the “normal” state of layered dichalcogenides

48
The “normal” state of layered dichalcogenides Arghya Taraphder Indian Institute of Technology Kharagpur Department of Physics and Centre for Theoretical Studies Workshop @ Harish Chandra Research Institute, November 12-14, 2010

Upload: maren

Post on 03-Feb-2016

32 views

Category:

Documents


0 download

DESCRIPTION

The “normal” state of layered dichalcogenides. Arghya Taraphder. Department of Physics and Centre for Theoretical Studies. Indian Institute of Technology Kharagpur. Workshop @ Harish Chandra Research Institute, November 12-14, 2010. Salient Features. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The “normal” state of layered  dichalcogenides

The “normal” state of layered dichalcogenides

Arghya Taraphder

Indian Institute of Technology Kharagpur

Department of Physics and Centre for Theoretical Studies

Workshop @ Harish Chandra Research Institute, November 12-14, 2010

Page 2: The “normal” state of layered  dichalcogenides

Salient Features

Transition metal dichalcogenide – TM atoms

separated by two layers of chalcogen atoms

TM atoms form 2D triangular lattice

CDW & Superconductivity (likely to be anisotropic)

Partially filled TM d band or chalcogen p band:[]d1/0

1T and 2H type lattice structure

Both I and C CDW at moderate temperature

Normal to SC transition with pressure/doping

Normal transport unusual (cf. HTSC)

Page 3: The “normal” state of layered  dichalcogenides

Dichalcogenides: crystal structure

Page 4: The “normal” state of layered  dichalcogenides

Glossary

Page 5: The “normal” state of layered  dichalcogenides

Typical Phase diagram

D.B. Mcwhan, et al. PRL 45,269(1980)(2H-TaSe2)

A. F. Kusmartseva, et al. PRL 103, 236401(2009) (1T-TiSe2)

B. Sipos, et al. Nat. mater. 7, 960 (2008) (IT-TaS2)

2H-TaSe2

1T-T

iSe2

1T-TaS2

Page 6: The “normal” state of layered  dichalcogenides

2H-TaS2Cava et al.

Page 7: The “normal” state of layered  dichalcogenides

Phase diagram of 1T-TiSe2 : doping and pressure

Page 8: The “normal” state of layered  dichalcogenides

Quantum critical?

Castro-Neto, loc cit

Cava, PRL (2008)

Page 9: The “normal” state of layered  dichalcogenides

DC Resistivities

Aebi, loc cit

Page 10: The “normal” state of layered  dichalcogenides

Resistivity of TMDs: 1T and 2H

Y. Ueda, et al. Journal of Physical Societyof Japan 56 2471-2476, (1987).

P. Aebi, et al. Journal of Electron Spectroscopy and Related Phenomena117–118 (2001)

Page 11: The “normal” state of layered  dichalcogenides

Vescoli et al, PRL 81, 453 (1998)

2H-TaSe2

Page 12: The “normal” state of layered  dichalcogenides

Op

tica

l co

nd

uct

ivit

y(0

.04

< E

< 5

eV

ran

ge)

R C

Dyn

es,

et a

l.,

EP

JB 3

3, 1

5 (

200

3)

Page 13: The “normal” state of layered  dichalcogenides

Features of dc transport and Re σ (ω)

•“Drude-like” peak at ω=0 for both systems along both ab and C-directions, narrowing at low T, indicating freezing of scattering of charge carriers at low energy

•Tccdw does not affect transport at all, in fact thermodynamics is also unaffected

•Broad conductivity upto large energies (~0.5 eV)

Page 14: The “normal” state of layered  dichalcogenides

Dynes loc cit

Page 15: The “normal” state of layered  dichalcogenides

Spectral weight distribution

•Spectral weight is non-zero even upto 5 eV and beyond – “recovery” of total n uncertain

•Shifts progressively towards FIR as T is lowered - condensation at lower frequency

• Nothing abrupt happens as T_CDW is crossed

Page 16: The “normal” state of layered  dichalcogenides

Transport scattering rateab-plane

Page 17: The “normal” state of layered  dichalcogenides

Tra

nsp

ort

sca

tter

ing

rat

ec-

axis

Page 18: The “normal” state of layered  dichalcogenides

Scattering rate from transport

• Strongly frequency dependent. Rapid suppression of both Γab and Γc below characteristic freq. ~ 500 /cm Possible “pseudogap” in 20K curve

•High and low T Γab cross each other for TaSe2 at some frequency

•No saturation of Γab upto 0.6 eV

•Both Γab and Γc are above Γ= ω line upto 2000 /cm and nearly linear in ω

Page 19: The “normal” state of layered  dichalcogenides

“QP” Scattering Rate & SE from ARPES

Valla, PRL 85, 4759 (2000)

