the design and construction of an absolute permeameter to

89
THE DESIGN AND CONSTRUCTION OF AN ABSOLUTE PERMEAMETER TO MEASURE THE EFFECT OF ELEVATED T F E R A T U R E ON THE ABSOLUTE PERMEABILITY TO DISTILLED WATER OF UNCONSOLIDATED SAND CORES A Report Submitted to the Department of Petroleum Engineering of Stanford University in Pulf illment of the Requirement for the Degree of Master of Science BY Abraham Sageev December, 1980

Upload: others

Post on 16-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Design and Construction of an Absolute Permeameter to

THE DESIGN AND CONSTRUCTION OF AN ABSOLUTE PERMEAMETER TO MEASURE THE

EFFECT OF ELEVATED T F E R A T U R E ON THE ABSOLUTE PERMEABILITY TO DISTILLED WATER OF UNCONSOLIDATED

SAND CORES

A R e p o r t S u b m i t t e d t o the D e p a r t m e n t of P e t r o l e u m E n g i n e e r i n g

of Stanford University in Pulf illment of the R e q u i r e m e n t f o r the

D e g r e e of Master of Science

BY A b r a h a m S a g e e v D e c e m b e r , 1980

Page 2: The Design and Construction of an Absolute Permeameter to

To Michal

Page 3: The Design and Construction of an Absolute Permeameter to

Acknowledgments

I would l i k e t o express s i n c e r e app rec i a t i on t o my research adv i so r ,

D r . Henry J . Ramey, Jr. , f o r h i s advis ing , guiding , and support ing m e

throughout t h i s work.

Many thanks are due t o my f r i e n d s and t h e department s t a f f who helped

m e f i n i s h t h i s work.

F inanc i a l support was provided through t h e Stanford Geothermal Pro-

gram by t h e Department of Energy, Grant No. DE-AT03-80SF11459.

i

Page 4: The Design and Construction of an Absolute Permeameter to

Abstract

A new a b s o l u t e permeameter was designed and const ructed i n o rder t o

i n v e s t i g a t e t h e e f f e c t of temperature on a b s o l u t e permeabi l i ty . The main

g o a l of t h i s work was t o improve t h e c o n t r o l s of t h e permeameter and t o

i n v e s t i g a t e t h e f low of d i s t i l l e d water through unconsolidated s i l i ca

sand cores . No s i g n i f i c a n t change i n t h e abso lu te permeabi l i ty WLth

a change i n temperature was observed. This r e s u l t is d i f f e r e n t than

r e s u l t s r epor ted i n previous work done a t Stanford . It is be l i eved

t h a t system problems, such as converging f low i n t h e core p lugs ,

caused t h e observat ion of pe rmeab i l i ty reduc t ion wi th an i n c r e a s e i n

temperature.

This work w i l l be extended t o consol idated sandstones and w i l l a i d

i n t h e des ign of r e l a t i v e permeabi l i ty experiments.

ii

Page 5: The Design and Construction of an Absolute Permeameter to

Table of Contents

Acknowledgements

Abstract

L i s t of I l l u s t r a t i o n s

L i s t of Tables

1. In t roduc t ion

2. Apparatus Descr ip t ion

2 .1 .

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9-

2.10

2.11

2.12

2.13

2.14

A i r Bath Set-up

Water Pump and Accumulator

Excess Flow Loop

F i l t e r s

Confining P re s su re System

Core Holder

Temperature Recording

P re s su re Di f fe rences Recording and Ca l ib ra t i ng

Cooling System

Flowrate Measuring

In t ake Water System

Vacuum System

Gas System

Valve Manif o ld

3. Apparatus Improvements

3.1 Vibra t ions i n t h e A i r Bath

3.2 Accumulator

3.3 Excess Flow Loop

3.4 P re s su re Taps

3.5 Core Plugs

3.6 Sand Sieving and Cleaning

Page i

ii

v i

v i i l

1

3

3

6

6

8

8

10

10

10

15

17

18

18

18

19

21

21

21

23

23

25

26

iii

Page 6: The Design and Construction of an Absolute Permeameter to

Table of Contents , cont.

4 . Procedure 29

29

29

31

31

31

33

33

33

34

35

35

36

36

37

37

38

38

39

39

, 4 2

42

42

4 3

4 3

4 3

44

4 . 1

4.2

4 . 3

4 . 4

4 .5

4.6

4.7

4 . 8

4.9

4 .10

4 . 1 1

4 .12

4 .13

4 .14

4 .15

4.16

4.17

4 .18

4.19

4 .20

4 .21

4.22

4 .23

4 .24

Sand P repa ra t ion

Sand Packing

Geometry Measuring

Core Holder Packing

Confining System Pre loading

P res su re Transducer Calibration

F i l t e r In spec t ion and I n s t a l l a t i o n

Charging t h e Accumulator

Washing t h e System (without t h e core)

S e t t i n g t h e Excess Loop P res su re

Vacuuming of t h e System (without t h e core)

I n s t a l l i n g t h e Core Holder i n t h e A i r Bath

Charging Confining Water and P res su r i z ing

Vacuuming t h e System

Flooding and P res su r i z ing t h e System

I n i t i a t i n g Flow, Temperature Recording, Ap Recor-

ding , and Cooling System Flow

Measurements a t Various Flowrates a t a Constant

Temperature (T, Ap, q)

Heating t h e System

Cooling t h e System

Stopping t h e Flow

Confining P r e s s u r e Bleed O f f

Removing. : t h e Core Holder

Taking t h e Core Holder Apart and Inspec t ing It

Problems

4 . 2 4 . 1 F i l t e r Plugging

4.24.2 Plugging of t h e Down Stream Needle Valve

i v

Page 7: The Design and Construction of an Absolute Permeameter to

Table of Contents , cont .

5. Summary of Resu l t s

5 . 1 Permeabi l i ty Ca lcu la t ions

5 .2 Error Analysis

5.3 Resul ts of Runs 8 , 9 , 10, and 11

6. Conclusions

7 . References

8 . Tables of Data

V.

45

45

56

58

65

66

67

Page 8: The Design and Construction of an Absolute Permeameter to

L i s t of I l l u s t r a t i o n s

1.

2.

3.

4.

5.

6.

7 .

8.

9.

10.

11.

1 2 .

13.

1 4 .

15.

16.

1 7 .

18.

19 .

20.

21 4

22 a

23,

General view of t h e appara tus

Schematic diagram of t h e apparatus - water f low

A schematic diagram of t h e water pump, t h e accumulatbr-and t h e overflow loop

A schematic of t h e conf in ing p re s su re system

Core ho lder body

Up stream core plug

Down stream core plug

A schematic of t h e core ho lder

A schematic of t h e cool ing system

Flow rate measuring system

Main va lve manifold

"Old" accumulator arrangement

II New" accumulator p ip ing

"Old" p re s su re t a p s

"Old" head l o s s on t h e core

End e f f e c t s p r e s su re l o s s e s

Up stream and down stream core plugs be fo re improvement

Working s h e e t of geometry measurements and weights

Pressure d i f f e r e n t i a l record ing a t k measurements and during hea t ing

Heating cyc le p r o f i l e : 150°F t o 250°F, run number 11

Viscos i ty of water vs . temperature at 200 p s i a

V i scos i t y of water vs. temperature at s a t u r a t i o n p re s su re

p p'p sat v s . temperature

Page

4

5.

7

9'

11

12

13.

14

16 '

17

20 I

22

' 2 2

24

24

26

28

32

40

41 ,

48

50

. 5 1

v i

Page 9: The Design and Construction of an Absolute Permeameter to

Page

24. V i scos i ty vs. temperature a t 200 p s i a (improved range 70°F t o 100 F) 52

25. Permeabi l i ty vs. temperature f o r 150 mesh sand, run number 8 60

26. Permeabi l i ty vs. temperature f o r 150 mesh sand', run number 9 ,6 1

27. Permeabi l i ty vs. temperature f o r 200 mesh sand, run number 10 62

28. Permeabi l i ty vs. temperature f o r 260 mesh sand, run number 11 63

29. Permeabi l i ty vs. temperature f o r runs 8, 9 , 10, 11 64

0

vPi

Page 10: The Design and Construction of an Absolute Permeameter to

L i s t of Tables

1. Water v i s c o s i t y

2. S p e c i f i c volume of water ( a t s a t u r a t i o n )

3. S p e c i f i c volume of water ( a t 200 p s i a )

4. Water v i s c o s i t y and s p e c i f i c volumes a t 200 p s i a (used i n t h e c a l c u l a t i o n s )

5. Au and Av f o r va r ious temperatures

6 . kT and ACT f o r runs 8 , 9 , 10, and 11 -

ab re1

7 . Data f o r run number 8

8. Data f o r run number 9

9. Data f o r run number 10

10. Data f o r run number 11

47

53

54

55

57

67

68

7 1

7 4

77

v iii

Page 11: The Design and Construction of an Absolute Permeameter to

1. In t roduc t ion

Absolute pe rmeab i l i ty is an important parameter i n t h e eva lua t ion

and performance of geothermal o r hydrocarbon r e s e r v o i r s . Primary produc-

t i o n of o i l and gas r e s e r v o i r s does no t change t h e temperature of t h e

system. This i s not t h e case i n geothermal r e s e r v o i r s o r i n many of t h e

EOR* p r o j e c t s . I n t h e s e r e s e r v o i r s t h e temperatures of t h e formations

change and, along wi th t h i s , many of t h e formation p r o p e r t i e s change. Ab-

s o l u t e pe rmeab i l i ty is an e s s e n t i a l parameter and t h e r e is a g r e a t need

t o study t h e e f f e c t of temperature on a b s o l u t e permeabi l i ty .

A g r i d of experiments i n v e s t i g a t i n g t h e e f f e c t of temperature on

a b s o l u t e permeabi l i ty has been c a r r i e d out throughout t h e last decade.

These experiments covered a range of rock types , f l u i d s , conf ining pres-

s u r e s and s e v e r a l o t h e r system c h a r a c t e r i s t i c s . It i s evident t h a t n o t

a l l t h e r e s u l t s are i n agreement. I n some cases t h e observat ions i n t h e

l abora to ry y ie lded d i f f e r e n t i n t e r p r e t a t i o n s by t h e resea rchers . Casse' (1974)

i n t e r p r e t e d a decrease of a b s o l u t e pe rmeab i l i ty t o d i s t i l l e d water of

Berea sandstone wi th an i n c r e a s e i n temperature as a temperature e f fec t .

Other obse rvers , inc luding Sydansk (1980) claim a permeabi l i ty reduc t ion

is due t o f i n e s migra t ion and n o t temperature e f f e c t s .

Upon searching t h e l i t e r a t u r e , another disagreement s u r f a c e s t h a t i s

somewhat easier t o set t le. There are d i f f e r e n t l abora to ry obse rva t ions

f o r t h e same experiments. Most of t h e s e disagreements can be s e t t l e d

by t ak ing a c l o s e look at t h e " control" t h e experimenter has of t h e system.

Runs have t o be repeated wi th improved systems t h a t w i l l g i v e m a x i m u m

* EOR means "Enhanced O i l Recovery"

-1 -

Page 12: The Design and Construction of an Absolute Permeameter to

3nformation about t h e parameters included ' in t h e experiment.

