the inhabitants of ancient kition: preliminary...

1
Site and Introduction The ancient city-kingdom of Kition extends underneath the modern city of Larnaca and its surroundings, in the southeast part of Cyprus (Figure 1). The site has been thoroughly studied up to its decline in the 4th century AD. Both Karageorghis (1985, 2005) and the French Mission under the direction of Yon (1994, 2000, 2006) and Fourrier (2015) have provided us with a clear picture of a thriving city-kingdom up until the Late Roman period. Human habitation here dates back to the Middle Bronze Age as a minor settlement, while after the silting of Hala Sultan Tekke’s port, it reaches its peak as a major urban centre at the end of the 13th c. By the 9th c. BC the site prospered into a multicultural settlement with a strong Phoenician connection. Among the factors that contributed to the emergence of ancient Kition into a key Cypriot site was its strategic position, which rendered it an ideal naval base, as well as its harbour, which facilitated the export of primarily copper and timber to Egypt, Greece and the rest of the eastern Mediterranean (Karageorghis 1973; Yon and Childs 1997). Ongoing excavations by the Department of Antiquities as part of mitigation efforts related to the waste water and sewer modification project have brought to light new sections of ancient Kition and its cemetery. The analysis of the skeletal remains from these excavations can provide unique insights to the diachronic occupation of this key location. The skeletal analysis of this assemblage was initiated in the summer of 2019 as a collaborative effort between the Department of Antiquities, Texas State University, and the Cyprus Institute. Materials and Methods The first data collection season (July-August 2019) focused on the remains from two tombs: Agiou Georgiou Kontou street Τ 1 ΣΜ1-Υ 259 (hereafter T1), dating from Classical to Hellenistic times, and Anagenniseos street T2-D900-D221.3 (hereafter T2), dating from Hellenistic to Roman times. Most burials represented primary inhumations (with some post-depositional disturbance) but scattered skeletal elements were also found (Figure 2). This presentation will focus on the primary inhumations as these represent the majority of the assemblage. The state of preservation of the remains was assessed using the Zonation method (Knüsel and Outram 2004) to record which parts of each skeletal element are present, the Anatomical Preservation Index (API) (Bello and Andrews 2006) to determine what percentage of each element is preserved, and the Qualitative Bone Index (QBI) (Bello and Andrews 2006) to mark the percentage of well preserved cortical bone. Standard morphological and metric skeletal markers of the pelvis, cranium and long bones were used for the estimation of age and sex (Nikita 2017 and references therein). In addition, pathological lesions were recorded according to Buikstra and Ubelaker (1994), entheseal changes were scored in fibrocartilagenous entheses of the upper limbs adopting the Vilotte et al. (2010) method, while stature was estimated based on long bone lengths using the equations by Ruff et al. (2012) and Celbis and Agritmis (2006). THE INHABITANTS OF ANCIENT KITION: PRELIMINARY INSIGHTS A. Karligkioti¹, P. Christofi², K. Helgeson³, S. Mavroudas³, F. Constantinou 4 , K. Cruz³, E. Nikita¹, N. Herrmann³ ¹ Science and Technology in Archaeology and Culture Research Center (STARC), The Cyprus Institute ² Department of Antiquities, Cyprus ³ Department of Anthropology, Texas State University 4 Department of Archaeological Sciences, Leiden University Results and Discussion The osteological analysis to date has identified 14 individuals in Τ 1 and 20 in T2. The skeletal remains from T1 were preserved in a poorer state than those from T2. In specific, the mean API value for T1 was 3.899 while for T2 it was4.008, and the mean QBI value for T1 was 4.177 while for T2 it was 4.391. The difference between these values was statistically significant (p = 0.015 for API, p = 0.0001 for QBI). The poorer preservation of T1 can be attributed to the fact that this tomb was found looted and flooded. The demographic profile of the sample per tomb can be seen in Figure 3, and per context (inside or outside sarcophagi) in Figure 4. Figure 3 shows that Tomb 1 contained more individuals of indeterminate age, classified in the generic ‘adult’ category, than Tomb 2. This finding is associated to the poorer preservation of the remains in Tomb 1. In addition, Tomb 1 contained more young adults compared to middle adults whereas this pattern is inversed in Tomb 2. Given the small sample sizes and the high number of individuals that could not be aged, this pattern should not be interpreted as indicating a shorter life span for those interred in Tomb 1. On the other hand, it is very interesting that the demographic profile of those interred inside sarcophagi is very similar to that of the individuals found outside these (Figure 4), suggesting no association between mortuary treatment and demographic characteristics, as least from the very small part of the cemetery examined. The pathological conditions identified in the sample are typical for bioarchaeological assemblages and include degenerative joint disease, Schmorl’s nodes, periostitis, dental diseases and trauma. Degenerative joint disease was the more frequent condition in the sample and affected mostly individuals in T2 (Figure 5). The overall caries rate is low for both tombs (3.2% of available teeth) with a moderate tooth loss (12.8% of sockets). Figure 5. DJD frequency per zone in T1 (left) and T2 (right) Stature could be estimated for seven individuals from T2 and ranged from 162.1 to 164.2cm for males and from 155.2 to 169.2cm for females. The entheseal changes recorded on the current sample are too few to be discussed at this stage. Concluding remark The excavations in ancient Kition have revealed dozens of tombs and are expected to bring to light many more in the following months. While our study is still at a very early stage, the demographic characteristics, pathological lesions, and metric traits identified on the individuals of this site highlight the need for more extensive research in this direction. Figure 3. Demographic distribution of the sample per tomb Figure 4. Demographic distribution of the sample per context References: Bello S, Andrews P. 2006. In: Gowland R, Knüsel C (eds.) Social Archaeology of Funerary Remains. Oxbow, pp. 1-13. Buikstra JE, Ubelaker DH. 1994. Standards for Data Collection from Human Remains. Arkansas Archaeological Survey Report Number 44. Celbis O, Agritmis H. 2006. Forensic Science International 158: 135-139. Fourrier S. 2015. The Iron Age city of Kition: the state of research 85 years after the Swedish Cyprus Expedition's excavations. Karageorghis V. 1973. Kition: Mycenaean and Phoenician. Oxford University Press. Karageorghis V, Demas M. 1985. Excavations at Kition V (Parts I-IV). The Pre-Phoenician Levels. Nicosia. Karageorghis V, Callot O. 2005. Excavations at Kition vol. VI. The Phoenician and Later Levels. Nicosia. Knüsel CJ, Outram AK. 2004. Environmental Archaeology 9: 85-98. Nikita E. 2017. Osteoarchaeology: A Guide to the Macroscopic Study of Human Skeletal Remains. Academic Press. Ruff CB, Holt BM, Niskanen M, Sladék V, et al. 2012. American Journal of Physical Anthropology 148: 601-617. Villotte S, Castex D, Couallier V, Dutour O, et al. 2010. American Journal of Physical Anthropology 142: 224-234. Yon M. 1994. Bulletin de Correspondance Hellenique 118: 672-677. Yon M, Childs WA. 1997. Bulletin of the American Schools of Oriental Research 308: 9-17. Yon M. 2000. Syria 77: 95-116. Yon M. 2006. Kition de Chypre, Paris. Figure 1. Map of Cyprus with location of ancient Kition Figure 2. Plan of T1 (left) and T2 (right)

