the need to model the iter high vacuum systems in ...lss.fnal.gov/conf/c070709.13/c_day.pdf ·...

23
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 1 ITP-VT The need to model the ITER high vacuum systems in transitional flow regime – An engineering perspective Christian Day For the Vacuum Pumping Task Force Institute for Technical Physics, Forschungszentrum Karlsruhe, Germany,

Upload: others

Post on 24-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 1

ITP-VT

The need to model the ITER high vacuum systemsin transitional flow regime –An engineering perspective

Christian Day

For the Vacuum Pumping Task Force Institute for Technical Physics, Forschungszentrum Karlsruhe, Germany,

Page 2: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 2

ITP-VT

TD

Hen

2.01 + 3.02 =5.03 AMU

1.01 + 4.00 =5.01 AMU

20% of fusion energy

80% of fusion energy

+17 600 keV

E = mc2

Plasma state

Thermonuclear fusion of deuterium and tritium

First main challenge forITER vacuum systems:Ø Processing of tritium à

availability, safety, accountancy, controlà cryopumps

Page 3: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 3

ITP-VT

Deuterium storage unit

Tritium separation unit

Turbine-generator

Steam generator

Blanket(Tritium regeneration, heat production)

Plasma(Deuterium-Tritium)

• The energy of the neutrons is converted into heat in the structures (blanket) lining the torus walls

• A circulating coolant removes the heat and, in the heat exchangers, steam will be generated to drive turbines for electricity production

The scheme of a commercial fusion reactor

• In ITER, the fuel tritium will be supplied from external

• In ITER, the fusion energy will be ´wasted´ (not taken out)

Page 4: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 4

ITP-VT

Current fusion status and the role of ITER

τE, thELMy = 0.0562 × I 0.93 B0.15 P−0.69ne,19

0.41M 0.19 R1.97ε 0.58κ 0.78

Confinement time τ :

Second main challenge for ITER vacuum systemsØ Very big in size à highest pumping speeds !à cryopumps

Page 5: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 5

ITP-VT

ITER fuelling

Third main challenge for ITER vacuum systemsØ Very high throughputs àØ Comparatively high pressures (in spite of the high

pumping speeds we have) àØ Transitional flow conditions inside the cryopumps

and in the associated pumping ducts

Burn-up fraction only 2%

Page 6: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 6

ITP-VT

• Role of ITER (=still a R&D project)

– Burning plasma physics

– Integration of physics and technology

– Demonstrate and test fusion power plant technologies and safety features (tritium)

– Demonstrate the technological feasibility of fusion (availability)

The ITER mission

Page 7: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 7

ITP-VT

ITER is being built in Cadarache, South of France

Tokamak: ?? ?????????? ?????? ? ? ??????? ? ? ????? ????(toroidalnaya kamera, magnitnymi katushkami)

Lev Artsimovich

Andrei Sacharov

Page 8: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 8

ITP-VT

ITER and its main vacuum systems

Cryostat HV pumping system

Torus exhaust HVpumping system

Neutral Beam HVpumping system

+ Mechanical forepump trains(identical for each of the threehigh vacuum systems)

Cryo-mech cross-over pressure is 10 Pa

3 Large Cryopump systems

Major plasma radius 6.2 m Plasma Volume: 840 m3

Plasma Current: 15 MA Typical Density: 1020 m-3

Typical Temperature: 20 keV Fusion Power: 500 MW

Cryostat:24m high x 28 m dia

Cryostat + Vacuum vessel +

magnets=23 350 t

Page 9: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 9

ITP-VT

YesYesYesSorbentcoating

Nitrogen, outgassingand leaking gas,

Hydrogen (H2, D2)Hydrogen (all six isotopes), helium, impurities

Depending strongly on theoperation mode (burn& dwell, conditioning, leak detection..)

Gases

Transient pump-down(closed cryostatvolume of 8400 m³) to 10-4 Pa and steady-state pumping of magnet coolant leak helium and outgassingspecies

Dynamic

= maintain the pressureinside the NBI volume(150 m³/H-NBI) at a throughput of

36 Pa·m³/s/H-NBI (protium operation)

Dynamic

= maintain the pressure insidethe VV volume (1350 m³) at a total gas throughput of

(120 Pa·m³/s (fuelling rate) or 60 Pa·m³/s (He case))+

(33 Pa·m³/s (impurities));

Base pressure for hydrogens: 10-5 Pa.

Pumping mode

22 (3) +18# Pumps

CryostatNBITorus

ITER large high vacuum cryopump systems - overview

Page 10: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 10

ITP-VT

Some ITER areas of concern for transitional flow modelling

1. The divertor system.

2. The torus exhaust pumping duct system.

3. The torus cryopump itself.

4. The neutral beam injector system.

5. The forepumping system.6. …

Page 11: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 11

ITP-VT

1. Flow modelling of divertor

For correlation of the divertor performance vs. geometry, theB2-EIRENE code is used, which describes the interaction of the plasma and neutral gas.