This is t h e p o i n t at which t h i s work is in t roduced. Out of t h e

g r i d of p o s s i b l e experiments, one conf igura t ion of rock, conf ining and

pore p r e s s u r e s , and f l u i d was chosen. This work s t u d i e d t h e e f f e c t of

temperature on t h e a b s o l u t e pe rmeab i l i ty t o d i s t i l l e d water of unconsoli-

dated sand cores . Work done a t Stanford Univers i ty , p r i m a r i l y by Casse'

and Aruna(1976), produced adecreaseinpermeabi l i tywith an i n c r e a s e i n teppera-

t u r e . This decrease i n pe rmeab i l i ty could no t be explained by thermal

expansion, p o r o s i t y changes, o r o t h e r explanat ions t h a t were suggested,

such as s i l i ca- wate r a t t r a c t i o n . This work w a s set up t o des ign and

cons t ruc t an a b s o l u t e permeameter wi th improved system c o n t r o l s i n o rder

t o t a k e a c l o s e look a t t h e change of pe rmeab i l i ty wi th temperature.

- 2-

Page 13: The Design and Construction of an Absolute Permeameter to

2. Apparatus Descr ip t ion

Figure 1 is a rough 60 axonometric view of t h e apparatus whi le 0

Figure 2 is a schematic of t h e system. Later i n t h i s chapter a l l t h e

components w i l l b e descr ibed i n d e t a i l . Most of t h e equipment ( a i r ba th ,

r ecorders , pumps) was used i n o t h e r experiments. The va lves , t h e tub ing ,

and t h e core ho lder are new.

2 . 1 A i r Bath Set-up

A i r Bath S p e c i f i c a t i o n s : "Blue M" by Blue M Electric Company, Blue

Is land , I L . Model #: POM - 1406C-1 Serial #: CD - 10690 Line Voltage: 240V/1 PH/60 Hz Temperature Range: To 343"C/650°F Line Currents: L1 - 40A, L2 - 40A

The a i r ba th houses t h e fo l lowing:

The hea t ing c o i l s b e f o r e t h e core The core ho lder Four (4) thermocouples Flow l i n e s Pressure recording l i n e s Confining p ressure l i n e

To minimize v i b r a t i o n t h e core holder hangs from t h e c e i l i n g of t h e

b a t h and s i ts on a rubber cushion. The tubing i n t h e ba th i s t i e d toge ther

i n va r ious p l a c e s w i t h thermal t a p e t o f u r t h e r dampen v i b r a t i o n .

The b a t h mainta ins a . cons tan t temperature. It has a v a r i a b l e '

hea t ing capac i ty and small temperature o s c i l l a t i o n s . The temperature

ba th w i l l h e a t up an increment of 100°F i n about f i f t e e n minutes. The

core hea t ing r e q u i r e s about two t o t h r e e hours.

The b a t h is equipped wi th a ven t which makes c o n t r o l l e d cool ing

p o s s i b l e . The b a t h had 100 hours of use when t h i s p r o j e c t began. The

p r o j e c t used another 370 hours.

- 3-

Page 14: The Design and Construction of an Absolute Permeameter to

-4- . . .

Page 15: The Design and Construction of an Absolute Permeameter to

n

J

. . I

W

I, - r4’

0

-5-

Page 16: The Design and Construction of an Absolute Permeameter to

2 . 2 Water Pump and Accumulator

Water pump s p e c i f i c a t i o n s :

Lapp Pulsafeeder Model #LS. 20 Serial no. X-7704 Process Equipment Lapp I n d u s t r i e s Company, Inc . Leroy, NY

Accumulator s p e c i f i c a t i o n s :

Greero la to r Model f20-30 TMR 5 1/2 WS Serial #14008 30 cub ic inches A d i v i s i o n of Greer Hydraul ics , Inc. Los Angeles, CA

Figure 3 p r e s e n t s t h e pump and t h e accumulator. The

tubing and v a l v e s between "A" and I'D" are 1/4". (See s e c t i o n 3.2 f o r

o t h e r d e t a i l s ) . The gas l i n e c o i l and t h e f low l i n e c o i l s e p a r a t e t h e

pump from t h e recording elements. The c o i l s reduce v i b r a t i o n s t h a t

are caused by t h e pump and t r a n s f e r e d t o t h e t r ansducers . The pump i s

set d i r e c t l y on t h e f l o o r s o no v i b r a t i o n s are t r a n s f e r r e d t o t h e recording

t a b l e s . The pump can produce a maximum flow of about 1150 cc/hour a t

room condi t ions . This arrangement produced a good dampening of t h e p u l s e s ,

leaving them almost negligfble.2 I n o the r words, as can be seen i n Figure 18,

t h e th ickness of t h e l p s ' i p l a t e l i n e is p r a c t i c a l l y t h e th ickness t h e pen

produces.

2 .3 Excess Flow LOOD

F igure 3 p r e s e n t s t h e excess f low loop o r t h e overflow loop. This

f low system accep t s t h e d i f f e r e n c e of f low between t h e pump's output and

t h e f low i n t h e core.

The p ressure r e l i e f va lve i s a 1/4" "Nupro" va lve wi th swagelokk

f i t t i n g s . The opera t ing p ressure can be manually set a t a range of 150 psig

-6-

Page 17: The Design and Construction of an Absolute Permeameter to

-7-

Page 18: The Design and Construction of an Absolute Permeameter to

t o 350 ps ig . The v a l v e is set h o r i z o n t a l l y i n o rder t o g e t a constant

behavior of both t h e sp r ing and t h e t r a v e l l i n g seat. I n a d d i t i o n t o t h e

improvement i n t h e f low c o n t r o l descr ibed i n s e c t i o n 3 . 3 , t h e loop provides

a s a f e t y va lve f o r t h e whole system. Most important ly , i t p r o t e c t s t h e

accumulator f r m a 25% i n c r e a s e i n t h e l i n e p ressure . This high p r e s s u r e

would blow t h e diaphragm i n t h e accumulator.

2 .4 F i l t e r s

There are two p a r a l l e l up stream f i l t e r s and one down stream f i l t e r .

Seven micron f i l t e r s were used al though o t h e r types of f i l t e r elements ( 6 0 ~ )

can be used.

The up stream f i l t e r s cannot b e changed dur ing t h e run. Some a i r

would be d r iven i n t o t h e core . B u t ' t h e f low can be d i r e c t e d through e i t h e r

one of them. This doubles t h e time f o r plugging. The down stream f i l t e r

can be changed i n t h e middle of a run. Figure 2 shows t h e l o c a t i o n of t h e

f i l t e r s .

2.5 Confining Pressure System

Figure 4 p r e s e n t s a schematic diagram of t h e confining p ressure

system. Water .was used i n s t e a d of o i l i n t h e conf ining chamber

of t h e ' core holder . This e l imina tes contamination of t h e down .

stream if a f a i l u r e should happen. Furthermore, a s p i l l of o i l i n t h e b a t h

at 300°F can b e - dangerous . The p ressure is app l ied by an

"Enerpac" hand pump r a t e d a t 10,000 ps ig . The pump i s o i l opera ted. The

conver t ing v e r t i c a l v e s s e l (see Figure 4 ) is no t i n t h e bath . The o i l i n l e t

is on t h e t o p and t h e water o u t l e t is on t h e lower p a r t . The volume of t h e

v e s s e l is l a r g e r than t h e conf ining chamber i n t h e core ho lder so t h a t no

-8-

Page 19: The Design and Construction of an Absolute Permeameter to

-L c

r' gJAiE2

Q

c

-9-

Page 20: The Design and Construction of an Absolute Permeameter to

o i l can g e t i n t o t h e ba th .

The p ressure gauge is a "Helicoid" gage U.S .A. , 8 1 / 2 W, 10,000,

50 l i b s . , subd. f1 /4% accuracy.

2.6 Core Holder

The core ho lder . c o n s i s t s .' of t h r e e p a r t s : (1) The core ho lder body,

Figure 5; (2) The up stream core plug, Figure 6: and (3) The down stream

core plug, Figure 7 .

It is r a t e d a t about 4000 p s i g conf ining p ressure . The core plugs

are sea led by ''o" r i n g s a t both ends. The v i t o n s l e e v e suppor t ing t h e sand

i s he ld i n an aluminum per fo ra ted sleeve. The assembled core ho lder is

presented i n F igure 8. This core holder w a s redesigned by Mr. A. S u f i , and,

t o d a t e , has been performing very well.

2.7 Temperature Recording

Five (5) thermocouples are scanned about once i n t e n (10) seconds

by a Leeds and Northrup Speedomax Recorder. The recorder has twenty-four

channels and a range of 0°F t o 600°F. Figure 8 shows t h e l o c a t i o n of t h e

f i v e thermocouples: (1) i n stream, up stream of t h e core ; (2) i n stream,

down stream of t h e core ; (3) up stream core plug metal; ( 4 ) core holder

body s u r f a c e ; and (5) out f low temperature e n t e r i n g t h e f l o w r a t e metering

b u r e t t e . A l l thermocouples were checked and t h e recorder c a l i b r a t e d p r i o r

2.8 Pressure Differences Recording and Ca l ib ra t ing

The p ressure recording system inc ludes t h e fo l lowing: (1) p r e s s u r e

t a p s , 1/16" l i n e s open a t t h e sand f a c e s , Figure 8; (2) p ressure l i n e s

-10-

Page 21: The Design and Construction of an Absolute Permeameter to

!

Figure 5 - CORE HOLDER BODY

-11-

Page 22: The Design and Construction of an Absolute Permeameter to

z: Y w

-12-

Page 23: The Design and Construction of an Absolute Permeameter to

I I

1 . 1 I I

. - I

I

’ . Figure 7 - DOWN STREAM CORE ’PLUG

-13-

Page 24: The Design and Construction of an Absolute Permeameter to

Figure 8 - A SCHW3XC OF THE CORE HOLDER

-14- .

Page 25: The Design and Construction of an Absolute Permeameter to

and va lve manifold, Figure 2; ( 3 ) t r ansducers , Figure 2 ; ( 4 ) pressure ind i-

c a t o r s , Figure 2; and (5) r e c o r d e r , Figure 2.

P ressure gauges read t h e p ressures up stream of t h e core and down stream

of t h e v iscometer , F igure 2 .

The s e n s i t i v i t y of t h e readings t o t h e l o c a t i o n of t h e p ressure t a p s i s

presented i n s e c t i o n 3.4. The core t ransducer has a 1 p s i p l a t e model KP 15.

The viscometer t r ansducer has a 5 p s i p l a t e . The p ressure i n d i c a t o r s (one

f o r each t r ansducer ) are model "CD 25" by Dynasciences Corporation. The

recorder i s a two (2) channel "Chessell BD9" Recorder.

The up stream p r e s s u r e gauge is a "Duragauge AIS1 3 / 6 tube and socke t ,

0-600 p s i , 5 p s i subd." The down Stream gauges are a "U.S. Gauge" make, 0-600

and 0-1000 p s i range. The accuracy of t h e t r ansducers is *l% of t h e p l a t e

value .

C a l i b r a t i o n is done by a manometer . A water manometer i s used

f o r t h e 1 p s i p l a t e and a mercury one is used f o r t h e 5 p s i p l a t e . The

mercury c a l i b r a t i o n is done wi th a n i t r o g e n cushion whi le t h e water ,columnl

i s appl ied d i r e c t l y t o t h e t ransducer .

The t ransducer p l a t e s can be changed dur ing a run. They are loca ted

high above t h e valve manifold and can be b led a f t e r r e i n s t a l l i n g .

They can b e r e c a l i b r a t e d dur ing a run as well.