Upload: others

Post on 15-Feb-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Site and IntroductionThe ancient city-kingdom of Kition extends underneath the modern city of Larnaca and its

    surroundings, in the southeast part of Cyprus (Figure 1). The site has been thoroughly

    studied up to its decline in the 4th century AD. Both Karageorghis (1985, 2005) and the

    French Mission under the direction of Yon (1994, 2000, 2006) and Fourrier (2015) have

    provided us with a clear picture of a thriving city-kingdom up until the Late Roman period.

    Human habitation here dates back to the Middle Bronze Age as a minor settlement, while

    after the silting of Hala Sultan Tekke’s port, it reaches its peak as a major urban centre at

    the end of the 13th c. By the 9th c. BC the site prospered into a multicultural settlement

    with a strong Phoenician connection. Among the factors that contributed to the emergence

    of ancient Kition into a key Cypriot site was its strategic position, which rendered it an ideal

    naval base, as well as its harbour, which facilitated the export of primarily copper and

    timber to Egypt, Greece and the rest of the eastern Mediterranean (Karageorghis 1973;

    Yon and Childs 1997).

    Ongoing excavations by the Department of Antiquities as part of mitigation efforts relatedto the waste water and sewer modification project have brought to light new sections ofancient Kition and its cemetery. The analysis of the skeletal remains from theseexcavations can provide unique insights to the diachronic occupation of this key location.The skeletal analysis of this assemblage was initiated in the summer of 2019 as acollaborative effort between the Department of Antiquities, Texas State University, and theCyprus Institute.

    Materials and MethodsThe first data collection season (July-August 2019) focused on the remains from two

    tombs: Agiou Georgiou Kontou street Τ1 ΣΜ1-Υ259 (hereafter T1), dating from Classical

    to Hellenistic times, and Anagenniseos street T2-D900-D221.3 (hereafter T2), dating from

    Hellenistic to Roman times. Most burials represented primary inhumations (with some

    post-depositional disturbance) but scattered skeletal elements were also found (Figure 2).

    This presentation will focus on the primary inhumations as these represent the majority of

    the assemblage.

    The state of preservation of the remains was assessed using the Zonation method (Knüseland Outram 2004) to record which parts of each skeletal element are present, theAnatomical Preservation Index (API) (Bello and Andrews 2006) to determine whatpercentage of each element is preserved, and the Qualitative Bone Index (QBI) (Bello andAndrews 2006) to mark the percentage of well preserved cortical bone. Standardmorphological and metric skeletal markers of the pelvis, cranium and long bones wereused for the estimation of age and sex (Nikita 2017 and references therein). In addition,pathological lesions were recorded according to Buikstra and Ubelaker (1994), enthesealchanges were scored in fibrocartilagenous entheses of the upper limbs adopting theVilotte et al. (2010) method, while stature was estimated based on long bone lengthsusing the equations by Ruff et al. (2012) and Celbis and Agritmis (2006).

