the ezrt is a joint department of the fraunhofer-institutes iis ...and industry dr. o. wiesheu...

48
The EZRT is a joint department of the Fraunhofer-Institutes IIS Erlangen and IZFP Saarbrücken/Dresden Dr. Randolf Hanke, Dr. Theobald Fuchs International Workshop on Imaging NDE April 25 – 28, 2007, Kalpakkam, India

Upload: others

Post on 01-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • The EZRT is a joint department of the Fraunhofer-Institutes IIS Erlangen and IZFP Saarbrücken/Dresden

    Dr. Randolf Hanke, Dr. Theobald Fuchs

    International Workshop on Imaging NDE April 25 – 28, 2007, Kalpakkam, India

  • 25.04. 2007 fus

    Seite 2

    Fraunhofer EZRT – facts & figures

    Principles of Computed Tomography

    Computed Tomography for the industry

    Tasks and applications today

    Challenges for the future

    Content

  • 25.04. 2007 fus

    Seite 3

    MagdeburgDortmund

    SchmallenbergAachen

    Euskirchen

    Darmstadt

    JenaChemnitz

    Dresden

    Itzehoe

    Bremen

    Hannover

    Braunschweig

    Kaiserslautern

    Freiburg

    Würzburg

    Holzkirchen

    KarlsruheSaarbrücken

    Duisburg

    Erlangen/Fürth

    Pfinztal

    St. Ingbert

    MünchenFreising

    Oberhausen

    Stuttgart

    GolmBerlin

    St. Augustin

    Rostock

    EZRT - Locations

  • 25.04. 2007 fus

    Seite 4

    Today:Today:Today:Today:

    Locations: Saarbrücken, Erlangen, Fürth, Dresden

    Employees: 44 (plus more than 40 part time

    scientists and students)

    Space: > 2200 m2 labs and offices

    Turnover: approx. € 4.6 Mio per annum

    Financing: > 80% Projects (industry and public)

    < 20% basic funding

    Equipment: Currently 14 X-ray machines

    Cooperation: Industry, FhG, BAM, PTB, University

    EZRT - Facts & Figures

  • 25.04. 2007 fus

    Seite 5

    “Technicum New Materials”

    The Bavarian Secretary of State for Trade and Industry Dr. O. Wiesheu

    inaugurates the EZRT on July 4th 2000

    EZRT - Location Fürth

  • 25.04. 2007 fus

    Seite 6

    Set-up of a CT system and scheme of measurement

    Principles of Computed Tomography

    Source

    Cone Beam

    Object

    Flat Panel Detector

    x

    y

    z

    Axis of Rotation

    Image Image Image Image reconstruction reconstruction reconstruction reconstruction clusterclusterclustercluster

    High speed High speed High speed High speed networknetworknetworknetwork

    Data acquisitionData acquisitionData acquisitionData acquisition

  • 25.04. 2007 fus

    Seite 7

    Volume CT of Large Objects

    Tube: Tube: Tube: Tube: 450 kV, 2 kW450 kV, 2 kW450 kV, 2 kW450 kV, 2 kW

    Digital Flat Panel Digital Flat Panel Digital Flat Panel Digital Flat Panel with 2048 x 2048 Pixelwith 2048 x 2048 Pixelwith 2048 x 2048 Pixelwith 2048 x 2048 Pixel

    (40 cm x 40 cm)(40 cm x 40 cm)(40 cm x 40 cm)(40 cm x 40 cm)

    Principles of Computed Tomography

  • 25.04. 2007 fus

    Seite 8

    X-Ray SystemsComputed TomographyComputed TomographyComputed TomographyComputed Tomography

    Object geometry

    AxialAxialAxialAxial

    2D2D2D2D----LayersLayersLayersLayers

    3D3D3D3D----VolumeVolumeVolumeVolume

    PlanarPlanarPlanarPlanar

    LaminographyLaminographyLaminographyLaminography

    Digital Digital Digital Digital TomosynthesisTomosynthesisTomosynthesisTomosynthesis

    RadiographyRadiographyRadiographyRadiography

    FilmFilmFilmFilm DigitalDigitalDigitalDigital

    Image ProcessingImage ProcessingImage ProcessingImage Processing

    Status of Computed Tomography

  • 25.04. 2007 fus

    Seite 9

    Fast and efficient approximation

    Algebraic Reconstruction

    Exact analytical Methods (Inversion of the Radon transform)