2.9 Cooling system

Figure 9 p r e s e n t s t h e cool ing system. The f i r s t g o a l i s t o cool t h e

outflow from t h e b a t h t o room temperature. This i s done by running a c o i l

of t h e f low l i n e through a v e s s e l wi th t a p water c i r c u l a t i n g i n i t .

The second g o a l is t o keep t h e water flowing through t h e f i n e needle

-15-

Page 26: The Design and Construction of an Absolute Permeameter to

c FI!.TER

J

-16-

Page 27: The Design and Construction of an Absolute Permeameter to

va lve at a constant room temperature. The performance of t h e va lve

is very s e n s i t i v e t o changes i n room temperature. The temperature

is kept constant by surrounding t h e 1/8" f low l i n e s wi th a 1/4" flow

l i n e and l e t t i n g t a p water run i n t h e annular space. This cooling

exchanger is l o c a t e d be fore t h e needle va lve .

2.10 Flowrate Measuring

Figure 10 shows t h e simple system t h e a t was used t o measure f lowra te . --..---.--------- -_I.--I_____.___ __r __._. __cc.____, - -

l . 1

I

A very important po in t must be made h e r e and it w i l l be s t r e s s e d

i n o t h e r p laces throughout t h e r e p o r t . It is s a i d t h a t 10 cc are measured

f o r a l l f l o w r a t e s . Perhaps due t o a t h i n l a y e r of water, only 9.8 cc are

a c t u a l l y measured. This w i l l i n t roduce an e r r o r i n t h e a b s o l u t e v a l u e of

k, but as long as t h e measuring procedure is followed i n t h e same way

-17-

Page 28: The Design and Construction of an Absolute Permeameter to

every time, an e r r o r i n t h e r e l a t i v e changes i n k is n o t . introduced.

The time needed t o produce t h e given volume i n t h e b u r e t t e is measured

by a "Precis ion S c i e n t i f i c Com." timer , which is good t o about 0.05 seconds,

cat. iI69230, 120V - 60 cyc l e s .

2.11 I n t a k e Water System

I n o rde r t o be a b l e t o change t h e i n t ake water r e s e r v o i r without

s h u t t i n g down t h e pump and without g e t t i n g a i r i n t o the s u c t i o n , a two

s t a g e feed ing system was b u i l t (Figure 1). The l a r g e r r e s e r v o i r , #15 , is

a f i v e ga l lon g l a s s b o t t l e t h a t can be replaced. Water is syphoned

t o t h e primary r e s e r v o i r , i h 7 , a 4000 cc glass b o t t l e . This lower primary

r e s e r v o i r i s n o t touched during t h e run and t h e pump's suc t ion end is never

above water l e v e l . An a d j u s t i n g va lve is loca ted on t h e syphon between

t h e two r e s e r v o i r s and it is set in such a way t h a t t h e l e v e l of water i n

t h e low r e s e r v o i r is cons tan t (around t h e 4000 cc mark).

2.12 Vacuum System

Vacuum is appl ied by t h e vacuum pump. A l i q u i d t r a p is loca t ed between

t h e pump and the flow lines. The vacuum is measured with a "Labconco"

mercury gauge which is good t o 5 mic ro to r r . The gauge is disconnected

be fo re flow is i n i t i a t e d t o p r o t e c t i t . . .

2.13 Gas System

A 2200 ps ig n i t rogen b o t t l e supp l i e s gas t o charge t h e gas chamber

i n t h e accumulator. It a l s o supp l i e s gas t o t h e up stream o r down stream

ends of t h e core i f gas f lood i s des i r ed (Figure 2) .

-18-

Page 29: The Design and Construction of an Absolute Permeameter to

2.14 Valve Manif o ld

Figure 11 p r e s e n t s a schematic diagram of t h e va lve manifold. All t he

gas va lves and t h e t ransducer va lves are needle v a l v e s , i n s t a l l e d t o pre-

vent shocks. The down stream c o n t r o l valve' and , a u x i l i a r y valve ( 7 and 6 ~- ~

i n Figure 11) are f i n e needle va lves .

-19-

Page 30: The Design and Construction of an Absolute Permeameter to

3

\a \. . @

1

"\ j \ 0

a 0

. .-

e. ...

1 I

i

Page 31: The Design and Construction of an Absolute Permeameter to

3. Apparatus Improvements

Four major problems t h a t arose dur ing t h e f i r s t run were: (1) Noise

and pump p u l s a t i o n s a f f e c t i n g t h e t r ansducer ' s performance; (2) Control

of t h e average pore p ressure wi th varying f lowra tes ; (3) A c a l c u l a t e d

permeabi l i ty t h a t w a s f l o w r a t e dependent; and ( 4 ) Plugging of t h e down

stream need le valve . These problems were s t u d i e d i n order dur ing t h e

next seven runs. Actual ly , t h i s procedure y ie lded a s e n s i t i v i t y a n a l y s i s

of t h e behavior of t h e apparatus . The magnitude of t h e problems and t h e

ways f o r improving t h e apparatus are descr ibed i n t h e fo l lowing s e c t i o n s .

3 . 1 Vibra t ions i n t h e A i r Bath ~-

The flow was i n i t i a t e d a t room temperature. For a given accumulator

s e t t i n g and a constant f low t h e core t r ansducer (1 p s i p l a t e ) had a

c e r t a i n magnitude of o s c i l l a t i o n . When t h e b a t h w a s turned on, t h e o s c i l l a -

t i o n magnitude doubled. The main cause was t h e f a c t t h a t t h e core ho lder

sat on t h e b a t h f l o o r and t h e v e n t s ' v i b r a t i o n was picked up by t h e pres-

s u r e t a p s . The problem w a s solved by hanging t h e core from t h e main c e i l i n g

frame of t h e ba th . A rubber l i n i n g separa ted t h e core holder from t h e

frame t o f u r t h e r dampen t h e v i b r a t o n s .

3.2 Accumulator

The two following changes c u t t h e pump p u l s a t i o n e f f e c t on t h e core

t r ansducer by 50% each time.

The f i r s t accumulator p iping was t h e 1/8" tubing shown i n F igure 12.

-21-

Page 32: The Design and Construction of an Absolute Permeameter to

Figure 1 2 - l'Old" Accumulator Arrangement

The connection t o t h e core a t poin t "A" was moved t o po in t "B" as is

shown in Figure 13. This put t h e accumulator i n t h e d i r e c t l i n e of t h e

pu l sa t ions and 'helped t h e accumulator absorb t h e pulses .

TO THE CORE 7"

Figure 13 - "New" Accumulator P ip ing

The second change was t h e replacement of t h e s e c t i o n of 1/811 tubing

-22-

Page 33: The Design and Construction of an Absolute Permeameter to

3.3 Excess Flow Loop

A s e r i o u s problem arises when a p u l s a t i n g pump, an accumulator, and

a back p ressure need le valve are used. One must a d j u s t t h e o u t l e t flow t o

be e x a c t l y t h e same as the pump output . I f t h e flows are no t t h e same,

the accumulator e i t h e r loads o r unloads, hence varying t h e p ressure .

The problem was magnified when t h e accumulator unloaded i n t o t h e f lowing

system. Rust and gum (orange i n c o l o r ) would b u i l d i n t h e accumulator.

When unloading would occur , t h e r u s t and gum would plug t h e f i l t e r s

and accumulate i n t h e upper s e c t i o n of t h e core.

The two problems were solved by in t roducing t h e excess flow loop

presented i n Figure 3 . The p r e s s u r e r e g u l a t o r maintained a good average

up stream pressure , and as long as t h e output of t h e pump was l a r g e r than

t h e flow i n t h e core , t h e e x t r a flow e x i t e d through t h e excess loop.

The volume of t h e tubing between p o i n t "A" and po in t "B" (Figure 3 )

is l a r g e r than t h e maximum p u l s e of t h e pump. So no f l u i d t h a t went by

p o i n t "B" towards t h e accumulator could f i n d i t s way back t o t h e core .

T h r s c o m p l e t e l y i s o l a t e s contamination i n t h e accumulator from t h e core.

A l l up stream sand f a c e s of t h e cores were inspected and showed no evi-

dence of contamination a f t e r t h e excess loop was introduced.

3.4 Pressure Taps

Na tura l ly , i n t h e i n i t i a l cons t ruc t ion of t h e apparatus t h e p ressure

t a p s were as i n F igure 1 4 .

- 2 3-

Page 34: The Design and Construction of an Absolute Permeameter to

FIGURE 1 4 - "Old" Pressure Taps

A t t h i s p o i n t a s e r i o u s f l o w r a t e dependency of t h e pe rmeab i l i ty was

experienced. By a l l means t h e flow i s laminar, as shown i n s e c t i o n 5 ,

hence t h e r e s h o u l d n o t be f low rate dependency. It is obvious t h a t

t h e Ap measured is n o t only t h e Ap of t h e core b u t inc ludes t h e Ap i n t h e

tubing s e c t i o n s A-B and C-D. S impl i f ied w e have t h e fo l lowing cond i t ion :

I I I CD

-c'

B C

"F igure 15 - l'O1d'' Head Loss on t h e Core

-2 4-

Page 35: The Design and Construction of an Absolute Permeameter to

ApAB and ApCD are mostly a f u n c t i o n of V b u t some of t h e "T" and elbows

and o the r i r r e g u l a r i t i e s are a f u n c t i o n of V and hence are no t l i n e a r wi th

q as Darcy's l a w is . This y ie lded p a r t of t h e permeabi l i ty (k) dependence

upon t h e f l o w r a t e (9) . Varying t h e f lowrate (q) from 200 cc/hour t o

300 cc/hour caused a drop i n k of about 100 md from a l e v e l of 3500 md.

Figure 8 p r e s e n t s t h e s o l u t i o n t o t h i s problem. The p ressure t a p s

2

were made of 1/16" tubing and put i n t o t h e 1/8" f low l i n e s .

a t t h e sand face. This cu t t h e f low rate dependency of t h e pe rmeab i l i ty by

50%. This p r e s s u r e t a p . measures t h e k i n e t i c p o t e n t i a l of t h e flow:

A sample c a l c u l a t i o n shows t h a t t h e e x t r a Ap due t o t h e f low i s

negl ig ' ibae:

Ap = 14.7 y V 2

2g

Where : Ap Z p s i

y E kg/cm3 =

V E cm/sec E 0.3 (Maxhum flow)

so :

g cm/sec2 = 981

Ap = = 687, ir 10-9 psi 14 .7 x x 0. 32

2 x 981

3.5 Core plugs

As presented i n s e c t i o n 3 . 4 , t h e rate dependency remained.

It was reduced by h a l f b u t something was s t i l l wrong. A c l o s e r look a t t h e

core plugs is presented i n ' Figure 1 7 . As they were, t h e r e was a s e r i o u s

-25-

Page 36: The Design and Construction of an Absolute Permeameter to

P W I T H O U T E N D EFFECTS

P WITH E N D EFFECTS

A B C D

I

FIGURE 1 6 - End E f f e c t s P ressure Losses

ApAB and ApCD are a f u n c t i o n of t h e flow. This was a

key f a c t o r once improved. The improved c o r e p lugs are presented i n

Figures 6 and 7 . Once improved, not only d i d t h e k dependency on q van ish ,

but k increased by as much as 30%. That is l o g i c a l s i n c e Ap decreased by

a l a r g e amount f o r t h e same flow.

