment with 1D reflection gratingFast metastable atoms: v ~ 1000m/s

Elastic scattering

1.5 µm

Rc

transversecoherence

Λ = 2 µm

Lc : longitudinal coherence

θ ι

θ Ν

etched resist

Al deposit

Substrate

dissolution

Incoming wave packetHe*, Ne*, Ar*

M. Ducloy, Critical Stability, Erice

Difficulties

High Quenching factor (He* He→ ) 10-4 of metastable atoms survive

λ ~ 10-2 nm compared to Λ = 2000 nm Grazing incidence

Small angles between diffracted peaks, θN ~ 10 mradGood

angulardefinition

M. Ducloy, Critical Stability, Erice

Grucker et al, Eur. Phys. J. D, 41, 467 (2007)

M. Ducloy, Critical Stability, Erice

γ

Lc

Rc

Λ

θ ι

θ Ν

θ N2 ≈ θ i

2 2 Nλ //

Λ

cos θ N = cos θ i − Nλ //

Λ

0 1 2 3 4 5 6 70

50

100

150

200

250

300

350

Ar*

Ne*

He*

θ N 2

(mra

d 2 )

Diffraction order N

θi2

aHe∗¿

aNe∗¿

≈ 2 .05

¿¿

λ // He∗¿

λ // Ne∗¿

≈ 2 . 3

¿¿

(+/- 0.5)

aHe∗¿

aAr∗¿≈ 2 .5

¿¿

λ // He∗¿

λ // Ar∗¿≈ 3 .1

¿¿

(+/- 0.5)

slope a

M. Ducloy, Critical Stability, Erice

Conclusion

* New experimental approaches allow one to study the non-retarded long-range (~1-100 nm) interactions between atoms in selected internal state, and dielectric or metallic surfaces, with observations of :

- resonant atom-surface coupling- atom symmetry break and transitions between internal energy levels- atom diffraction via quantum reflection

* Most of the work performed up-to-date is about free atoms interacting with surfaces (continuum states). Observation of long-range atom-surface bound states ( adsorbed atoms) is hindered by overall attractive character of forces, short-range atom perturbations, surface irregularities…

- Necessity of one additional potential imposed by an applied field (one wall)- Possibility of atom bound state in a thin cell with (resonant) repulsive walls

M. Ducloy, Critical Stability, Erice

vW shift for ω/ωS =0.999 for μ ¿

vW shift for

ω/ωS =1.001 for µ||

position in the cell x/L

strong red shift

A trapping repulsive

potential ?

(M.P. Gorza, Laser Physics 2005,and unpublished)

Ultra-thin cells with repulsive walls, close toresonant coupling

wall wall

G. Dutier, A. Laliotis, M. P. Gorza, I. Maurin, M. Fichet, D. Bloch, M. Hamamda, J. Grucker, J.C. Karam, F. Perales, J. Baudon(Lab. Physique des Lasers, University Paris 13, Villetaneuse, F.) S. Saltiel (Sofia University, Bulgaria)T. Varzhapetyan, D. Sarkisyan (Institute for Physical Research, Armenia) V. V. Klimov (Lebedev Physical Institute, Moscow, Russia) V. Bocvarski (Institute of Physics, Belgrade, Serbia)

Fraunhofer diffraction from one inelastic (vdW-Z) complex transition amplitude A(ρ)

-0.5 0.5 1 1.5 2 2.5 3

-0.4

-0.2

0.2

0.4

-0,6 -0,4 -0,2 0,0 0,20,0

0,1

0,2

0,3

0,4

0,5

Inte

nsi

ty

θ rad

Re(A)

ρ (nm)

Fourier Transform γ

Mean spatial frequency Ω Angular shift by γ = Ω / k = Ω λ / (2π)

Range a 2.2 nm Angular aperture δθ λ / a

Ω = (2 M g µB B │Δm )│ 1/2 / , independent of velocityℏ

B(θ)

slitsurface

Principle of Fresnel atomic bi-prismGrucker et al, Eur. Phys. J. D 47, 427 (2008)

B

∣m=0 ⟩

z

x

θ

Wave packet broadeningfor scattered atoms

Lcoh(slowatoms)

∣m=0 ⟩

vdW – Z , Δm = -1deviation γ

∣m=−1 ⟩ eiφ

h

∣m=−1 ⟩ eiφ

b

γ

γ

Atombiprism

Pumping laserinterferences fringeson dark background

Grucker et al, Eur. Phys. J. D, 41, 467 (2007)