Page 12: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 12

ITP-VT

153Pa.m3/sMaximum throughput during plasma operations

1-10PaTypical divertor pressure during plasma operations

Plasma Operations (pulsewise 400 to 3000 s)

< 5·10-4PaBase pressure

pulses)Dwell Pump-down (in between the

< 10-5PaBase pressure for hydrogen isotopes

~ 2600m²Total surface area for outgassing

~1300m3Vacuum Vessel free volume

Ultimate Pump Down

ValueUnitParameters2. Torus vacuum pumping system – Technical data

Page 13: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 13

ITP-VT

Conductance modelling of divertor and duct system

Very complex geometry (varying cross-sections, short ducts) àFor design purposes, we have developed a quick, semi-empirical code forflow calculations and a system for network modelling.

Page 14: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 14

ITP-VT

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140

Pumping speed of one pump (m³/s)

Max

imum

Thr

ough

put (

Pa·

m³/

s)

Reference

+ 1 cm

+ 2 cm

+ 3 cm

Tritium

Requirement:150 Pa·m³/s @ 1-10 Pa divertor pressure,Requires slot increase

Target pumping speed per pump

@ 2 Pa divertor pressureResult à The design pumping speed of the

individual pump shall be 80 m³/s

Page 15: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 15

ITP-VT

3. The set-up of the torus cryopump

Molecular nominal pumping speeds:Pump + bellows : ~ 55 m³/sPump:~ 75 m³/s

Duct double bellows(compensation of torus displacement)

Torus cryopump

Valve 80 K shield 4.5 K panels

Exhaust gasfrom torus

Actuator

Part of the cryostat

Part of the duct

Page 16: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 16

ITP-VT

Transitional flow conditions inside the torus cryopump

log (Pressure inside the pump)

molecularflow regime

transitionalflow regime

Kn= =10

Break-Down

mean free path

pump dimension

Generic dependenceS=S(Kn(p))

0

10

20

30

40

50

60

1E-4 1E-3 1E-2 1E-1 1E+0 1E+1

Pressure in pump (Pa) Inlet pressure (Pa)

Pum

ping

spe

ed (

m³/

s) increasingthroughput

100% open

35%

25%

10%

Monte Carlo

Experimental results for a 1:2 scaleITER model pump

Page 17: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 17

ITP-VT

Extrapolation of pumping speeds?

0

10

20

30

40

50

60

70

1E-4 1E-3 1E-2 1E-1 1E+0 1E+1Pressure in pump (Pa) Inlet pressure (Pa)

Pum

ping

spee

d(m

³/s)

100% open

35%

25%10%

Increasingthroughput

q=42 mbarl/sm²(coated surface)q=149 mbarl/sm² (inlet area)

q=23 mbarl/sm²(coated surface)q=81.4 mbarl/sm² (inlet area)

New requirements(200 Pam³/s total ELM pellet pacing)q=45 mbarl/sm²(coated surface)q=260 mbarl/sm² (inlet area)

Our mid-term goal: Develop a predictive toolto get S=S(throughput), via DSMC?.

Page 18: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 18

ITP-VT

4. Instantaneous massive gas injection (for disruption mitigation)

Pressure jumps from ~ zero to 100 Pa

How does the pressure(and the speed) evolvein the cryopump?

Page 19: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 19

ITP-VT

5. Plasma heating at ITER

Page 20: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 20

ITP-VT

The NBI cryopumping task

P1=0.3 Pa (filling pressure) P2/P1≈0.1 S(av, 1+2)=3800 m³/s

Design case :à H2 (higher flows,

more difficult to pump)

Page 21: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 21

ITP-VT

Flow and pressure distribution (ITERVAC)

Along the beamline

Page 22: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 22

ITP-VT

6. Gas dynamics during cryopump regeneration

- 3 regeneration levels:At 100K, 300K, 470 K.

- Evacuation from a few kPa to 10 Paover long lines and varying temperature

Page 23: The need to model the ITER high vacuum systems in ...lss.fnal.gov/conf/C070709.13/C_Day.pdf · IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

IUVSTA Gas Dynamics Workshop, Djurönäset, Sweden, July 2007 Transitional flow modelling ITER Chris Day Slide 23

ITP-VT

Conclusions

ü ITER is a very complex, technologically first of its kind device.ü In many areas, the vacuum systems are operated under transitional flow conditions.ü ITER is alive and must be built now:

There will rarely be the situation that the design is frozen and you get the time to do ´nice, accurate and parametric´ calculations.

ü The calculations will in most cases have a design support function to show thatoperational goals can be met.

ü It must reflect aspects such as: manufacturability, versatility, design robustness. ü So: From an academic point of view, this means difficult boundary conditions.

ü But everybody who can imagine working under these conditions isencouraged to come up and do so!