3.6 Sand Sieving and Cleaning

F i n a l l y , t o complete t h i s s e c t i o n , one more problem was solved: t h e

plugging of t h e needle v a l v e t h a t sets t h e flow i n t h e core . The sand

w a s s i f t e d about f i v e times, and then washed wi th d i s t i l l e d water and d r i e d

a t 70°C. That improved t h e flowing s t a b i l i t y a g r e a t d e a l . The particles ~

plugging t h e needle v a l v e were sxaller than seven microns s i n c e a seven

micron f i l t e r is up stream of t h e valve . The sand sand sizes are about

-26-

Page 37: The Design and Construction of an Absolute Permeameter to

130 t o 180 microns s o probably t h e flow of f i n e s d i d no t a f f e c t t h e

permeabi l i ty . 'Furthermore, a f t e r t h e f i r s t hea t ing cyc le t o 300°F , the

plugging e f f e c t p r a c t i c a l l y disappeared.

-27-

Page 38: The Design and Construction of an Absolute Permeameter to

t

-28-

Page 39: The Design and Construction of an Absolute Permeameter to

4 . Procedure

The main g o a l of t h i s s e c t i o n i s t o advance an opera t ing desc r ip-

t i o n so t h a t t h e work can b e reproduced. Furthermore, t h e mechanical

behavior of t h e system is one of t h e sources f o r an eva lua t ion of t h e

system and what can be done wi th i t i n t h e f u t u r e . Several problems and

disagreements may o r g i n a t e from a d i f f e r e n t and i n c o n s i s t e n t procedure.

Many schematics and diagrams i n o the r s e c t i o n s w i l l be r e f e r r e d t o i n

t h e fo l lowing s e c t i o n .

4 . 1 Sand Prepara t ion

The Ottawa s i l ica sand was c a r e f u l l y s ieved. Two sands were used:

mesh 120-150 (what i s l e f t on t h e 150 Mesh screen) and mesh 170-200 (what

is l e f t on t h e 200 mesh sc reen) . An i n i t i a l q u a n t i t y of about 500 cc of

sand is put on t h e top s i e v e . Then only t h e des i red mesh is res ieved

four (4) more times. Sieving time is about 15-30 minutes f o r every cyc le .

After a l a r g e enough q u a n t i t y of t h e two g r a i n s i z e s was on hand,

washing commenced. The c o a r s e p o r t i o n (mesh 150-120) was washed under

t a p water through a mesh 270 sc reen t h r e e times, about 5 cc of sand a t

a time. Then a l l t h e sand was washed t h r e e times wi th d i s t i l l e d water.

The f i n e r sand (mesh 200-170) w a s washed t h r e e times wi th d i s t i l l e d water,

not through a screen. The sands were d r i e d i n an oven a t 60"-70°C . I n o rder t o achieve a good s iev ing of t h e sand, t h e q u a n t i t y on every

s i e v e should be small. A t h i n l a y e r of sand w i l l expose a b e t t e r f r a c t i o n

of t h e g r a i n s on a s i e v e t o t h e ho les . One c y c l e of s i ev ing produced

10-30 cc of t h e s i n g l e mesh sand.

4.2 Sand Packing

1. Wash t h e up stream c o r e plug wi th water and acetone, and dry. P r o t e c t

-29-

Page 40: The Design and Construction of an Absolute Permeameter to

t h e "o" r i n g from t h e acetone.

2 . Cut a 1 1 / 2 " x 1 1 / 2 " mesh 270 sc reen and p l a c e i t on t h e c o r e

plug end. Put t h e sc reen r i n g on and t a p down g e n t l y wi th a

p l a s t i c hammer. Be s u r e t h a t t h e sc reen is n o t dammaged. Cut

t h e e x t r a p a r t s of t h e sc reen below t h e r i n g . Inspec t care-

f u l l y . 3. Repeat s t e p s 1 and 2 f o r t h e down stream c o r e plug.

4 . Cutyan 8" p i e c e of v i t o n tubing. Square one end .and

wash it wi th water. Wash t h e aluminum per fo ra ted s l e e v e and push

t h e v i t o n i n t o t h e s l eeve . Center t h e v i t o n . Then dry t h e i n s i d e

of t h e v i t o n and, as much as p o s s i b l e , t h e aluminum s leeve .

5. F i t t h e squared v i t o n end onto t h e up stream core plug so t h a t

two t h i n g s happen: (1) t h e rubber sleeve goes as f a r on t h e end plug

as p o s s i b l e and (2) t h e aluminum sleeve over laps t h e core plug __

by t h e width of t h e sc reen r i n g , about 3/16". Clamp w i t h

a clamp t h a t does not exceed t h e aluminum s l e e v e diameter. Put

t h e clamp as c l o s e as p o s s i b l e t o t h e aluminum s leeve . Make s u r e

t h a t t h e clamp does no t cu t t h e rubber . The c o r e plug and

s l e e v e are set v e r t i c a l l y wi th t h e open end of t h e s l e e v e po in t ing

upwards.

6. Take 100 cc of sand i n a 100 cc beaker and weigh i t .

7 . F i l l t h e s l e e v e wi th 30 cc ' of sand.

8 . Use a s t a i n l e s s s teel rod about 2 1 / 2 " long and 3/8" i n diameter

wi th a rounded end. L e t i t drop on t h e sand from a he igh t of

about 2"-3". Pound t h e sand 50 times. (30 cc were used t o p r o t e c t

t h e up stream screen) Then t a p t h e aluminum s l e e v e wi th t h e handle

-30-

Page 41: The Design and Construction of an Absolute Permeameter to

of a medium screwdriver , 50 times, a t t h e sand f a c e level,

whi le tu rn ing t h e core 360' (on a c i r c l e ) .

9. Repeat s t e p s 7 and 8 w i t h a 20 cc increment u n t i l t h e level of

t h e sand is 3/16" below t h e aluminum s l e e v e end.

10. Weigh t h e sand l e f t i n t h e beaker. (Figure 17)

11. Put up stream core plug i n p lace . Tap i t very gen t ly . Make

s u r e i t is vertical. Clamp i t as c l o s e as p o s s i b l e t o t h e alumi-

num sleeve. Cut t h e v i t o n a t t h e upper l e v e l of t h e upstream

core plug.

4.3 Geometry Measuring

For each run, t h e core dimensions were recorded on a d a t a s h e e t l i k e

F igure 18. The upstream measurements are taken 90 a p a r t . The down stream

measurements are taken 120 a p a r t .

0

0

4 . 4 Core Holder Packing

1. S e t t h e core ho lder body i n a vise wi th t h e f l a n g e p o i n t i n g upwards.

2. Clean "o" r i n g s ' housing. O i l t h i n l y .

3. O i l 'lo" r i n g s t h i n l y .

4 . Clean f l a n g e s u r f a c e s .

5. O i l b o l t s .

6 . F i t co re i n t o core ho lder body and t i g h t e n b o l t s i n a 90' alter-

na t ing manner. Use spr ing washers. Do n o t over t igh ten . Tighten

t o t h e same torque.

4.5 Confining System Preloading

Two th ings are done here : (1) Charge water i n t h e high p ressure v e s s e l

-31-

Page 42: The Design and Construction of an Absolute Permeameter to

r -

v3 E-c

. o X. H

5 sq

... L

r

J

J

-32-

Page 43: The Design and Construction of an Absolute Permeameter to

and (2)

1.

2.

3 .

4 .

5 .

I 6.

7 .

8 .

9.

charge o i l i n t h e hand pump.

Close v a l v e 3 4 .

Open v a l v e 32.

Open v a l v e 3 3 .

Connect a d i s t i l l e d water r e s e r v o i r t o p o r t B .

Connect a vacuum t r a p t o p o r t A.

P u l l a l i g h t vacuum u n t i l t h e water g e t s t o t h e vacuum t r a p .

Close v a l v e 3 3 .

Disconnect vacuum system.

F i l l o i l (vacuum o i l ) i n p o r t C of t h e hand pump.

4.6 Pressure Transducer C a l i b r a t i o n

C a l i b r a t i o n i s done w i t h a mercury manometer f o r t h e 5 p s i viscometer

and a water manometer f o r t h e 1 p s i p l a t e . For t h e c a l i b r a t i o n , t h e

t r ansducers are disconeected from t h e main system and once t h e i n d i c a t o r

and t h e recorder are c a l i b r a t e d , t h e t r ansducers are pu t back i n p lace .

4.7 Fi l te r Inspec t ion and I n s t a l l a t i o n

The p rev ious ly used up Stream f i l t e r s and t h e down stream f i l t e r are

disconnected and inspected. Usually, t h e f i l t e r elements have t o be changed

every other run. A f t e r j p u t t i n e f n anew f i l ter element (of t h e des i red spe-

c i f i c a t i o n s ) , t h e f i l t e r s are r e i n s t a l l e d .

4.8 Charging t h e Accumulator

Figure 3 . desc r ibes . t h i s s e c t i o n .

1. Take accumulator o f f , inc luding v a l v e 27.

2 . Wash l i q u i d p o r t .

3 . F i l l up l i q u i d p o r t w i t h d i s t i l l e d water wi th t h e p o r t f ac ing upwards.

-33-

Page 44: The Design and Construction of an Absolute Permeameter to

4 .

5.

6 .

7.

8.

9.

10.

11.

1 2 .

13.

1 4 .

15.

Apply p res su re t o t h e gas p o r t u n t i l water f lows through v a l v e

27 (va lve f ac ing up) . A s water i s flowing through v a l v e 2 7 , c l o s e i t .

I n s t a l l t h e accumulator.

Charge t h e gas manifold wi th 300 ps ig .

Open va lve 20.

Close va lve 26.

Open va lve 1 6 u n t i l p re s su re i n t h e gas gauge is 195 ps ig .

Close v a l v e 1 6 .

The accumulator i s ready f o r use a t an average pore p re s su re

of 200 p s i g .

Close t h e main gas v a l v e on t h e b o t t l e .

Open va lve 1 9 t o bleed off t h e gas manifold.

Close va lve 1 9 .

4.9 Washing t h e System (without t h e core)

1.

2 .

3.

4 .

5.

6 .

7 .

a .

9.

10.

11.

Connect t h e by-pass in s t ead of t h e core.

I n s t a l l t h e by-pass f o r t h e down stream pres su re t a p .

Plug t h e upstream p r e s s u r e t a p ; c l o s e va lve 10.

Open v a l v e 8.

Open v a l v e 7.

Valve 5 p o i n t s a t va lve 7 .

Choose an upstream f i l t e r .

Open v a l v e 31.

Open va lve 28; make s u r e t h e r e i s water .

Close v a l v e 10.

Close va lve 1 2 .

-34-

Page 45: The Design and Construction of an Absolute Permeameter to

1 2 . open va lve s 11, 13 , 14 .

13. S e t t h e pump a t 500 and t u r n it on.

14. Wash wi th 250 t o 500 cc.

4.10 S e t t i n g t h e Excess Loop Pressure

1.

2.

3 .

4 .

5 .

6.

7 .

8 .

Take t h e hose off t h e p r e s su re r egu l a to r (Figure 3 ) .

Open t h e ad ju s t i ng screws on t h e p r e s su re r e g u l a t o r .

Close va lve 7 .

Look a t t h e upstream gauge. It w i l l o s c i l l a t e *lO p s i around

150 ps ig .

Close t h e ad ju s t i ng screws on t h e p r e s su re r egu l a to r u n t i l t h e

p r e s su re on t h e upstream gauge o s c i l l a t e s around 250 p s ig .

Connect t h e excess flow hose.

Open va lve 7 and bleed.

S top t h e pump.

4 .11 Vacuuming of t h e System (without t h e core)

1.

2 .

3 .

4 .

5.

6.

7 .

8 .

9.

10.

