the greenhouse effect, the oceans and climate change › ~brosenhe › oceanography › 13...the...

15
1 EENS/EBIO 223 Prof. Rosenheim Intro. Oceanography The Greenhouse Effect, the Oceans and Climate Change EENS/EBIO 223 Prof. Rosenheim Intro. Oceanography Greenhouse The glass used for a greenhouse works as a selective transmission medium for different spectral frequencies, and its effect is to trap energy within the greenhouse, which heats both the plants and the ground inside it. Greenhouses thus work by utilizing electromagnetic radiation and preventing convection. EENS/EBIO 223 Prof. Rosenheim Intro. Oceanography Greenhouse Effect

Upload: others

Post on 27-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    The Greenhouse Effect, the Oceans and Climate Change

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    GreenhouseThe glass used for a greenhouse works as a selective transmission medium for different spectral frequencies, and its effect is to trap energy within the greenhouse, which heats both the plants and the ground inside it. Greenhouses thus work by utilizing electromagnetic radiation and preventing convection.

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Greenhouse Effect

  • 2

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Earth’s Atmospheric Greenhouse

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Greenhouse Gases

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Analysis of CO2• Non-dispersive infrared CO2 detector

    – Uses IR light, shone through an optical cell and detected on the other side of the gas sample, to quantify CO2 concentration.

    – It is an established and useful fact that CO2absorbs IR radiation.

  • 3

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Greenhouse Gas Variability• Sources:

    – Volcanoes• CO2, NOx

    – Biomass burning• CO2 from forest fires, natural and otherwise

    – Bacteria• CH4 in ocean sediments (perhaps thermogenic)

    – Fossil fuel burning• CO2, Anthropogenic

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Greenhouse Gas Variability

    • In deep past (Phanerozoic), CO2concentration is very difficult to determine

    • Most evidence points to relationship with volcanic cycles

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Greenhouse Gas Variability

  • 4

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Greenhouse Gas Variability• Ice core record provides much more direct

    CO2 measurement• 420,000 y of ice core records of ice age

    cycles, related to CO2 concentrations

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Glacial – Interglacial CO2 Variability• Temperature and CO2 concentration are

    intimately related• Sometimes temperature leads CO2 and

    vice versa.– Feedback

    http://sitemaker.umich.edu/section2_group1/arctic_issues__permafrost

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Milankovitch Cycles

    • Milankovitch, a Serb physicist, had proposed orbital cycles

    • 3 cycles– 100,000 y– 41,000 y – 19,000 and 23,000 y

    • Published 1930, ignored

    http://ircamera.as.arizona.edu/NatSci102/NatSci102/lectures/climate.htm

  • 5

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Insolation Variability of Eccentricity

    • Insolation effects yield an incongruous response

    • What was the cause?

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    The Thermohaline Circulation• Cooling of salty GSS waters• Formation of NADW• Cross-equatorial transport• Amplifier of orbital changes

    http://www.pik-potsdam.de/~stefan/thc_fact_sheet.html

    http://www.onr.navy.mil/Focus/ocean/motion/currents1.htm

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Nonlinear-climate system

    • Multiple factors to climate change– Albedo

    • Ice cover• Exposed continental shelf• Sea ice

    – Water vapor availability– Fresh water discharge into N. Atlantic

    • All have feedbacks that can amplify orbital insolation changes

  • 6

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Ocean Heat Content

    • Heat content of the oceans:– Specific heat: 1cal·g-1·oC-1

    – Volume: 1.37 x 109 km3

    – Density: 1.028 g·mL-1

    – Mass: 1.41 x 1024 g– 5.9 x 1024 cal (to inc. 1K)– 3.9 x 1026 cal (total)

    • Heat content of atmosphere:– Specific heat: 0.24 cal·g-

    1·oC-1

    – Mass: 5 x 1018kg– 1.2 x 1021 cal (to inc. 1K)– 3.1 x 1023 cal (total)

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Oceanic Heat Transport

    • N. Atlantic, with current continental configuration, can effectively pull equatorial heat into high latitudes

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Greenhous Feedbacks• Melting tundra, increased methane (+)• Warming oceans, melting sea ice, more

    productivity (-)• More NADW formation, more CO2 flux into

    deep ocean (+)

    http://www.koshland-science-museum.org/exhibitgcc/historical02.jsp

  • 7

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Paleo-Greenhouse Effect?• Does CO2 lead or lag glacial/interglacial

    climate change?– Trigger is unknown, but strongest evidence

    keys on orbital cycles– Melting ice and rising seas change seawater

    chemistry and flow• CO2 degases

    – Tundra melts• CO2 degases

    http://www.koshland-science-museum.org/exhibitgcc/historical02.jsp

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    CO2 and the Oceans

    The oceans can be both a source and sink of CO2

    • CO2 Sink– Cooler oceans– High productivity– Expose continental shelf

    • CO2 Sources– Warming deep ocean– Destabilize deep ocean

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Greenhouse Gas Variability

    • Holocene (the period after the last glaciation) CO2levels paint a vivid picture of recent CO2 increases

    • “Instantaneous” CO2increase

    IPCC

  • 8

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Greenhouse Gas Variability• Seasonal trends in CO2 persist due to

    temperate forests and phytoplankton blooms

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Sources for recent CO2 increase

    • Humans.

