the geohydrology of ben hill, irwin, tift, turner, … › sites › epd.georgia.gov › ...ben...

4
' I STATE OF GEORGIA DEPARTMENT OF NATURAL RESOURCES Joe D. Tanner, Commissioner THE GEOLOGIC AND WATER RESOURCES DIVISIONSam M. Pickering, State Geologist and Division Director ' ATlANTA 1976 .. THE GEOHYDROLOGY OF BEN HILL, IRWIN, TIFT, TURNER, AND WORTH COUNTIES, GEORGIA by THOMAS W. WATSON .. HYDROLOGIC ATLAS

Upload: others

Post on 28-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • ' • I

    STATE OF GEORGIA DEPARTMENT OF NATURAL RESOURCES

    Joe D. Tanner, Commissioner

    THE GEOLOGIC AND WATER RESOURCES DIVISION•

    Sam M. Pickering, State Geologist and Division Director

    ' ATlANTA

    1976

    .. •

    THE GEOHYDROLOGY OF BEN HILL, IRWIN, TIFT, TURNER,

    AND WORTH COUNTIES, GEORGIA

    by

    THOMAS W. WATSON

    ..

    HYDROLOGIC ATLAS

  • THE GEOHYDROLOGY OF BEN HILL IRWIN. TIFT. TURNER. AND WORTH COUNTIES, GEORGIA

    GEORGIA DEPARTMENT OF NATURAL RESOURCES THE GEOLOG IC AND WATER RESOURCES DIVISION

    Figure 1. THICKNESS OF THE NEOGENE FORMATION

    A ~

    B - . ,.-:--. _,

    I •

    Scale I :250,000

    E5 ========~O=======:::i'c:===:==:==:==:==:==:;:i'[:o=======::i"E===:==:==:==:c:===:=320 Statute Miles E5 3::::E3::::::E30====::::i'=::==::==::==::=3'10=====1E5 c:=c:=c:==::=320====:::::i"~====330 Kilometers

    SELECTED REFERENCES

    1. Cooke, C. W., 1943, Geology of the Coastal Plain of Georgia: U. S. Geol. Survey Bull. 941 , 121 p.

    2. Hem, J . D., 1970, Study and Interpretation of the Chemical Characteristics of Natural Water: U. S. Geol. Survey Water-Supply Paper 1473 (2d ed.), 363 p.

    3. Herrick , S. M., 1961 , Well Logs of the Coastal Plain of Georgia: Ga. C:eol. Survey Bull. 70 , 462 p.

    4. Herrick, S.M., and Vorhis, R. C., 1963, Subsurface Geology of the Georgia Coastal Plain : Ga. Geol. Survey In f. Circ. 25, 78 p.

    5. Herrick, S. M., and Wait, R. L., 1956, Ground Water in the Coastal Plain of Georgia: Am. Water Works Assoc. Jour. , Southeastern Sec., v. 20 , no. 1, p. 73-86.

    6. Krause, R. E. , and Gregg, D. 0., 1972, Water from the Principal Artesian Aquifer in Coastal Georgia: Ga. Div. Earth & Water, Hydrologic Atlas 1.

    7. Owen, Vaux, Jr., 1963, Geology and Groundwater Resources of Mitchell County , Georgia: Ga. Geol. Survey Inf. Circ. 24, 38 p.

    8. Sever, C. W., Jr., 1965, Ground Water Resources of Bainbridge, Georgia: Ga. GeoL Survey lnf. Circ. 32, 10 p.

    9. _ _ 1966, Reconnaisance of the Ground Water and Geology of Thomas County, Georgia : Ga.

    10.

    11.

    12.

    Geol. Survey lnf. Circ. 34, 14 p.

    __ 1969, Hydraulics of Aqu ifers at Alapaha, Coolidge, Fitzgerald, Montezuma, and Thomasville, Georgia: Ga. Geol. Survey lnf. Circ. 36, 16 p.