11.

Close va lve s 1, 7 , 8 , and 9.

Connect t h e vacuum pump t r a p . S t a r t t h e pump.

Valves 2 3 , 22 remain c losed .

Open va lve 21.

Open va lve 15 t o d r a i n the t ransducer l i n e .

Open v a l v e 1 2 .

Close va lve 11; al low a few minutes t o pass .

Close v a l v e 1 2 .

Open va lve 11.

Close va lve 15.

Open va lve 10; a l low a few minutes t o pass .

-35-

Page 46: The Design and Construction of an Absolute Permeameter to

1 2 .

1 3 .

1 4 .

15.

1 6 .

17 . 18.

Close va lve 10.

Open va lve 23 .

Open va lve 2 2 ; al low a few minutes t o pass .

Close v a l v e 22 .

Close va lve 23 .

Connect t h e vacuum gauge t o t h e va lve 23 p o r t .

Open va lve 23 and vacuum t o 2 t o r r o r less.

4.12 I n s t a l l i n g t h e Core Holder i n t h e A i r Bath

1.

2 .

3 .

4 .

5 .

6 .

7.

Close va lve 2 1 .

Open va lve 15.

Stop - the vacuum pump ;' ' allow a few minutes t o pass .

Disconnect t h e by-passes i n t h e ba th (two of than ) .

P l ace t h e co re holder i n t h e mounting device.

Connect t h e conf in ing p o r t , down stream p o r t , upstream p o r t ,

upstream thermocouple, upstream p res su re t a p , and down stream

pres s u r e t a p . Tape t h e s u r f a c e thermocouple t o t h e co re holder su r face .

4.13 Charging Confining Water and P res su r i z ing

1.

2 .

3 .

4 .

5 .

6 .

Remove t h e confining p res su re plug, loca ted a t t h e top cen te r of

t h e coreholder .

Open v a l v e 3 4 .

Pump u n t i l water comes out of t h e po r t .

Stop t h e above p o r t .

Pump confining prkssure t o 500 ps ig .

Bleed water from va lve 33 u n t i l o i l appears. .

-36-

Page 47: The Design and Construction of an Absolute Permeameter to

7 . Close va lve 33.

8. P r e s s u r i z e t o 500 p s i g .

4.14 Vacuuming t h e system

1. Close va lve 15.

2 . Turn t h e vacuum pump on a f t e r emptying t h e t r a p .

3. Inc rease conf in ing p res su re by increments of 500 p s i p e r 10 minutes.

4 . Monitor vacuum q u a l i t y .

5. For a t least t h r e e t o fou r hours , reduce t h e vacuum t o 1 t o r r

o r less.

6. Check f o r confining p r e s s u r e l eaks and f o r movements of t h e down

stream plug.

7 . Be s u r e t o p r o t e c t t h e vacuum t r a p .

4.15 Flooding and P res su r k i n g t h e System

1.

2 .

3 .

4 .

5.

6.

7 .

8.

9 .

10.

Close v a l v e 23.

Disconnect t h e vacuum gauge.

Open v a l v e 1.

Turn on t h e pump and set i t a t 150 cclmin.

Allow time t o pas s u n t i l water e n t e r s t h e ' t r a p . . . 1 .

Close va lve 21 .

Stop t h e vacuum pump and disconnect t h e t r a p .

L e t p re s su re bu i ld up u n t i l t h e excess flow loop is flowing.

Open va lve 27 t o connect t h e accumulator.

Allow a few minutes f o r t h e p r e s s u r e t o s t a b i l i z e .

-37-

Page 48: The Design and Construction of an Absolute Permeameter to

4.16 I n i t i a t i n g Flow, Temperature Recording, Ap Recording, and Cooling

System Flow

1.

2 .

3 .

4 .

5 .

6 .

7.

8 .

9 .

SFbitbh on t h e i n d i c a t o r s .

Turn on t h e cool ing water a t about 200-500 cc/min.

Turn on t h e temperature r eco rde r .

Open va lves 10 and 1 2 .

Close va lves 13 and 1 4 .

Open needle va lve -7 s l i g h t l y whi le watching t h e 1 p s i i n d i c a t o r .

Stop when t h e i n d i c a t o r shows 0.5 p s i .

S e t t h e pump a t 600 cc/min.

Allow 15 minutes t o one hour t o s t a b i l i z e .

B e s u r e t h e r e is always a f l o w through t h e excess loop.

4.17 Measurements a t Various Flowrates at a Constant Temperature (T, Ap, q)

To c a l i b r a t e t h e ' recorder (Ap reco rde r ) do t h e fol lowing:

For t h e viscometer:

1. Close v a l v e 1 2 .

2. Open v a l v e 1 4 .

3 . Adjust t h e recorder needle t o zero . Do not touch t h e i n d i c a t o r .

4 . Close v a l v e 1 4 .

5. Open v a l v e 1 2 .

Operate t h e va lves g e n t l y t o prevent shocks.

For t h e c o r e t r ansduce r :

6 . Close va lve 10.

7 . Open va lve 13.

8 . S e t t h e r eco rde r needle t o zero .

9. Close v a l v e 13.

10.' Open v a l v e 10.

-38-

Page 49: The Design and Construction of an Absolute Permeameter to

The Ap on t h e core , Apc, can be read on t h e corresponding pen on t h e

recorder . F igure 19 shows an example of t h e Ap record,

Figure 20 shows an example of t h e temperature record,

When t h e four ba th thermocouple . r e c o r d s agree, t h e temperature

can be read on t h e s c a l e . (The recorder was preca l ib ra ted) ' .

Flow ra te measurements are made wi th a b u r e t t e . See F igure 10. The

f low rate is changed by c l o s i n g o r opening v a l v e 7 . Always b e s u r e t h a t

100-200 cc/hour flows through t h e excess loop.

4.18 Heating t h e System

The b a t h was p reca l ib ra ted ; The t a r g e t temperature was set

and hea t ing s t a r t e d ; Figure 20 shows t h e hea t ing p r o f i l e f o r run $111.

Heating of 50°F increments t akes 2 t o 2-1/2hours.While hea t ing , t h e conf ining

l i q u i d expands,-and is b led by v a l v e 3 3 . Valve 33 i s a need le v a l v e

and t h e bleeding should b e done g e n t l y t o prevent surges . Surges

can b e seen i n F igure 1 9 . Usually, when t h e conf ining p r e s s u r e reads

2050-2100 p s i g , it' is b led t o 2000 ps ig . Make s u r e that v a l v e 34 (Figure 4 )

is c losed . The only time it is opened is when t h e hand pump is used.

4.19 Cooling t h e System

The ba th has both an i n l e $ and an o u t l e t . Generally a t temperatures

exceeding 1 5 0 ° F , t h e s e v e n t s are c losed. To coo l t h e system, open t h e v e n t s

and t u r n t h e temperature knob t o t h e minimum s e t t i n g . Watch t h e f l u i d

temperature upstream from t h e core . When i t g e t s t o x h e d e s i r e d temperature,

set t h e knob t o t h a t temperature.

The cool ing is a t least as long a process as t h e hea t ing . Cooling

t o room temperature may t a k e s i x hours. During t h e cool ing c y c l e ,

-39-

Page 50: The Design and Construction of an Absolute Permeameter to

Figure 1 9 - PRESSURE DIFFEJ@JJ'TIAL RECORDING AT k MEASUREMENTS AND DURING HEATING

-40-

Page 51: The Design and Construction of an Absolute Permeameter to

.Figure 20 HEATING CYCLE PROF IEE : 150 OF to 250°F,

b

Page 52: The Design and Construction of an Absolute Permeameter to

t h e conf ining p r e s s u r e r e q u i r e s con t ro l . Open v a l v e 3 4 and pump t h e p ressure

back t o 2000 psig . ' Close v a l v e 3 4 . The gauge w i l l read 2200 p s i g .

Sub t rac t ing 200 ps ig f o r t h e average pore p ressure w i l l y i e l d a conf ining

p r e s s u r e of 2000 ps ig .

4.20 Stopping t h e Flow

1.

2 .

3 .

4 .

5 .

6 .

7 .

8 .

Close v a l v e 7 .

Close v a l v e 1.

Close v a l v e 2 7 .

Stop t h e pump.

Close v a l v e 29 .

Open v a l v e 7 and bleed t h e p r e s s u r e t o 0.

Shut down t h e recorders and t h e i n d i c a t o r s .

Shut down t h e cool ing water.

4 . 2 1 Conf ininp, P r e s s u r e Bleed Off

Open v a l v e 3 3 and bleed t h e conf ining p r e s s u r e slowly. Make s u r e t h e

c o r e p r e s s u r e has ,dropped t o zero b e f o r e I bleeding t h e conf ining

p ressure .

4.22 Removing t h e Core Holder

1.

2 .

3 .

4 .

5.

6 .

7 .

Disconnect t h e down stream p r e s s u r e t a p .

Remove t h e upstream p r e s s u r e t ap .

Disconnect the upstream.meta1 and s u r f a c e thermocouples.

Disconnect t h e upstream and down stream p o r t s .

Close v a l v e 3 3 .

Disconnect t h e conf ining p o r t .

Remove t h e c o r e holder .

-42-

Page 53: The Design and Construction of an Absolute Permeameter to

4.23 Taking t h e Core Holder Apart and Inspec t ing It

1. Put p r o t e c t o r s on a l l s i x Swagelock f i t t i n g s .

2 . S e t t h e co re holder i n v i s e , f l anges up. Take t h e b o l t s a p a r t .

3. Work t h e co re plugs and core out wi th two screwdrivers .

4 . Take t h e core plugs o f f .

5. Inspec t : Sand Face

0 r i n g s Screens

Viton tubing

11 1 1

4.24 Problems

The main problems were f i l t e r and va lve plugging.

4 .24 .1 F i l t e r plugging

When t h e upstream f i l t e r p lugs , swi teh t o t h e o the r as fo l lows:

Close va lve 7

Switch va lve 2 t o t h e o t h e r f i l t e r

Open v a l v e 7 ( s t a r t t h e f low).

This procedure w i l l no t shock t h e system. Keep va lves 3 and

4 always open.

When t h e downstream f i l t e r p lugs , do t h e fol lowing:

Close va lve 7

Close va lve 31

Remove f i l t e r and change t h e element

R e i n s t a l l t h e f i l t e r

Open va lve 31 u n t i l t h e flow i s zero

Open va lve 31 completely

Open va lve 7 t o start t h e flow.

-43-

Page 54: The Design and Construction of an Absolute Permeameter to

4.24.2 Plugging of t h e down stream needle valve

This problem is common. P a r t i c l e s of 61.1 and smaller w i l l pass

through t h e f i l t e r s , bu t w i l l no t pass t h e va lve . Tapping t h e va lve

cas ing w i l l u s u a l l y c lean it. Sometimes it i s necessary t o open

t h e valve completely. To do t h a t , d i v e r t t h e flow t o va lve 6 , then

work va lve 7 a few times, and d i r e c t t h e flow back t o valve 7 .

I n most of t h e runs t h i s problem disappeared a f t e r t h e f i r s t

hea t ing cyc le .

-44-

Page 55: The Design and Construction of an Absolute Permeameter to

5. Summary of Resu l t s

I n t h i s s e c t i o n , t h e c a l c u l a t i o n of pe rmeab i l i ty i s shown and a

sample c a l c u l a t i o n i s presented. F i n a l l y , t h e r e s u l t s of t h e runs and a

d i s c u s s i o n are presented.