    THE INHABITANTS OF ANCIENT KITION: PRELIMINARY INSIGHTS

    A. Karligkioti¹, P. Christofi², K. Helgeson³, S. Mavroudas³, F. Constantinou4, K. Cruz³,

    E. Nikita¹, N. Herrmann³

    ¹ Science and Technology in Archaeology and Culture Research Center (STARC), The Cyprus Institute

    ² Department of Antiquities, Cyprus

    ³ Department of Anthropology, Texas State University4 Department of Archaeological Sciences, Leiden University

    Results and DiscussionThe osteological analysis to date has identified 14 individuals in Τ1 and 20 in T2. The

    skeletal remains from T1 were preserved in a poorer state than those from T2. In

    specific, the mean API value for T1 was 3.899 while for T2 it was 4.008, and the mean

    QBI value for T1 was 4.177 while for T2 it was 4.391. The difference between these

    values was statistically significant (p = 0.015 for API, p = 0.0001 for QBI). The poorer

    preservation of T1 can be attributed to the fact that this tomb was found looted and

    flooded.

    The demographic profile of the sample per tomb can be seen in Figure 3, and per

    context (inside or outside sarcophagi) in Figure 4. Figure 3 shows that Tomb 1 contained

    more individuals of indeterminate age, classified in the generic ‘adult’ category, than

    Tomb 2. This finding is associated to the poorer preservation of the remains in Tomb 1. In

    addition, Tomb 1 contained more young adults compared to middle adults whereas this

    pattern is inversed in Tomb 2. Given the small sample sizes and the high number of

    individuals that could not be aged, this pattern should not be interpreted as indicating a

    shorter life span for those interred in Tomb 1. On the other hand, it is very interesting that

    the demographic profile of those interred inside sarcophagi is very similar to that of the

    individuals found outside these (Figure 4), suggesting no association between mortuary

    treatment and demographic characteristics, as least from the very small part of the

    cemetery examined.

    The pathological conditions identified in the sample are typical for bioarchaeological

    assemblages and include degenerative joint disease, Schmorl’s nodes, periostitis, dental

    diseases and trauma. Degenerative joint disease was the more frequent condition in the

    sample and affected mostly individuals in T2 (Figure 5). The overall caries rate is low for

    both tombs (3.2% of available teeth) with a moderate tooth loss (12.8% of sockets).

    Figure 5. DJD frequency per zone in T1 (left) and T2 (right)

    Stature could be estimated for seven individuals from T2 and ranged from 162.1 to

    164.2cm for males and from 155.2 to 169.2cm for females. The entheseal changes

    recorded on the current sample are too few to be discussed at this stage.

    Concluding remarkThe excavations in ancient Kition have revealed dozens of tombs and are expected to

    bring to light many more in the following months. While our study is still at a very early

    stage, the demographic characteristics, pathological lesions, and metric traits identified

    on the individuals of this site highlight the need for more extensive research in this

    direction.

    Figure 3. Demographic distribution of

    the sample per tombFigure 4. Demographic distribution of

    the sample per context

    References:Bello S, Andrews P. 2006. In: Gowland R, Knüsel C (eds.) Social Archaeology of Funerary Remains. Oxbow, pp. 1-13.

    Buikstra JE, Ubelaker DH. 1994. Standards for Data Collection from Human Remains. Arkansas Archaeological Survey Report Number 44.

    Celbis O, Agritmis H. 2006. Forensic Science International 158: 135-139.

    Fourrier S. 2015. The Iron Age city of Kition: the state of research 85 years after the Swedish Cyprus Expedition's excavations.

    Karageorghis V. 1973. Kition: Mycenaean and Phoenician. Oxford University Press.

    Karageorghis V, Demas M. 1985. Excavations at Kition V (Parts I-IV). The Pre-Phoenician Levels. Nicosia.

    Karageorghis V, Callot O. 2005. Excavations at Kition vol. VI. The Phoenician and Later Levels. Nicosia.

    Knüsel CJ, Outram AK. 2004. Environmental Archaeology 9: 85-98.

    Nikita E. 2017. Osteoarchaeology: A Guide to the Macroscopic Study of Human Skeletal Remains. Academic Press.

    Ruff CB, Holt BM, Niskanen M, Sladék V, et al. 2012. American Journal of Physical Anthropology 148: 601-617.

    Villotte S, Castex D, Couallier V, Dutour O, et al. 2010. American Journal of Physical Anthropology 142: 224-234.

    Yon M. 1994. Bulletin de Correspondance Hellenique 118: 672-677.

    Yon M, Childs WA. 1997. Bulletin of the American Schools of Oriental Research 308: 9-17.

    Yon M. 2000. Syria 77: 95-116.

    Yon M. 2006. Kition de Chypre, Paris.

    Figure 1. Map of

    Cyprus with location

    of ancient Kition

    Figure 2. Plan

    of T1 (left) and

    T2 (right)