the major transitions in evolution eörs szathmáry collegium budapest and eötvös university

32
The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Upload: gerald-mcdonald

Post on 12-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

The Major Transitions in Evolution

Eörs Szathmáry

Collegium Budapest AND Eötvös University

Page 2: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Units of evolution

Some hereditary traits affect survival and/or fertility

1. multiplication

2. heredity

3. variability

Page 3: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

The importance of cumulative selection

• Natural selection is a non-random process.

• Evolution by natural selection is a cumulative process.

• Cumulative selection can produce novel useful complex structures in relatively short periods of time.

Page 4: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

John Maynard Smith (1920-2004)

• Educated in Eaton• The influence of J.B.S.

Haldane• Aeroplane engineer• Sequence space• Evolution of sex• Game theory• Animal signalling• Balsan, Kyoto,

Crafoord prizes

Page 5: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

The major transitions (1995)

***

*

* These transitions are regarded to be ‘difficult’

Page 6: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

The importance of cumulative selection

• Natural selection is a non-random process.

• Evolution by natural selection is a cumulative process.

• Cumulative selection can produce novel useful complex structures in relatively short periods of time.

Page 7: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Von Kiedrowski’s replicator

Page 8: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Difficulty of a transition

• Selection limited (special environment)

• Pre-emption: first come selective overkill

• Variation-limited: improbable series of rare variations (genetic code, eukaryotic nucleocytoplasm, etc.)

Page 9: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Difficult transitions are ‘unique’

• Operational definition: all organisms sharing the trait go back to a common ancestor after the transition

• These unique transitions are usually irreversible (no cell without a genetic code, no bacterium derived from a eukaryote can be found today)

Page 10: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Fisher’s (1930) question: the birth of ALife

"No practical biologist interested in sexual reproduction would be led to work out the detailed consequences experienced by organisms having three or more sexes; yet what else should he do if he wishes to understand why the sexes are, in fact, always two?"

Page 11: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Units of evolution

hereditary traits affecting survival and/or reproduction

1. multiplication

2. heredity

3. variation

Page 12: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Egalitarian and fraternal major transitions (Queller, 1997)

Page 13: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Recurrent themes in transitions

• Independently reproducing units come together and form higher-level units

• Division of labour/combination of function

• Origin of novel inheritance systems Increase in complexity

• Contingent irreversibility

• Central control

Page 14: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

The royal chamber of a termite

Page 15: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Termites

Page 16: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Hamilton’s rule

b r > c• b: help given to recipient• r: degree of genetic relatedness between altruist and

recipient• c: price to altruist in terms of fitness• Formula valid for INVASION and MAINTENANCE• APPLIES TO THE FRATERNAL TRANSITIONS!!!

Page 17: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

A note on shortcuts and computational irreducibility

• If you do not attempt to find a shortcut, you are unlikely to discover one

• Pi = 3.1415926….• The digits never repeat themselves periodically:

looks random (normal) No shortcut (?)• BBP formula (Bailey, Borwein and Plouffe, 1996)• it permits one to calculate an arbitrary digit in the

binary expansion of pi without needing to calculate any of the preceding digits

• Links to chaos theory normality?

Page 18: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

The origin of insect societies• Living together must have some advantage in the

first place, WITHOUT kinship• The case of colonies that are founded by

UNRELATED females• They build a nest together, then…• They fight it out until only ONE of them

survives!!!• P(nest establishment together) x P(survival in the

shared nest) > P(making nest alone) x P(survival alone)

• True, even though P(survival in the shared nest) < P(survival alone)

Page 19: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

The problem of indiscriminate altruism

• An important force: punishment

• Worker bees can lay eggs, but they also can be destroyed by other workers

• In many polygynous colonies workers fail to wipe out preferentially the kin of the other genetic lines – WHY?

Page 20: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

The difficulty of evolving discrimination

• “Red beards” exist but seem to be rare

• Discrimination must evolve from lack of discrimination

• Two types of error reveal asymmetry– (1) you fail to kill a non-relative (decreases

your lunch or the lunch of your kin) – (2) you kill your own kin (great price)

Page 21: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Division of labour

• Is advantageous, if the “extent of the market” is sufficiently large

• If it holds that a “jack-of-all-trades” is a master of none

• Not always guaranteed (hermaphroditism)

• Morphs differ epigenetically

Page 22: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Most forms of multicellularity result from fraternal transitions

• Cells divide and stick together

• Economy of scale (predation, etc.)

• Division of labour follows

• Cancer is no miracle (Szent-Györgyi)

• A main difficulty: “appropriate down-regulation of cell division at the right place and the right time” (E.S. & L. Wolpert)

Page 23: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

The propagule problem

• Some animals can divide, but most develop from an egg

• Michod: selection against selfish mutants (cancer-like parasites)

• Wolpert & E.S.: cells originating from the same egg speak the same “epigenetic language”

• Development is more reliable and evolvable

Page 24: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Epigenetics: a novel inheritance system

• Without cell differentiation and its maintenance we would not be here

• Passing on of the differentiated state in cell division

• “molecular Lamarckism”

• Simple organisms: few states

• Complex organisms: many states

Page 25: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Genetics and epigenetics

Chromatin marking: storage-based system

Page 26: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Gene regulation by autocatalytic protein synthesis

• After cell division the regulated state is inherited because enough protein A is present

• An attractor-based system

Page 27: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

What makes us human?

• Note the different time-scales involved• Cultural transmission: language transmits itself as

well as other things• A novel inheritance system

Page 28: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Evolution OF the brain

Page 29: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

• selective amplification by linked replication• mutation, recombination, etc.

Fluid Construction Grammarwith replicating constructs (with Luc Steels)

Page 30: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Why is often no way back?

• There are secondary solitary insects

• Parthenogens arise again and again

• BUT no secondary ribo-organism that would have lost the genetic code

• No mitochondrial cancer

• No parthenogenic gymnosperms

• No parthenogenic mammals

Page 31: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Contingent irreversibility

• In gymnosperms, plastids come from one gamete and mitochondria from the other: complementary uniparental inheritance of organelles

• In mammals, so-called genomic imprinting poses special difficulties

• Two simultaneous transitions are difficult squared: parthenogenesis per se combined with the abolishment of imprinting or complementary uniparental inheritance

Page 32: The Major Transitions in Evolution Eörs Szathmáry Collegium Budapest AND Eötvös University

Central control

• Endosymbiotic organelles (plastids and mitochondria) lost most of their genes

• Quite a number of genes have been transferred to the nucleus

• The nucleus controls organelle division

• It frequently controls uniparental inheritance, thereby reducing intragenomic conflict