5 . 1 Permeabi l i ty Ca lcu la t ions

The c o r e used i n t h i s experiment has a c y l i n d r i c a l shape. The f l u i d

f lows i n t h e a x i a l d i r e c t i o n through a c i r c u l a r c r o s s s e c t i o n . The f low

is considered l i n e a r and laminar. Laminar f low is guaranteed i f t h e Reynolds

number is less than uni ty :

where: p = d e n s i t y , g /cc v = v e l o c i t y , cm/sec d = average g r a i n d iameter , cm p = v i s c o s i t y of t h e f lowing l i q u i d , g/cm-sec

For t h e h ighes t f low ra te of about 1000 cc/hour a t 300'F and wi th t h e

unconsolidated sand used i n t h i s s tudy:

p = 0.918 g/cc v = 0.0525 cm/sec d = 1601.1 = 0.016 c m p = 0.1829 c p = 0.001829 g/cm-sec

And t h e corresponding Reynolds number is:

R = (0.918) (0.0525) (0.016) = o.42 < l.o e (0.001829)

For a l i n e a r lamifiar flow, Darcy's law a p p l i e s :

-45-

Page 56: The Design and Construction of an Absolute Permeameter to

where: q = cc / sec a t f low cond i t ions A = cm Ap = a t (1.0333 kg/cm2) L = cm IJ = CP k = Darcies

2

Rearranging f o r k:

L and A are measured w i t h a micrometer. is measured a t room Qsc

cond i t ions and must be converted t o q * res *

where : v = s p e c i f i c volume, cf / l b

%c = measured i n t h e b u r e t t e , u s u a l l y 10 cc

t = time totsflow YSCYLsec.

Ap is measured i n p s i , and is converted t o atmospheres by:

14.696 Ap , . p s i = 1 atm

This y i e l d s :

Assuming tha t V = 10 cc, and A = 5.292 e m 2 , equat ion ( 5- 5 ) becomes: sc

Any u n i t s may b e used f o r t h e s p e c i f i c volume terms as long as both

terms are c o n s i s t e n t . The v i s c o s i t y , 1-1 , a t run temperature is obtained

from published d a t a . Table 1 p r e s e n t s l i q u i d water v i s c o s i t y , and F igure 2 1

-46-

Page 57: The Design and Construction of an Absolute Permeameter to

Table 1 - Water Viscos i ty

Vi scos i ty a t * Sa tu ra t ion Temp.

1. I

Viscos i ty a t *** 200 p s i

I I

T, "F

32

40

50

60

7 0

80

90

100

150

200

250

300

3 50

400

450

500

550

600

5 'sat

1 . 2 0 1 1.786 0.9810 366 .0 1 .752

271.3 1.299

1 .04 1 1.548

0.9916 0.88 1 .310

0 .76 1 .131

0.658 0.9792

0.578 0.8602

11.128 0.9927

0.9939

E 0.8561 0.9952

I 0.7621 0.9964 0.514 0.7649

0.458 0.6816 0.9975 142 .O 0.6799

0.4266 0.9818 O . 292 0.4345

0.205 0 .3051 62.7 0.3002

47 .6 0.2279

38.2 0.1829

31.8 0.1523

0.9839

0.9694 0.158 0 .2351

0.126 0.1875

0.105 0.1563

0 . 0 9 1 0.1354

0.080 0 .1191

0 .071 0.1057

0.064 0.0952

0.058 0.0863

* PrincipLes of Heat Transfer , K r e i t h ( 1 9 7 3 ) . **Completed Using F igure 23 ***ASME Steam Tables , p. 280 , t a b l e 10

-47-

Page 58: The Design and Construction of an Absolute Permeameter to

1 .o .

508

TEMPERATUR , ‘F

Figure 2 1 - VISCOSITY OF WATER vs TDfPERATUPZ AT 200 PSIA

-48-

Page 59: The Design and Construction of an Absolute Permeameter to

is a g r a p h i c a l p re sen ta t ion . The e f f e c t of v i s c o s i t y on permeabi l i ty

,determinat ion i s given i n t h e e r r o r ana lys i s . , s e c t i o n 5 .2 .

A sample c a l c u l a t i o n of t h e permeabi l i ty a t a g iven cons tant temperature

fo l lows . This example w i l l e s t a b l i s h t h e permeabi l i ty f o r a case i n

run 11:

T = 250°F Second cool ing c y c l e Record of measurements: 889-896

Measurement 889 w i l l fol low:

Date: September 26, 1980

'Pcor e = 0.664 p s i

v = 1 0 cc t = 60.75 sec T = 74OF sc

From Table 4 : % o V = 0.016990 f t 3 / l b

= 0.2279 cp

2 5 0

7 4 v = 0.016048 f t 3 / l b

L = 15.9906 cm A = 5.2924 c m 2

Hence, equat ion (5-6) y i e l d s :

k = 27.7677 (0.016990) (0.2279) (15.9906) = 2.656 Darcy 2 5 0 (0.664) (60.75) (0.016048)

This c a l c u l a t i o n w a s done f o r e i g h t measurements at t h i s temperature

and t h e average of t h e e i g h t is:

k,,, = 2.673 Darcy

The e i g h t v a l u e s of k250 are presented i n F igu re 28. The average v a l u e - k is presented i n F igu re 2 9 ,

2 5 0

-49-

Page 60: The Design and Construction of an Absolute Permeameter to

-50-

Page 61: The Design and Construction of an Absolute Permeameter to

1.01

0 Fz 1.00 a OL:

M !z 0.99

0.98 0

t 1 I '7- REG ION OF

50 100 150

T E M P E R A T U R E

F i g u r e 23 - pp/psat vs TDPERATURE

-51-

200

OF

Page 62: The Design and Construction of an Absolute Permeameter to

1.C

+- f Qf

8 s

30 50 TEMPERATURE , 'F

Figure 24 .- VISCOSITY vs TEMPERATURE AT 200 PSIA

(Improved Range - 70°F to 100°F)

-52-

Page 63: The Design and Construction of an Absolute Permeameter to

110.1 111.1 1U. I

lIIJ l1i.I

11D.l 1121 1M.I 1 l i . l l1IJ

1OO.l 104 J 101.1 711J 1lI.l

131.1 114 J 111.1 111J I J i J

24D.b 1UJ 141.1

I 5 i J 15ZJ

1iD.l 1U.I 1CIJ 11lJ l7iJ

11D.I IUJ 111.1 111.1 71IJ

118 J J U J

112.1 IIIJ

IIiJ

111.1

11IJ 114.1

131J I J I J

nu M4.I n1.1 111.1 1SCJ

1Cl.l 3U.I 161.1 111J 1lIJ

111.1 IUJ

112J 111.1

11iJ

410.1 404 J 40IJ 412J 4 l i J

4 l l J 414 J 41IJ 4 l l J UIJ

441.1 U 4 J 44JJ WJ uu

75110

8 203 7.850

a 56a

0.016510 0016522 0016534 0016517 0.016553

0016572 0.016585 0016598 0016611 0.01 6624

48.172 5021

46.232 44.313 42.621

40.941 39.337 37.808 36.348 34.954

33 622 31.135 28 862

24.878 26.782

23.131 21.529 20 056 18.701 17.454

16.304 15.243 14.264 13.358 12.520

11.745 11.025 10 358 9.738 9.162

8.1180 8.627

7.6634 72301 6.8259

6 4483 6 0955 5.7655 5 4566 5.1673

4.8961 4 6418 4 4030

3.9681

3.7699 3.5834

32423 3 0863

2.9392 2.8W2 2 6691 2.5451 2.4279

2.2120 2.3170

2.1116 2.0184 1.9291

1 8 4 4 4 1.7640

1.6152 1.6877

1.540

1.48G3 14184 1.3591

l302bS 124887

1.19761 1.14874 1.10212 ID5764 ID1511

4.1 7118

3407a

18.189 5022

46.249 44 400 42.638

40.957 39.354 3p.824 36.364 34.970

33.639 31.151 28.878 26.799 24894

23.148 21.545 20.073 18.718 17.471

16.321 15.260 14.281 13.375 12.538

11.762 11.042 10.375 9.755 9.180

8 1453 8 644

7.6807 72475 6 11133

6 4658 6.1 130 5.7830 54742 5.1849

4.9138 4.6595 4.4208 4.1 966 3.9859

3.7878 3 6013 3.4251 3.2603 3 . l M

2.9573 2.81114 2 6873 2.5633 2 4462

23353 2.2304 2.1311 2 0369 1.9477

1 8630 1.7827 1.7064 1.6340 1.5651

1.4997 1.4374 13782

132179 m a m 121687 1.16806 1.12152 107711 I DM72

990.2 989.0

986.5 9 u . 3

984.1

9m.4 981.6

979.1

977.9 975 4

970.3

987.8

982.a

972.a

967.1

965.2 962.6 960 0 957.4 954.8

952.1 949.5 946 8

94 1.4 944.1

938.6 935.9 933.1 930.3 927.5

924.6 921.7 918.8 915.9 913.0

* 910.0 907.0 9M.0 901 .o 897.9

8w.a 891.6 888.5 8853 882.1

875.5 878.8

868 9 w . 5

862.1 858 6 855.1 851.6 848.1

u 4 . 5 B40.8 a372 a33 4 829.7

825.9

8182 822.0

8142 8102

a062 802 2 798 0 793.9 789.7

785.4 781.1 776.7 7723 167)

a722

0.701 02662 0.1691 02725 02756

0.2787 02818

0.2879 0.2848

02910

02940 03001 03061 03121 03181

0324 1 03300 0.3359 0.341 7 03476

0.3533 03591 0.3649 03706 03763

0.3819 0.3876 03932 0.3987 OJM3

o 4098

0 4208 0.4 154

0 4163 04317

I5480 1.5411 1.5346 15279 1.5213

15148 1.5082 I 9 1 1 1.4952 1.411118

14024 I4697 1.4571 14447 1.4323

I 4101 1.4081 1.3961 I3842 13725

13609 13494 13379 13266 13154

13043 13933 12823 12715 12607

12301 12395 12190 12186 12082

.a1 I I 4075 4040

,7969 .8w4

,7334 .7 900 ,7865 .7U1 ,7798

.7 x4

.7698 , 7 0 2 .7568 . 7 9 5

,7442 ,7380 .7320 ,7260 ,7101

.7142

.7085 ,7028 A972 ,6917

.6862 I 6808 ,6755 1.6702 6650

1.6568 .6599

1.6498 1.6449 €44

-

I I IJ 111j 1 U J 111.1 111j

l¶DJ 111j 1 M J 191j 111.1

1d0.1 1UJ 101.1

m . 1 111.1

114J 1n.1

111.1 11zj 111.1

14d.1 1U J 141.1 151J 751j

1 C D J 1UJ 111.1 171J llIJ

111.1 184 J 711.1

291j 112.1

150.01 148 00

152.01 154.02 I56 03

158.04 . 160.05 162 05 164 06 166.08

168 09 172.11 176.14 180.17 18420

118.23 19227 196.31 70035 204.40

208 45 212.50 21636 220.62 224.69

228.76 232.83 236.91 240.99 245.08

249.17

257.4 253.3

765.6 261.5

269.7 273.8 278.0 262.1 2a63

2 W 4 294.6 298.7

. 307.1 302.9

315.5 3113

319.7 313 9 328 1

332.3 336.5 340 8 345.0 349.3

353.6 357.9 3622 366.5 370.8

375.1 379 4 383.8 388.1 3923

396.9 4013 405.7

414.6 410.1

419.0 4235 428 0 4325 437D

1138.2 1 139.0 11 39.8 1140.5 11413

1142.1 1142.9 1143.7 11 44.4 11452

1146.0 I1475 1149.0 1 I 5 0 3 1 152.0

1153.4 11 54.9 11 56.3

11592

11 60.6 11 62.0 11 63.4 1164.7 1166.1

1167.4 1168.7 I 1 70.0 1171.3 11 725

I 1 73.8 I 1 75.0 11762 I 1 77.4 11786

I I 57.11

11 79.7 11809 11 82.0 1183.1 1184.1

11852 11 862 11872 1 188.2 11 89.1

11 90.1 1191.0 1191.1 11 92.7 1193.6

11944 11952 11 95.9 11 %.7 1197.4

11 98.0 11 98.7 1199.3 1199.9 n m 4

1201.0 1201.5 12013 1202.4 1202.8

I2rn.l 1203.5 1203.7 1204.0 12042

1m.4 1104.6 1204.7 12Md 12Md

8.947

9 340 9.747

10.161

11.M8 10.605

11.526 0 01 6637 D O I h L M 12.5ii

13.568 14 696 15.901

17.186 18 556

21.567 20.015

23.216

- _.__. 0 01 6691 0016719 0 01 6747

0.016775 0016805 00161u4 00168M 0.016895

0.016926 D O 1 6958

14.968 26 826 28.796 30.11113 33.041

35.427 37.1194 40.500 43.249 46.147

0.016990 0.017022 0 O17MS

. . . . . . .