    Filtered backprojection (Feldkamp-type algorithm)

    Iterative solution of a multi-dimensional under-determined system of equations

    3D Fourier-type method (problems with interpolation in frequency-space)

    Laminography Approximate method for slice imaging by defocussingcontributions from the object outside the plane of interest

    Status of Computed Tomography

    Reconstruction Methods

  • 25.04. 2007 fus

    Seite 10

    Computed Tomography - Laminography

    Analogues MethodAnalogues MethodAnalogues MethodAnalogues Method

    Focal layer is reconstructedLayers outside the focal plane are blurredAdapted for plane, laminar objects like e.g. Printed Circuit Boards

    Rotating SourceRotating SourceRotating SourceRotating Source

    Counter rotating DetectorCounter rotating DetectorCounter rotating DetectorCounter rotating Detector

    Object in focal planeObject in focal planeObject in focal planeObject in focal planeObjects outside focal planeObjects outside focal planeObjects outside focal planeObjects outside focal plane

    System Set UpSystem Set UpSystem Set UpSystem Set Up

    Planar CT

  • 25.04. 2007 fus

    Seite 11

    Inspection of electronic Inspection of electronic Inspection of electronic Inspection of electronic multilayer PCBsmultilayer PCBsmultilayer PCBsmultilayer PCBs8 8 8 8 µµµµm bonding wiresm bonding wiresm bonding wiresm bonding wires

    3D - Visualization

    Oblique radioscopic view

    Different layers byTomosynthesis Method

    Computed Tomography - Laminography

  • 25.04. 2007 fus

    Seite 12

    • Simple backprojection of projection data P into object space leads to smearing of details

    • Compensation: convolution with a Point Spread Function (PSF) proportional to ρρρρ

    (Lakshminarayanan & Ramachandran 1971)

    • Filtering of projection data Pf

    • Backprojection of Pf into the volume

    Principles of Computed Tomography

    Filtered Backprojection

  • 25.04. 2007 fus

    Seite 13

    Spatial domain Frequency domain

    Principles of Computed Tomography

    Filtered Backprojection

    ( ) ( ) ( )[ ]∫ ∫

    +∧

    θθπωθ θωωω

    ,0

    sincos2,R

    yxi ddefRyxf

    ( ) ( ) ( )∫⊥

    +==θ

    θ θθ dttsfsRfsfR ,f

    ( )σθf̂f̂

  • 25.04. 2007 fus

    Seite 14

    Bio Imaging Research

    Comet, Feinfocus

    GE-IT (FhG)

    Hitachi

    Phoenix

    Procon (FhG)

    Scanco

    SkyScan

    Wälischmiller

    Viscom

    VJ-Technologies

    X-Tec

    Yxlon

    Industry Microna (FhG)Shake (FhG)

    Werth (FhG)

    Zeiss (hwm, FhG)

    Typical Performance:Typical Performance:Typical Performance:Typical Performance:

    Resolution down to 1 µm

    Reconstruction of 20483

    volumes

    Reconstruction time 3,7 s per 10242 slice (Pentium 3 GHz)

    Scan times varying with resolution and object

    CTCTCTCT----System System System System RayScanRayScanRayScanRayScan 200 (Hans 200 (Hans 200 (Hans 200 (Hans WWWWäääälischmillerlischmillerlischmillerlischmiller GmbH)GmbH)GmbH)GmbH)

    CTCTCTCT----System CTSystem CTSystem CTSystem CT----MINI, MINI, MINI, MINI, ProconProconProconProcon

    Status of Computed Tomography

  • 25.04. 2007 fus

    Seite 15

    Argonne National Lab, Chicago / USA

    Bundesanstalt für Materialforschung und –prüfung(BAM, Berlin / Germany)

    EMPA, Switzerland

    Fraunhofer-Gesellschaft EZRT (Saarbrücken, Fürth)

    General Electric Global Research

    Lawrence Berkeley National Laboratory, USA

    Leti, Grenoble / France

    Siemens, Medical Solutions (Germany)

    Synchrotron-facilities: Bessy, Anka, DESY, ESRF (G/F)