Page 20: The “normal” state of layered  dichalcogenides

Valla, loc. cit..Fit with momentum-indep. SE

Page 21: The “normal” state of layered  dichalcogenides

Aebi, JES 117, 433 (2001)

Electronic structure

Page 22: The “normal” state of layered  dichalcogenides

Self-energy from ARPES

•Local - no k-dependence

•Re Σ peaks at 65 meV, Im Σ drops there – characteristic of a photo-hole scattering off a collective ‘mode’ ~ 65 mev (too large for all phonons in TaSe2)

•Im Σ(0) matches excellently with transport Γ(0) in its T-dependence

Page 23: The “normal” state of layered  dichalcogenides

2H-TaSe2

H.E. Brauer,et al. J. Phys. Cond. Matter 13, 9879 (2001)

Band structure

Aebi, JES 117, 433 (2001)

Page 24: The “normal” state of layered  dichalcogenides

Tight Binding Description

N V Smith, et al. J. Phys. C:Solid State Phys. 18 (1985) 3175-3189

Page 25: The “normal” state of layered  dichalcogenides

Tight binding fit near FL for 2H-TaSe2

N V Smith, et al. J. Phys. C:Solid State Phys. 18 (1985) 3175-3189.

Page 26: The “normal” state of layered  dichalcogenides

Fermi surface map for the TB bands

2H-TaSe2 1T-TaS2

Page 27: The “normal” state of layered  dichalcogenides

ARPES - 2H-TaSe2

Liu

, P

RL

80

, 57

62

(199

8)

Page 28: The “normal” state of layered  dichalcogenides

Liu

, P

RL

80

, 57

62

(199

8)

Page 29: The “normal” state of layered  dichalcogenides

Valla et al, PRL 85, 4759 (2000)

Page 30: The “normal” state of layered  dichalcogenides

CDW Gap ? Castro_Neto, PRL 86, 4382 (2001)

Page 31: The “normal” state of layered  dichalcogenides

)Pseudogap in 2H-TaSe2, Borisenko et al, PRL 100, 196402 (2008)

Page 32: The “normal” state of layered  dichalcogenides

Fermi surface and ARPES - 2H type

N V Smith, et al. J. Phys. C: Solid State Phys. 18 (1985) 3175-3189.

S V Borisenko, et al.Phys. Rev. Lett. 100, 196402 (2008)

Page 33: The “normal” state of layered  dichalcogenides

Fermi surface and ARPES - 1T type

N V Smith, et al. J. Phys. C:Solid State Phys. 18 (1985) 3175-3189.

F.Clerc, et al. Physica B 351 245-249, (2004)

Page 34: The “normal” state of layered  dichalcogenides

Fermi surface of 1T-TiSe2

P. Aebi, et al. Phys.Rev.B 61 16213, (2000)

Page 35: The “normal” state of layered  dichalcogenides

Superlattice & BZ in the CDW phaseof Dichalcogenides

N V Smith, et al. J. Phys. C:Solid State Phys. 18 (1985) 3175-3189.

2H-TaSe2

1T-TaS2

Page 36: The “normal” state of layered  dichalcogenides

Our Work: LDA - tight binding fit near FL for 2H-TaSe2

N V Smith, et al. J. Phys. C:Solid State Phys. 18 (1985) 3175-3189.

Page 37: The “normal” state of layered  dichalcogenides

Fermi surface map for the TB bands

2H-TaSe2 1T-TaS2

Page 38: The “normal” state of layered  dichalcogenides

Spectral Function for 2H-TaSe2

Before DMFT After DMFT

Page 39: The “normal” state of layered  dichalcogenides

Evolution of Spectral Function and fitting ARPES

Page 40: The “normal” state of layered  dichalcogenides

Conductivity and resistivity from DMFT

Page 41: The “normal” state of layered  dichalcogenides

DMFT with inter-orbital hopping for 2H-TaSe2

Page 42: The “normal” state of layered  dichalcogenides

Opening of gap with increase in temperature

Page 43: The “normal” state of layered  dichalcogenides

Pressure dependence of Fermi Surface

Page 44: The “normal” state of layered  dichalcogenides

Change in spectral function with pressure

Page 45: The “normal” state of layered  dichalcogenides

Temperature dependent Spectral function at different pressure

Page 46: The “normal” state of layered  dichalcogenides

Change in resistivity at different pressure

Page 47: The “normal” state of layered  dichalcogenides

Conclusion

• DMFT Spectral function is broadened.

• With application of Inter-orbital coulomb interaction

the system goes to insulator.

• With application of Inter-orbital hopping DMFT orbital

occupation changes from LDA.

• There is a opening of gap with increasing temperature

up-to 140K.

• With decreasing pressure hole pockets in the Fermi

surface disappear.

• With increasing pressure the gap formed at the Fermi

surface decreases.

Page 48: The “normal” state of layered  dichalcogenides