    Stiff, H. A., Jr., 1951, The Interpretation of Chemical Water Analysis By Means of Patterns: Jour. of Petroleum Technology , v. 3, no. 10, p. 15-17.

    Stringfield, V. T., 1966, Artesian Water in Tertiary Limestone in the Southeastern States: U. S. Geol. Survey Prof. Paper 517 , 226 p.

    13. U. S. Dept. of Comm., 1963-72, Climatological Data of Georgia: National Oceanic and Atmospheric Administration, Environmental Data Service.

    14. U. S. Public Health Service, 1962, Drinking Water Standards: Public Health Service, Pub. 956.

    160 •

    140

    L---

    320 •

    500

    mean sea level

    500

    THOMAS W. WATSON

    90

    B 500

    mean sea level

    500

    ) I

    ;

    EXPLANATION

    I

    '-'\. 83°

    /

    '._...-.._fl I

    100 ______...,..

    150------ D Denotes arc;~ where Neogene formations arc found ai or ncar the surface Equal-thickness Contour

    Shows Uric/mess o( Neogene formation ouerfying the l'rindpal Artesian Aqrli(er. Con lour intr~rua/ is 50 {t!ei

    • Control Point

    WORTH CO. TURNER CO.

    Denol.cs area where Principal Artesian A(JUifer i~ found at or near the .~urfacc

    TURNER

    CRISP co. I TURNER co.

    c 500

    I I I

    ~ e • ~ N

    ~

    co. IRWIN co.

    ~ ~

    >

    • "' ~ u 0 £ ~

    0 ~

    0 0 0 ~ • c' o·- -" . .:; ~0::: E 0 ; ·o

    "' • 0 "' ::; 500

    mean ua level·r~~~~~~@~~~~~~~~~~~~~~~~~~~~~~~~g§~~~g~~tmean sea level PRINCIPAL ARTESIAN AQU I FER 500 500

    Figure 2. GEOLOGIC SECTIONS

    HYDROLOGIC ATLAS 2

    SHEET 1 OF 3

  • GEORG IA DEPARTMENT OF NATURAL RESOURCES TH E GEOLOGIC AN D WATER RESOURCES DI V ISION

    I I

    I

    r-

    172

    '

    zoo --- -

    • - 55

    THE GEOHYDROLOGY OF BEN HILL. IRWIN. TIFT. TURNER. AND WORTH COUNTIES. GEORGIA

    THOMAS W. WATSON

    Figure 3. CONFIGU RATION OF THE TOP OF TH E PRI NCI PAL A RTESI AN AQUI FE R

    . 164

    \ 188

    r-- f

    EXPLANATIO N

    ~------100 ____.......-

    - - ---125------------

    Structure Contour Map

    Conn ects p o in ts o n lop o( tlw Pr incipal Artesia n A qui f er, w/Jic/J are o{ equal e levation a bove m ean sen le vel. Co n to ur interval is 5 0 feet

    in areas be lo w M.!a le vel and 25 fee t in m·eas above sea level.

    • Control Point

    I _]31°45 '

    I

    ,.

    1 2 r-----------------------------------------------------------------~

    I I f-

    10 f-

    8 1- 1\

    7-

    6-

    5 ~

    1- 240

    v N _ 230 2 _ • •••• LEV EL .. ..... . - 220 . . .... .. . .. . . . .. 1 -

    v - 210 II

    J•o' I I ' J~l I I I I Jj" I I I I J~ l I I Jj" I I J"l 1 I I I I Jj" I I I J~ l I I I I J•o I I J' l I I I I I oL,_~~LL~~LL~1_L~~LL~_LLL~1_L~~_L~~LL~1 _LLL~LL~_LL~1 _LLL~_LLL~L~1 200 1968 1969 /970 1971 1972

    Figure 5. Chart comparing monthly fluctuation in rainfall with water level fluctua t ion in a n observation well in Tifton, Georgia.