    University Linköping / Sweden

    University Saarland, Germany

    Research

    Status of Computed Tomography

  • 25.04. 2007 fus

    Seite 16

    system know-how

    manipulation

    X-ray generation

    computer-architecture

    X-ray detectors

    software

    • algorithms

    • distributed systems

    system design

    Automation for industrial Radioscopy and Tomography

    EZRT fields of expertise

  • 25.04. 2007 fus

    Seite 17

    Micro CT for high resolution Volume Tomography on micro systems

    Example: plastic micro gear

    Macro CT for fast Volume Tomography on lightweight components

    Examples: Al wheels, motor blocks, metal foams

    EZRT product development and business fields

    µµµµ----CTCTCTCT

    MakroMakroMakroMakro----CTCTCTCT

  • 25.04. 2007 fus

    Seite 18

    Bench Top System CT-MINI for fast and high resolution Volume Tomography

    EZRT product development and business fields

    CT CT CT CT forforforfor thethethethe laboratorylaboratorylaboratorylaboratory

    CT for industrial 3DCT for industrial 3DCT for industrial 3DCT for industrial 3D----metrologymetrologymetrologymetrology

    Biological sample

    nominal / actual geometry comparison

  • 25.04. 2007 fus

    Seite 19

    – Sub-µ radioscopy and CT

    – New applications of automated 2D / 3D Image

    processing

    – 3D / CAD data fusion

    – Industrial process integrated CT: “inline CT”

    – High speed radioscopy, dynamic radioscopy

    in µs range

    – Development centre for non-destructive testing of

    new materials in aerospace, funded project by

    Bavarian government, 4 years, start April 2005

    EZRT research areas today

    CT CT CT CT sectionsectionsectionsection of a CFC probeof a CFC probeof a CFC probeof a CFC probe

    Structural Structural Structural Structural damage after damage after damage after damage after impactimpactimpactimpact

    3D-defect recognition with 100 projections (25 s)

  • 25.04. 2007 fus

    Seite 20

    Physical effects that cause a degradation of image quality

    • Beam-hardening with polychromatic radiation

    • Scattered radiation

    • scatter processes within the object

    • primary radiation scattered within the detector

    • Properties of the detection system

    • Image Lag

    • Degradation

    • Pixel defects

    • Non-Linearities

    Artifacts - Methods for Projection Image Correction

    EZRT research areas today

  • 25.04. 2007 fus

    Seite 21

    Artefacts and Means for Reduction

    • Combination of pre- and post-processing steps

    • IAR: Iterative, reference-less and multistagecorrection method (right)

    • Ring Artefact Suppression (below)

    Status of Computed Tomography

  • 25.04. 2007 fus

    Seite 22

    Artefakt Reduction by Simulation of Scattered Radiation

    Projection of a step wedge (Al)

    Scattered radiation of the step wedge

    Scattered radiation of an Al-block

    EZRT research areas today

  • 25.04. 2007 fus

    Seite 23

    • No quantitative information on defects possible by transmission radioscopy

    • 3D CT can provide complex spatial information about a component and contained unwanted elements therein

    • Evaluation based on 3D methods is less prone to artifacts than 2D methods

    • Fast computers and algorithms allow for pace keeping reconstruction and analysis

    • Relatively low resolutions necessary for NDT tasks

    Fast Inline 3D Computed TomographyMotivationMotivationMotivationMotivation

    Status of Computed Tomography

  • 25.04. 2007 fus

    Seite 24

    3D-CT and defect recognition, 100 s

    Fast Inline 3D Computed Tomography: Fast Inline 3D Computed Tomography: Fast Inline 3D Computed Tomography: Fast Inline 3D Computed Tomography: Results of a fast scanning combined with image processingResults of a fast scanning combined with image processingResults of a fast scanning combined with image processingResults of a fast scanning combined with image processing

    3D-CT and defect recognition, 25 s

    Status of Computed Tomography

  • 25.04. 2007 fus

    Seite 25

    Inspection Tasks in the Field of Aerospace

    • Highly absorbing materials

    • Composites with low contrast

    • Very large objects

    • High resolutionStabilizer of a Rotor Blade

    Turbine Blade

    Status of Computed Tomography

  • 25.04. 2007 fus

    Seite 26

    Challenge Turbine Blades

    Combination of highly Combination of highly Combination of highly Combination of highly absorbing material with absorbing material with absorbing material with absorbing material with complex structurecomplex structurecomplex structurecomplex structure

