the major histocompatibility complex and antigen presentation w. robert fleischmann, ph.d....

26
The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical School [email protected] (612) 626-5034

Upload: norma-dickerson

Post on 23-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

The Major Histocompatibility Complex And Antigen

Presentation

W. Robert Fleischmann, Ph.D.

Department of Urologic Surgery

University of Minnesota Medical School

[email protected]

(612) 626-5034

Page 2: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

Objectives

• Learn the identity and biological roles of MHC molecules.

• Learn the major classes and subclasses of MHC molecules and their roles in immunity.

• Understand genetic polymorphism and its significance for MHC molecules.

• Understand haplotypes and their significance.• Learn the general structure of Class I and

Class II MHC molecules • Learn how and where Class I and Class II

MHC molecules bind antigenic peptides.

Page 3: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

What Are MHC Molecules?

• MHC = major histocompatibility antigens– Aka the HLA (human leukocyte antigen)

complex in humans and the H-2 complex in mice

• They were originally recognized for their involvement in rejection of tissues exchanged between two unrelated organisms.

• Now, we know that MHC molecules play an essential role in antigen recognition and presentation to the immune system.

Page 4: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

The MHC Region of the Genome Is Large

• The MHC gene complex contains more than 100 separate loci (or genes) subdivided into Class I, Class II, and Class III MHC molecules.– Class I MHC molecules present antigen to CD8+

cytotoxic T cells.– Class II MHC molecules present antigen to CD4+ helper

T cells.– Other MHC proteins have been grouped together as

Class III MHC molecules. They include a diverse group of proteins.

• Complement proteins• TNF- and TNF-.• Other loci encode enzymes, heat shock proteins, and some

molecules involved in antigen processing.

Page 5: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

Importance of MHC Class I and Class II Molecules

• B cells express B cell receptor that recognizes antigen without the need for other factors (specific antibody + Ig- and Ig-.

• T cells express T cell receptor (or, more accurately, TCR + CD3) that recognizes antigen only when the antigen has been processed and presented to the T cell receptor as an epitope bound to another molecule. This other molecule is an MHC molecule.

Page 6: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

Three Major Classes of MHC Molecules

• Class I MHC genes– Present on nearly all nucleated cells– Presents antigen to CD8+ cytotoxic T cells

• Class II MHC genes– Present primarily on professional antigen-

presenting cells (Ms, dendritic cells, B cells)– Presents antigen to CD4+ helper T cells

• Class III MHC genes– Complement proteins– TNF- and TNF-

Note: Class I and Class II are structurally similar and bind and present antigen. Class III molecules are very different structurally and do not play a role in antigen presentation.

Page 7: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

Class I MHC Have Subclasses• Three “classical” Class I gene loci

– MHC Class I gene B encoding HLA-B– MHC Class I gene C encoding HLA-C– MHC Class I gene A encoding HLA-A

• There are a number of additional, non-”classical” Class I gene loci– The MHC gene locus D has since been identified

to constitute the Class II genes– MHC Class I genes E, F, G, H

• Each of the Class I gene products associates with another peptide, 2 microglobulin, when they are expressed on the cell surface.

Page 8: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

Class II MHC Have Subclasses

• Each Class II MHC gene locus encodes two peptides, an subunit and a subunit that are expressed together on the cell surface.

• Three major Class II gene loci– MHC Class II gene DP encoding DP – MHC Class II gene DQ encoding DQ – MHC Class II gene DR encoding DR

Page 9: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

Each Major Class of MHC Has Subclasses

Kuby Immunology

Page 10: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

Each Locus of Class I and Class II MHC Is Highly Polymorphic

• There are many alleles for each classical Class I and Class II locus.

• This polymorphism – Gives us our unique

identity. – Permits recognition of

self versus non-self.– Is an impediment to

transplantation.

Page 11: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

Medical Significance of MHC Polymorphism

• This polymorphism – Affects the ability to make an immune response.– Affects the resistance or susceptibility to infectious

diseases.• At least part of an individual’s ability to develop an immune

response is due to the individual’s MHC genes.

– Affects the susceptibility to autoimmune diseases and allergies.

• HLA-B27 bearers are 90 times more likely to develop ankylosing spondylitis (destruction of vertebral cartilage).

• HLA-DR2 bearers 130 times more likely to develop narcolepsy.

• HLA-A3/B14 bearers are 90 times more likely to develop hemochromatosis (too much iron absorption, deposited in and damages internal organs).

Page 12: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

Haplotypes• Since Class I and Class II genes are closely linked,

recombination within the MHC region is rare.• Thus, we inherit Class I and Class II loci from each of

our parents as a cassette of gene alleles.– This cassette is called a haplotype.– Our Class I and Class II make-up is composed of two

haplotypes, one maternal and one paternal.– The alleles of each Class I and Class II locus are co-

dominantly expressed in the same cells.