    SCALE 1:250,000

    w > 0

    .Q 0

    _j

    w > w _j

    ''E=r:=:E==r= ::E=30= ==== ==::::i':=:=::=o:=:=:=:=:=:=:=:===::=ii0========1E5:=:=:=:=:=:=:=:=:=:==:==:=320 Statut e Mi les ''Ecao=3°====::::1=:==:==:==:=310====::i"=:==:==:==:=~'I::o====="E=:==:==:==330 Kilo meters

    " --- ·-- - -L_~ Figure 4. WATE R L EV EL IN TH E PRINCIPAL A RTESIAN AQUIFER

    RAINFALL

    Rainfall in southwest Georgia averages approximately 46 inches per year. An examination of rainfall data, however, shows that rainfall is not

    evenly dist ributed throughout the year (U. S. Dept. of Comm., 196 2). Wet months ca n be followed by extremely dry months during which water

    sources at or near the surface are depleted by evaporation. A fract ion of the rainfall is not returned directly to the atmosphere but is absorbed by the earth and percolates downward into the layers of rock and sediment. This water is stored underground in a natural water supply system that is the principal artesian aquifer. Since evaporation has only a small effect on

    ground water levels in the report area, deep wells generally maintain ade-

    quate water levels during periods of drought. Figure 5 shows the water level record of a U. S. Geological Survey ob-

    servat ion well in Tift on, along with rainfall records for the same time period. It can be seen that the monthly rainfall variation is rather high, whereas the

    water level in the well fluctuates much less .

    WATER LEVEL

    The water level map of the principal artesian aquifer is constructed from measurements of water levels in wells known to tap this aquifer. Geologic conditions in the report area are such that the ground water is under pressure, causing it to rise in a cased well, above the level at which it is first encountered in drilling. The aquifer in the study area is thus an artesian aquifer. The water level map can be used to predict the unpumped water level in a proposed well by subtracting the elevation of the ground water level from the elevation of the land surface at the well site. The remainder will be the approximate distance from the land surface to the static water level in the completed well. It should be emphasized that this is strictly an

    estimate of static water level. Actual levels may vary some what. Generally, the contours are more reliable where data points are closely spaced.

    To date, pumping has not caused any obvious changes in water levels of the principal artesian aquifer in the study area. Heavy dependence upon ground water from deep wells is comparatively recent. This office, in co-

    operation with the U. S. Geological Survey will continue to monitor water levels and ground water quality in this area to detect any changes which

    might affect gr0:

  • GEORGIA DEPARTMENT OF NATURAL RESOURCES TH E GEOLOGIC AND WATER RESOURCES DIVISION

    THE GEOHYDROLOGY OF BEN HILL, IRWIN, TIFT, TURNER, AND WORTH COUNTIES, GEORGIA

    23

    36

    33

    30

    21

    22

    35

    I

    31°45' [ I

    ( ' I

    ~ l_ 42

    I

    45

    C---~

    4 16

    \

    49

    \ \

    I

    I

    32.

    \

    38

    90

    39

    ---,

    II

    II ...._____ , IRWIN

    15

    ar-----___ J 7 I

    I

    I '_j

    ,.-J rj 49

    ,__I

    I· rj

    48

    46

    Fitzgerald

    BEN HILL COUNTY r.=-------43 , IRWIN COUNTY

    II- __ j

    Ocilla

    COUNTY ~ ------~

    51 I

    ) I

    I I

    j31°30' I

    51

    ---- - -, ~- __L T IFT COUNTY 2. --------- ___ ,_ - _r' ,------- ---,----------, L- - -' 8 3° 30'

    7

    31 10 9

    SCALE 1=250,000

    '"-==r::=:E3:::=:JEolO=======:}'=:==_::=:==:==:==:==;=iJ:IO===:::====i"~=:==:==:==;;;=;~20 Statui~ Miles t:: 0 10 15 20 25 30 Kilometers

    B==B==~~~==~~~==~~~

    Figure 6. Map showing Stiff Diagrams of selected wells in study area.

    Concentration in Milliequivalents Per Liter

    5 4 3 2. 0 2. 3 4 5

    ;;11-----------+--I --+---. -+------l