    High resolution CT to visualize small boreholes (< 50 µm)

    Status of Computed Tomography

  • 25.04. 2007 fus

    Seite 27

    Composite MaterialComposite MaterialComposite MaterialComposite Material

    • Carbon/Glass fiber reinforced plastics

    • Complex weaved structures

    • Low contrast of embedded materials

    Status of Computed Tomography

    Challenge Rotor Blades

  • 25.04. 2007 fus

    Seite 28

    Status of Computed Tomography

    Inspection tasks in the field material characterization

    3D image processing and evaluation of carbon fiber reinforced plastics (CFC)

  • 25.04. 2007 fus

    Seite 29

    Inspection tasks in the field of automotive3D Defect Visualization of Wheel Samples

    CT Processed SamplesCT Processed SamplesCT Processed SamplesCT Processed Samples

    Center Region

    Spoke Region

    Rim Region

    Status of Computed Tomography

  • 25.04. 2007 fus

    Seite 30

    Inspection tasks in the field of biology

    Bug

    Lily

    Seed of a sugar beet

    Trachea of a butterfly cocoon

    Status of Computed Tomography

  • 25.04. 2007 fus

    Seite 31

    Micro Gearbox: 2.8 µm Voxelresolution

    1,8 mm

    Status of Computed Tomography

    lubricating grease

  • 25.04. 2007 fus

    Seite 32

    Archaeology

    Status of Computed Tomography

    Reconstruction of a terracotta head made by the African NokcultureBy courtesy of the laboratory Kotalla

    3D surface2D slice

  • 25.04. 2007 fus

    Seite 33

    Paleontology

    Status of Computed Tomography

    CT reconstruction from about 400 x-ray images of the slab with the hidden Ganoid fishBy courtesy of Dr. Viohl, Eichstätt

  • 25.04. 2007 fus

    Seite 34

    Microsystems → Nanosystems

    Offline CT → Inline CT

    Qualitative → Quantitative

    Stationary → Mobile

    Future Trends in Computed Tomography

    NanoNanoNanoNano CTCTCTCT to achieve highest-resolution volume data of nano-systems with voxelsize below 100 nm

    Inline CTInline CTInline CTInline CT for fast 3D inspection of light metal parts, scan- and evaluation in less than 25 s

    Industrial 3DIndustrial 3DIndustrial 3DIndustrial 3D----MetrologyMetrologyMetrologyMetrology with

    Computed Tomography

    RobotRobotRobotRobot----CTCTCTCT to inspect very large objects on site by mobile CT

    WerthWerthWerthWerthTomoScopeTomoScopeTomoScopeTomoScope

  • 25.04. 2007 fus

    Seite 35

    Quantitative CT - QCT

    Future Trends in Computed Tomography

    CT as an instrument to measure a physical property at an arbitrary point in space

    Levels of improvement:

    - Exact measurement of primary intensity

    - Precise linearization of the projection images

    - Reduction of scattered radiation: e.g. by a-priori knowledge on the inspected part

    - Mulit-material beam-hardening correction

    - Dual-energy-methods: two scans with different high-voltage

    Dual Energy CT of a cube made of plexiglas and aluminum

  • 25.04. 2007 fus

    Seite 36

    Challenge Sub-µ CT:The limiting factor is the focal spot size of about 1,3 µm (fwhm)

    Measurement with about 2 µm resolution

    Biological sample –cocoon of a butterfly

    Progress Towards Sub-µm CT

    (Dr. N

    . Uhlmann, EZRT)

    (Dr. N

    . Uhlmann, EZRT)

    (Dr. N

    . Uhlmann, EZRT)

    (Dr. N

    . Uhlmann, EZRT)

  • 25.04. 2007 fus

    Seite 37

    Carbon fibre reinforced materials

    Progress Towards Sub-µm CT1 mm 1 mm 1 mm 1 mm

    (St.

    (St.

    (St.