• For successful transplantation without immunosuppression, a recipient would have to have the same gene alleles within his/her two haplotypes as the donor (syngeneic). – Generally, only identical twins are syngeneic.– Congenic, differ only in one locus.

Page 13: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

A Single Cell Expresses MHC Molecules That Represent the

Casette of MHC Molecules

KubyNote this example is for the mouse

Page 14: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

MHC Class I Polymorphisms• For MHC Class I

– 370 A alleles– 660 B alleles– 190 C alleles

• A total of 370 x 660 x 190 = 4.6 x 107 Class I haplotypes for A, B, and C. (~2 x 1015 total)

• Class I E, F, G, and H are called Class Ib proteins and are less polymorphic than A, B, and C proteins. Class I E and G proteins bind antigen peptides but are involved in NK cell recognition.

• Most of the polymorphism differences are in the cleft region (antigenic peptide binding site).

Page 15: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

MHC Class II Polymorphisms• For MHC Class II

– DR Locus • 3 DR alleles • 400 DR 1 alleles• ≥74 DR 2-9 alleles

– DQ Locus• 28 DQ 1• 62 DQ 1

– DP Locus• ≥19 DP 1• 118 DP 1

Page 16: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

Stylized Structure of Class I and Class II Molecules

45 kDa chain12 kDa 2 microglobulin chain

33 kDa chain28 kDa chainKuby

Page 17: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

Ribbon Diagrams of Class I & II Molecules

Resident peptide Resident peptide

Roitt

Page 18: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

General Features of Peptide Binding Clefts of Class I & II Molecules

• Similar structural features to peptide binding clefts of both Class I & II

• There are up to 6 different Class I molecules and up to 12 different Class II molecules (mixing and matching of different and subunits for a given set of alleles).

• Thus, binding of peptide to the peptide binding clefts cannot be as strong as peptide binding to antibody and T cell receptors.

Page 19: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

Comparison of Binding CleftsClass I Molecules Class II Molecules

Nature of peptide-binding cleft

Closed at both ends Open at both ends

General size of bound peptides

8-10 amino acids 13-18 amino acids

Peptide motifs involved in binding to MHC molecule

Anchor residues at both ends of peptide

Anchor residues distributed along the length of the peptide

Nature of bound peptide

Extended structure with both ends interacting and middle arching away from MHC cleft

Extended structure that is held at a constant elevation above the floor of the MHC cleft

Page 20: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

Peptide Bound to MHC Peptide-Binding Clefts

Kuby

Page 21: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

Activation of T Cell by Antigenic Peptide Bound to MHC

• Class I MHC presents antigen to CD8+ cytotoxic T cells.– If there are appropriate co-stimulatory signals and cytokines

produced, activation of the cytotoxic T cells may occur.– Activation of cytotoxic T cells results in the death of cells

expressing the recognized antigen.

• Class II MHC presents antigen to CD4+ helper T cells.– If there are appropriate co-stimulatory signals and cytokines

produced, activation of the helper T cells may occur.– Activation of helper T cells may result in the activation of B

cells to proliferate and differentiate into plasma cells.– Activation of helper T cells may result in the activation of

CD8+ cytotoxic T cells to proliferate and attack antigen bearing cells or in the ability of B cells to become antibody-producing plasma cells.

Page 22: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

T Cells Show Self-MHC Restriction

• CD4+ and CD8+ T cells from an individual recognize antigenic peptides bound to their own MHC proteins.

• They do not recognize antigenic peptide bound to allogenic MHC proteins.

Syngeneic MHC Allogeneic MHC Syngeneic MHCCognate Antigen Cognate Antigen Non-cognate Antigen

Page 23: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

Role of Antigen-Presenting Cells• Processing of antigen is required for

recognition of an antigen by T cells.• Most cells can present antigen with Class I

MHC.– This includes the presentation of foreign antigen

and self-antigens.– Recognition of antigen bound to Class I is by

CD8+ T cells.

• Professional antigen-presenting cell present antigen with Class II MHC.– Recognition of antigen bound to Class II is by

CD4+ T cells.

Page 24: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

Professional Antigen-Presenting Cells

• Dendritic cells are the most effective– Constitutively express high levels of Class II MHC

molecules– Constitutively express B7 and other costimulatory

molecules

• Macrophages– Must be activated by phagocytosis to express Class II

molecules – Must be activated to express costimulatory molecules

• B cells– Constitutively express class II MHC molecules– Must be activated by antigen binding to antibody

before they express costimulatory molecules

Page 25: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical

Different Antigen-Processing and Presentation Pathways for Different MHC Molecules

• Presentation of antigen on Class I molecules requires intracellular protein synthesis of the antigen.

• Presentation of antigen on Class II molecules requires the endocytic uptake of antigen.

Page 26: The Major Histocompatibility Complex And Antigen Presentation W. Robert Fleischmann, Ph.D. Department of Urologic Surgery University of Minnesota Medical