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Evidence for Human Sources

    • Carbon isotope composition of the atmosphere

    Direct Atmospheric Measurements

  • 9

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Archived Proxy Records of Anthropogenic CO2

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Earth’s Temperature Change• Average temperature of

    Earth hasn’t climbed as fast as CO2 levels

    • Our instrumental record is short (100 y), anything before that has a high uncertainty

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Why isn’t the temperature increase proportional to the CO2 increase?

    • 2 heat pumps – atmosphere and ocean• Oceans have more heat capacity than

    atmosphere• Verifiable changes in ocean circulation

    are the manifestation of this increased CO2.

  • 10

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Ocean Heat Content

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    New Data from the Caribbean Sea

    • Ocean climate change is not as straightforward as a global composite

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    New Data from the Caribbean Sea

    • Climate change in the largest heat sink of our climate system is regionally complex.

    30oN

    0.5 1 1.5 2 2.5 3oC/century

    15oN

    90oW 60oWMann et al., 2004, global composite

    Dep

    th (m

    )

    0

    400

    200

    Longitude80oW 70oW 60oW 50oW 20oW30oW40oW

    Salinity (PSU)35.2 35.4 35.6 35.8 36.0 36.2 36.4 36.6 36.8 37.0

    36

    36

    Sclerosponges(Rosenheim et al., 2005)

    B B’

    B B’

    a.

    b.

  • 11

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Geologic Carbon Cycle• How does the earth lower the CO2

    concentration in the atmosphere?– Natural sinks of CO2

    • Biomass burial• Formation of CaCO3• Tectonic burial/uplift of sediments

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Biogenous Sediment

    • CaCO3 is a CO2 sink

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Tectonic Carbon Sinks

    • Burial of CaCO3 sediments– Potential for volcanic evasion of CO2

    • Uplift of sediments out of marine environment– Potential for weathering

  • 12

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Oceans’ Roles in the Carbon Cycle• Dissolution of CO2• Calcification • Photosynthesis and metabolism• 50X atm. CO2 in oceans

    http://www.visionlearning.com/library/module_viewer.php?mid=95

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Carbon Sinks: Deep vs. Surface Ocean

    • Surface ocean is site of carbon flux between ocean and atmosphere– Upwelling, ocean is a source– Downwelling, ocean is a sink– Productivity Pump

    • Deep ocean - ~40X the carbon reservoir– Solubility Pump– CO2 is very soluble in the deepest parts of the

    ocean

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Surface Ocean Productivity Pump

    • Biomass is created in photic zone• Biomass dies, and what is not recycled

    (eaten) at the surface falls to the deep ocean

    • Here most biomass is recycled (eaten). Small fraction of biomass is buried

    • CaCO3 deposition is also biogenous

  • 13

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Biomass Burial as Carbon Sink• Both marine (diatoms) and terrestrial

    (plants)

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Deep Ocean – Solubility Pump

    • More CO2 can remain in solution at – Low temperature– High pressure

    • Deep ocean fits these criteria and has a very large volume

    All of our fossil fuels are about 1/10 of the deep ocean carbon content!

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Anthropogenic Effects on Pumps

    • Productivity Pump– Productivity pump may be diminished by ocean

    acidification as CO2 increases in atmosphere• Solubility Pump

    – As temperature rises, especially in surface oceans, CO2 dissolution becomes less efficient (g/L)

    – But more overall CO2 will dissolve because more is available (total g)

    • Net effect – decreasing pH (increasing acidity) of world oceans

  • 14

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    CO2 Sequestration

    • How can WE get rid of CO2?– We need to control biomass accumulation

    and burial, and/or ocean chemistry (for biogenous carbonate formation), and/or plate tectonics

    – Or, we need to come up with alternatives that do not mimic known earth processes

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Iron Seeding Projects

    • Southern Ocean Iron (Fe) Experiment• Does iron fertilization lead to enhanced

    carbon sequestration?• John Martin – “Give me a trainload of scrap iron and I’ll

    give you another Ice Age.”http://www.mbari.org/expeditions/SOFeX2002/history&purpose.htm

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Iron Seeding Projects

    • Other projects – SOIREE, FeEx, SERIES

  • 15

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Iron Seeding Outcome

    • In most regions Fe is not the only limiting reagent for carbon sequestration

    • In Southern Ocean, a diatom and phytoplankton bloom was persistent and was buried to deep water along an oceanic front

    • It would be difficult to count on Fe seeding to sequester all of our carbon

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    What about changing sources?

    EENS/EBIO 223 Prof. Rosenheim

    Intro. Oceanography

    Key Concepts

    • Main sources and sinks of CO2• Oceans’ roles in the carbon cycle• Temperature change vs. CO2 increase

    – Why the heterogeneity?• Carbon sequestration

    – Fads, fables and facts• What can you do?