    (St. S

    chl

    Schl

    Schl

    Schl öö öötzer

    tzer

    tzer

    tzer , E

    ZRT)

    , EZRT)

    , EZRT)

    , EZRT)

    resolution: 2 µm

  • 25.04. 2007 fus

    Seite 38

    High-resolution CT with grey cast iron

    (P. Kr

    (P. Kr

    (P. Kr

    (P. Kr üü üüger, E

    ZRT)

    ger, E

    ZRT)

    ger, E

    ZRT)

    ger, E

    ZRT)

    Fragment of cast iron with 1 mm size (ca. 2 µm voxel size). The probe contains fiber-like lamella of graphite or cementite

    Progress Towards Sub-µm CT

  • 25.04. 2007 fus

    Seite 39

    High-resolution CT of glass fibers with 850 nm voxel size

    Progress Towards Sub-µm CT

  • 25.04. 2007 fus

    Seite 40

    Low energy Low energy Low energy Low energy –––– high high high high contrast measurementscontrast measurementscontrast measurementscontrast measurements

    Sensor: MediPix 2X-ray tube: MCB-20 (5 – 20 kV)

    Usability: Polystyrene, plastics, organic materials

    MediPix 2

    Low-energyX-ray tube (focal spot: 3 mm)

    He-tunnelRotary disk

    The experiments were conducted in collaboration with the Physical Institute IV (University of Erlangen-Nuremberg), Prof. Dr. Gisela Anton

    Integration of New X-Ray Sensor Technologies

  • 25.04. 2007 fus

    Seite 41

    Integration of New X-Ray Sensor Technologies

    Direct converting detectorDirect converting detectorDirect converting detectorDirect converting detector

    Technical data:

    • Sensor material: CdTe• Pixel size: 100 µm x 100 µm• Number of pixels: 252 x 1014• Area: 25.2 x 101.4 mm2

    • DQE: > 90% at 60 keV• Energy range: 15 – 300 kV• Frame rate: up to 50 fps

  • 25.04. 2007 fus

    Seite 42

    Slice of a fiber composite floor cover

    Carbon fiber mat at 35 kV

    Integration of New X-Ray Sensor Technologies

    Low Energy CT

  • 25.04. 2007 fus

    Seite 43

    ESD foam:

    8 kV / 6 mAs

    Cigarette:

    12 kV / 7 mAs

    Sticky tape step wedge:

    8 kV / 40 mAs

    Integration of New X-Ray Sensor Technologies

    Low Energy CT

  • 25.04. 2007 fus

    Seite 44

    Metrology: Extracting Surface Data

    Nominal / A

    ctual Value

    Comparison

    STL Data Surface Visualization

    Metrology with Computed Tomography

  • 25.04. 2007 fus

    Seite 45

    Robot Aided Computed Tomography

    Very large objects (e.g. aircraft wings or fins) can be inspected on site by mobile CT

    One robot carries the X-ray source, a second one the detector

    → precise positioning and robot communication necessary

    Source: Fraunhofer IPA, StuttgartX-ray source

    detector

    Mobile Computed Tomography

  • 25.04. 2007 fus

    Seite 46

    Outstanding capabilities of CT in NDT today

    1. Material testing

    2. Dimensional Measurement

    3. Control of integrity and completeness

    Fields of progress in the near future

    1. Detector systems with higher dynamic, greater area and better efficiency

    2. X-ray sources providing higher intensities with small focal spots

    3. Algorithms for ROI-reconstructions from a limited number of projections

    4. Efficient means to reduce artifacts from beam hardening and scattered radiation

    The Future in 3D Industrial Computed Tomography

  • 25.04. 2007 fus

    Seite 47

    AcknowledgmentAcknowledgmentAcknowledgmentAcknowledgment

    Parts of this work was coParts of this work was coParts of this work was coParts of this work was co----financed by the European financed by the European financed by the European financed by the European Union and the Free State Union and the Free State Union and the Free State Union and the Free State of Bavaria of Bavaria of Bavaria of Bavaria

  • 25.04. 2007 fus

    Seite 48

    Thanks to all people who kindly contributed: Dr. Ulf Haßler, Dr. Michael Maisl, Dr. Thomas Wenzel, Dr. Stefan Kasperl, Steven Oeckl, Ingo Bauscher, Stefan Schlötzer, Stefan Schröpfer, Peter Krüger and Ms. Wutz

    Fraunhofer EZRT @ INDE 2007