0.017089 0.017123 0.017157 0017193 0.017228

49.200 52.414 55.795 59.350

0.017264 0.01730 001734

001711 0 01 738

'' 71.119 67.005

79.953 75.433

84.688

0 01145 0 01 749 0 01 753 0.01757 0.01761

: : :3 0 01774 0 01779 0 01 783

0 01 787 0 01 792 0.01797 001801 001aO6

O O l 8 l l 001816 001821

0.0111l1 0 01826

001836 0.01842 001847 OOl8U OOI858

0.0111E4 0.01870 0.01 875 001881 0.01887

0019w 001894

0.01906 0.01913 0.01919

0.01 926 0 01933 0 . 0 1 ~ 0.01947 omn

04372 0 4426 04479 04533 0 4%

04640 0 4692 04745 0.4798 0 4BSO

1.1979 1.1877 1.1776 1.1616 I .1576

1.6109 111.1 1.6162 Ilil

111.1 114J 111.1 1121 131j

MI I Y J YIJ 112J 155J

ISOJ IUJ

1711 I I IJ

111j

110.1 IUJ J I I J 112J 1161

4 0 H 4MJ 481.1 41zj 415j

420.b 411j 421j 411J 4j1j

UI J 4441 441 J 4UJ 4561

1.6116 16071 16025 13981 15936

13m2 13849 13806 15763 15721

15678 1 3 0 7 15595 13554 15513

15473 15432 I 5 3 9 2 1.5352 1.5313

1.5274 1.5234 13195 15157 15118

MOM 1 9 4 2 1 .m 1.4966 1.4928

14890 1 .MU 1.4815 1.4778 1.4741

119.643 94.826

lW.245 laS.W7 111.820

1.1477 1.1378 1.1280 1.1113 1.1086

117.992

131.142 174.430

138.138 145.424

lYOl0 160 933

0 4W2 0 4954 0 5006 0.5058 0.5110

1.0990 1.0894 1.0799 1.0705 1.0611

03161 0.5212 03163 03314 05365

1.051 7 1.0424 1.0332 1.0240 1.0148

169 i i j 177.648 186.517

205294 195.729

215220 225516 236193

247259 258.725 270.600 282.894 295.617

308.780 322391 336463

366.03 351.00

%In 33756 414.09 431.14 -73

0.5416

0.5516 0.5567 0.5617

0.5667 0.5717 0 5766 - 0.5816 0.5866

o 5166 0.9466 1 . m 7

0.9876 0.9786 0 9696

03607 osiia 0.9429 0334 I 0.9253

0.5915

0 6014 06063 0.6112

0.6161 0.6210

0.6308 0 . 0 5 6

a5964

oun

0.9165 0.9077 Od990 0.8903 0.8816

0.8729 08643 04557 0.8471 Ol.385

T a b l e 2: SPECIFIC VOLmE OF WATER AT SATUFUiTION

From: Steam T a b l e s by C-E Power S y s t e m s

-53-

Page 64: The Design and Construction of an Absolute Permeameter to

1 , O F

.XU.

274.

IWU.

;2cu.

?O* 3 0 .

210. 2*D.

210. 223.

500. 29u. 280. 270. 2bO.

250. 2*0. 21u. 220. 210.

zuo. 19u. 1co. 17U. IbO.

150. I*U.

- 150.

110. 120.

ioo. “I. 56.

7u. 60.

50.

32. 40.

v, Ib f13

T a b l e 3 : SPECIFIC VOLUME OF WATER AT 200 PSIA

From: ASME .Steam T a b l e s , p. 1 5 9 , T a b l e 3

-54-

Page 65: The Design and Construction of an Absolute Permeameter to

Table 4 - Water Viscos i ty and S p e c i f i c Volumes a t - 200 ps ig (used i n t h e

c a l c u l a t i o n s )

T

(OF)

69 7 0 70 .5 7 1 71 .5 7 2 72.5 73 7 4 7 5 7 6 77 78 7 9 8 0 82

148 1 4 9 150 1 5 1 152 153 155

248 249 250 251 252

298 299 300 3 01

1-I (CP)

0.992 0.9732 0.970 0.964 0.960 0.953 0.945 0.940 0.925 0.915 0.903 0.890 0.880 0.870 0 .8561 0.837

0 .4316 0.4291 0.4266 0 .4241 0.4216 0 .4191 0.4141

0.2303 0 .2291 0.2279 0.2267 0.2255

0.1853 0 .1841 0.1829 0.1817

V

f t 3/11,

0.016038 0.016040 0 .016041 0.016042 0.016043 0.016044 0.016045 0.016046 0.016048 0.016050 0.016052 0.016054 0.016056 0.016058 0.016060 0.016066

0.016320 0.016325 0.016330 0.016335 0.016340 0.016345 0.016355

0.016960 0.01697 5 0.016990 0.017005 0.017020

0.017420 0.017430 0.017440 0.017450

-55-

Page 66: The Design and Construction of an Absolute Permeameter to

5.2 Error Analysis

The u s u a l approximation f o r t h e e r r o r , AG, of a f u n c t i o n G(x) is:

The bas i c equat ion f o r permeabi l i ty is:

S u b s t i t u t i n g A = 7rD2/4 and Ap i n p s i , equat ion (5-8) y i e l d s :

k = 18.71277 'TF-( T 'SC

ApT t vsc D 2 ( 5 -9 )

The a b s o l u t e e r r o r i n the permeabi l i ty , Akabs, can be est imated by

equat ion (5-7) , y ie ld ing :

AV AvT AI, All 2AD A(Ap) A t AVsc

A kab s = k -++- 1 ' 'T

+ - + - + --- + - L UT D AP + - t + -1 (5-10)

L vsc

The r e l a t i v e e r r o r i n t h e permeabi l i ty , Akrel, r e f e r s only t o t h e

v a r i a b l e s measured i n each c a l c u l a t i o n . Hence 2AD/ D and AL/L cance l

from equat ion (5-10) leav ing :

ApT A(Ap) A t AvSc Akrel V T l lT AP

+-+ - + - + - sc t V

(5-11)

-5 6-

Page 67: The Design and Construction of an Absolute Permeameter to

The A v a l u e s are:

AV = 0.025 cc AL = 0.00254 cm AD = 0.00254 cm A(Ap) = 0.01 p s i A t = 0.05 sec AT = 1°F

v and 1.1 are func t ions of T("F). Table 5 presen t s Av and Ap f o r

va r ious temperatures .

Table 5 - Ap, Av For Various Temperatures

T (OF) Room'L7 5 OF 150" 250 O 300 O

AP (cp) 0.01 0.0025 0.0012 0.0012

Av ( s3) 0.000001 0.000003 0.000008 0.000010

I I I I I I

A sample c a l c u l a t i o n f o r Ak and Akrel fo l lows: abs

Measurement

Run 11 T = 250°F Second Cooling Cycle Numbers of measurements: 889-896

88 9 fo l lows :

k = 2.656 d V = 10 cm v = 0.016990 ft 3 / l b

1 . 1 ~ = 0.2279 (cp)

L = 15.9906 cm Ap = 0.664 p s i V = 0.016048 f t 3 / lb

t = 60.75 sec. D = 2.59588 cm.

3

T

sc

-57-

Page 68: The Design and Construction of an Absolute Permeameter to

AV = 0.0025 c m AL = 0.00254 cm AD = 0.00254 cm A(Ap) = 0.01 p s i A t = 0.05 sec AvT = 0.000008 f t 3 / lb

AV = 0.000001 f t 3 / l b

All = 0.0012 cp s c

Akabs = 2.656 - 0.01 +

0.025 0.000008 0.00254 +

0.0012 +

2 x 0.00254 1 10 + 0.016990 + 15.9906 0.2279 2.59588 +- 0.665

0.05 0.665 0.016048 !

o'oooool + = 2.656 = 0.098 darcy = 98 md

1

1 Akabs is about -3.7%

Akrel = 2.656 - 0.025 0.000008 0.0012 0 .01 .0.05 -0.000001 - [ 10 +

0.016990 0.2279 0.665 60.75 0.016048 + +- +- I -

2.656 0.02399 = 0.064 d = 64 md

1 Akrel is about 2.4%

For t h e . a b o v e set of k , a t 250" e i g h t d i f f e r e n t Ak f o ~ v a r i o u s re1

f lowrates were c a l c u l a t e d . The average e r r o r was found, Akrel. Akrel is -

ind ica ted by v e r t i c a l b a r s bn F igure 29.

The o b j e c t i v e is t h e r e l a t i v e change i n t h e pe rmeab i l i ty as a func t ion

of t h e temperature and n o t t h e v a r i a t i o n in t h e i n i t i a l permeabi l i ty of

every core . A cons tan t measuring procedure was used f o r a l l , t h e

repor ted runs . For a more d e t a i l e d d e s c r i p t i o n , see Sec t ion 4.

5.3 Resu l t s of Runs 8 , 9 , 10, and 11

Table 6 p r e s e n t s t h e 'i; and xrel f o r a l l t h e runs , Figures 2 5 , 2 6 ,

2 7 , and 28 present t h e c a l c u l a t e d k f o r all runs. . .

-58-

Page 69: The Design and Construction of an Absolute Permeameter to

The l i n e s go through t h e k va lues . Table 6 summarizes a l l t h e runs

and F igure 29 p r e s e n t s them i n a g r a p h i c a l way. All d a t a is t a b u l a t e d

i n Tables 7 - 10.

-59-

Page 70: The Design and Construction of an Absolute Permeameter to

5.1

5s

. 4.7

Y

4.6

4.5

4.4

4 3

START-

END- -

-60-

Page 71: The Design and Construction of an Absolute Permeameter to

5.

5.

5 .

5.t - - n

t' i2 y" 4.8

4.5

'' D

I

P

Y 4.1

4.6

I I I I I I I

HEATING

COOLING

CYCLE

CYCLE - - -

T , TEMPERATURE ( P )

Figure 26: PERMEABILITY vs TEMPERATURE FOR 150 MESH SAND

. RUN /I9

-61-

Page 72: The Design and Construction of an Absolute Permeameter to

2.9

2.8

' 2.7 h

P u

> k 2.61 -I - m w I w U n . ' 2.s Y

2.4(

I I I I I I r

HEATING

COOLING- - - -

T TEMPERATURE ('F)

-62-

Page 73: The Design and Construction of an Absolute Permeameter to

t

2.70

2.60

I I I I I I I

HEATING

COOLING - - - -

* c d m 2 5 .2.40

- W n

x 2.30 -

2.20 -

2.10 -

I I I I 1 . o 60

I I 100 160 200 250 300 360 ’

-63-

Page 74: The Design and Construction of an Absolute Permeameter to

- 6.C

5.f

5.0

4.5

4.0

3.5

3.0

2.5

2 .o

1.5

. 1.0

0.5

0.0 0

I I I I I I I I . .

WATER FLOW

PI - 2000 psig 200 psig

I- K

. ..-

RUN N0.8

n z w

RUN NO.10

L

MESH 150-120

w

RUN N0.9

-v) I-

n MESH 200-170

z W

RUN NO. I!

I I I I I I I I

100 200 300 T (OF)

0 100 m 300 400

T (OF)

Figure 29 - PERMEABILITY VS TEMPERATURE FOR RUNS 8, 9 , '10, and 11

-64-

Page 75: The Design and Construction of an Absolute Permeameter to

6. Conclusions

The a b s o l u t e permeabi l i ty t o d i s t i l l e d water of Ottawa s i l i c a sand

was n o t dependent upon t h e temperature l e v e l from 70°F t o 300°F. This

r e s u l t does not agree wi th much of t h e d a t a i n t h e l i t e r a t u r e . It is

bel ieved t h a t some of t h e work done a t Stanford Univers i ty i n recen t

yea rs experienced mechanical problems t h a t r e s u l t e d i n flow rate dependent

permeabi l i ty measurements which were i n t e r p r e t e d as temperature dependent

r e s u l t s . A s e n s i t i v i t y a n a l y s i s of t h e apparatus helped i n i d e n t i f y i n g

sources of t roub le . These problems were addressed and t h e performance

of t h e apparatus improved.

I n o r d e r t o expand t h e s e conclus ions it is recommended t h a t f u t u r e

experiments be conducted, These experiments could s tudy a range of consol i-

dated sandstones , f l u i d s , and conf ining and pore p ressures . Then a s tudy

of t h e e f f e c t of temperature l e v e l on r e l a t i v e permeabi l i ty should be

resumed.

-65-

Page 76: The Design and Construction of an Absolute Permeameter to

7. References

Amyx, J. W . , Bass, D. M . , J r . , and Whiting, R. L. Petroleum Reservoir Engi- nee r ing , McGraw-Hill Book Company, Inc . , New York, 1960.

Aruna, M. "The Ef fec t of Temperature and P res su re on Absolute Permeabil i ty of Sandstones," Ph.D. D i s s e r t a t i o n , S tanford Un ive r s i ty , 1976.

Cass6, F. J. "The E f f e c t of Temperature and Confining P res su re on F lu id Flow P r o p e r t i e s of Consolidated Rocks," Ph.D. D i s s e r t a t i o n , S tanford Un ive r s i ty , 1974.

Danesh, A. , Ehlig-Economides, C . , and Ramey; H. J . , Jr., "The Effect of Temperature Level on Absolute Permeabi l i ty of Unconsolidated S i l ica

Gobran, B. D . , S u f i , S. H . , Sanyal , S. K . , and Brigham, W. E. "Effec ts of Temperature on Permeabi l i ty ," F o s s i l Energy, 1980 Annual Heavy O i l / E O R Cont rac tor Presentat ions- Proc. , J u l y 22-24, 1980.

Keenan, J. H . , Keyes, G . F . , H i l l , G. P . , and Moore, G. J. Steam Tables, English U n i t s , Wiley and Sons, New York, 1969.

Kre i th , F. P r i n c i p l e s of Heat Trans fe r , Third Ed i t ion , Harper and Row Pub l i she r s , New York, 1973.

Muskat, M. Flow of Homogeneous F l u i d s Through Porous Media, McGraw-Hill Book Company, Inc . , 1937.

Sanyal , S . K . , Marsden, S. S . , Jr . , and Ramey, H. J . , Jr. "Effect of Temper- a t u r e on Pe t rophys ica l P r o p e r t i e s of Reservoir Rocks," 49th Annual F a l l Meeting, Houston, Texas, Socie ty of Petroleum Engineers No. 4898, October 1974.

Sydansk, R. D. "Aqueous Permeabi l i ty Var i a t ion w i t h Temperature i n Sandstone," Jour . P e t . Tech. August 1980, 1329-1330.

Thermodynamics and Transport P r o p e r t i e s of Steam, American Socie ty of Mechanical Engineers , New York, 1967.

Weinbrandt, R. M . , Ramey, H. J . , Jr. , and Cass6, F. J. "Relative and Absolute Permeabi l i ty of Sandstones , I ' Socie ty of Petroleum Engineering Jou rna l , (October, 1975), 376-384.

-66-

Page 77: The Design and Construction of an Absolute Permeameter to

8. Tables of Data

- Table 6 - k, and ET f o r Runs 8 , 9, LO, and 11. (Darcies)

Run

8

9

10

11

Room 70°F-72"F

5.033/0.134

4.869/0.133

4.835/0.124

5.201/0.144

5.032/0.131

5.086/0.145

2.764/0.073

2.642/0.066

2.666/0.067

2.671/0.067

2.653/0.067

2.612/0.067

150

4.947/0.188

4.851/0.119

4.828/0.115

4.841/0.129

5.180/0.133

5.112/0.128

5.034/0.127

5.089/0.136

2.702/0.059

2.695/0.063

2.658/0.059

2.680/0.059

2.652/0.055

2.649/0.054

2.610/0.054

2.634/0.054

250

4.906/0.148

4.868/0.151

4.883/0.152

4.866/0.147

5.094/0.160

5.101/0.166

5.081/0.163

5.058/0.163

2.691/0.059

2.699/0.059

2.739/0.060

2.769/0.063

2.652/0.060

2.647/0.058

2.635/0.061

2.646/0.062

3 50

+ 4.889/0.175

=4 5.094/0.199

--i 5.113/0.193

-4 2.694/0.066

2.700/0.074 1 2.663/0.068

_7 2.666/0.071

-67-

Page 78: The Design and Construction of an Absolute Permeameter to

Table 7

Run no. 8 : L = 16.350 cm; A = 5.293 cm2; Mesh = 120-150; p = 2000 p s i g ; C

- p = 200 ps ig

529 I 53 0 53 1 53 2 533 53 4

53 6 537 538

I 1

I t

II

I t

0.517 0.544 0.4155 0.493 0.487 0.349 0.378 0.432 0.435 0.394

I1

11

I 1

11

11

t l

I I

11

11

I t

43.80 4839 40.90 4925 54.10 4874 37.70 300 7 5 4855 37.85 , 4896 52 .70 4906 49.05 42.60 4903 42.40 4893 57.05 250 73 4849

I 1 I t

II I 1

I t t l

I t

I 1

I t

I t

t l 11

I 1 11

535 ; II I I 4867-2 I 1 I 1

t I I t I 1

1 1

-68-

Page 79: The Design and Construction of an Absolute Permeameter to

T a b l e 7,

Run no. 8 : L = 16 .350 cm; A = 5 .293 em2 ; Mesh = 120- 150 , pc = 2000 p s i g ;

6 = 200 p s i g

I 5 7 1 I I t 10 .485 i I 46 .20 I i 4888 I L

57 2 57 3 57 4 57 5 57 6 57 7 57 8 57 9 58 0

I 1 11

11 I 1

I 1 I 1

I 1 11

I 1 11 11 11

I 1 11 11 I 1

1 1 ' 11 11 I 1

1 1 11 11 1 1

I I 1 1 I 1

0.485 0 ,547 0.547 0 .400 0.399 0.528 0 .522 0.307 0.306

46.10 I 4899 41 .10 1 4872 40 .90 i 4896 46 .15 3 00 77 4887 4 6 . 2 0 4894 35 .10 48 68 35.40 4882 60.10 48 90 60.00 4914

11 I 1

I 1 11

11 11

1

I 1

-63-

Page 80: The Design and Construction of an Absolute Permeameter to

Table 7

Run no. 8: L = 16.350; A = 5.293 cm2 ; Mesh = 120-150; = 2000 p s i g ; PC - p = 200 p s i g

-70-

Page 81: The Design and Construction of an Absolute Permeameter to

Table 8

Run no. 9: L = 16.118 cm; A = 5.293 cm2 ; Mesh = 120-150; p = 2000 p s i g C

- D = 200 D s i l r

-

-71-

Page 82: The Design and Construction of an Absolute Permeameter to

Table 8

Run no 9 : L = 16.118 cm; A = 5.293 cm2 ; Mesh = 120-150; p = 2000 p s i g ; C

- p = 200 p s i g

-72-

Page 83: The Design and Construction of an Absolute Permeameter to

Table 8

~

Number of

69 0 6 9 1 692 693 694 695 696 697 9 / 2 0 / 8 1 698 699 700 701

II

11

1 1

1 1

II

11

1 1

11

II

I 1

-7 3-

Page 84: The Design and Construction of an Absolute Permeameter to

Table 9

-74-

Page 85: The Design and Construction of an Absolute Permeameter to

Table '9

Run no. l o : L = 16.303 cm; A = 5.293 a n 2 ; Mesh = 170-200 ; p, = p s i g ;

, ' 783 0.510 7 8 2698 65 .00 65.50 2700 48.20 2702 48.45 2686 58.95 2698

1 1

1 1

1 1

11

1 1

11

1 1 11

I t 1 1

1 1 11

I 1 1 1

784 785 786 787

11

11

I t

11

0.509 0.691 0.687 0 .568

c

-75-

Page 86: The Design and Construction of an Absolute Permeameter to

Table 9

Run no. 10: L = 16.303 cm; A = 5.293 a n 2 ; Mesh = 170-200; p, = 2000 p s i g

p = 200 p s i g

-76-

Page 87: The Design and Construction of an Absolute Permeameter to

Table 10

Run no. 11: L = 15 .991 cm; A = 5.293 cm2; Mesh = 170-200; = 2000 p s i g PC - p = 200 p s i g

Number of' measure- Date ''core Temp. V t Run

813 I 1 0.955 814 0.953 815

I 1

11

1 1 11

I 1 I 1

I 1 1 1

V I . O J 2646 2648

8 9 - 9 5 2656

1 1

I 1 1 90.10

I 1 I 1

11 I 1

2653 2648

48.50 250 7 4 2656 48.75 2659

1 1

11

II

1 76.70

I 1 I 1

1 1 11 1 2648 t I

I 1 11

II I 1 I 2666 I 2656 11 61.60 I

1 1

1 1

1 1

II

I 1

I 61.60 I 1 11

1 1

2643 51.80 73 2643 45.50 300 7 6 2666

2664 49 - 70 2654

1 46.25 11 I 1

1 1 II

11

13 I 45.60

1 1 1 1

I 1

2638 2654 74 .70 152

-77-

Page 88: The Design and Construction of an Absolute Permeameter to

Table 10

-7 8-

Page 89: The Design and Construction of an Absolute Permeameter to

Table 10

Run no. 11: L = 15.991 cm ; A = 5.293 cm2 ; Mesh = 170-200; = 2000 p s i g ; PC

- p = 200 p s i g .

-79-