the cycles

Upload: jna-jamuna

Post on 14-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 The Cycles

    1/6

    The carbon cycle is the way carbon is stored and replaced onEarth. Some of the main events take

    hundreds of millions of years, others happen annually.

    The main ways that carbon gets into the carbon cycle are volcanoes, and the burning of fossil fuels like

    coal and gas. Through most of history, volcanoes were the biggest source of carbon to the carbon cycle,

    but in the last hundred years, people burning fossil fuels have added much more CO 2 to the air thanvolcanoes have, by about a hundred times. That is, for every ton of CO 2 added to the air by volcanoes,

    about 100 tons of CO2 have been added to the air by people.

    The main way carbon gets taken out of the atmosphere is byphotosynthesisby living organisms. Some

    of this gets released as they die and decompose, but a proportion gets buried in sediment. This is shown

    in the diagram. Sediment turns torock, and it is the carbonate rocks likelimestonewhich contain the now-

    solid CO2. Some of the carbon from plants also becomes part of the soil, where it can stay for a long time

    before decomposing.

    Another process takes CO2 out of the air.Weatheringby rain washes out CO2 in the form of

    dilutecarbonic acid. This reacts with rock, helping to dissolve and destroy it. This also ends up as

    sediment.

    "Weathering is a large consumer of the atmospheric carbon dioxide essential for dissolving

    rocks".[1]

    Some CO2 is also dissolved in the ocean. Right now, the oceans are taking in more CO 2 than they

    are releasing, every year. However, this is making the oceans more acidic.

    The store of carbon insedimentary rockis far greater than the CO2 in the atmosphere (this is not

    shown in the diagram). Eventually it returns to the air as oceanic plates subduct in plate tectonics. At

    the margins of plate boundaries (and some other places) volcanoes form and spew out CO 2. This

    completes the cycle.

    http://simple.wikipedia.org/wiki/Earthhttp://simple.wikipedia.org/wiki/Earthhttp://simple.wikipedia.org/wiki/Earthhttp://simple.wikipedia.org/wiki/Photosynthesishttp://simple.wikipedia.org/wiki/Photosynthesishttp://simple.wikipedia.org/wiki/Photosynthesishttp://simple.wikipedia.org/wiki/Sedimenthttp://simple.wikipedia.org/wiki/Sedimenthttp://simple.wikipedia.org/wiki/Sedimenthttp://simple.wikipedia.org/wiki/Rock_(geology)http://simple.wikipedia.org/wiki/Rock_(geology)http://simple.wikipedia.org/wiki/Rock_(geology)http://simple.wikipedia.org/wiki/Limestonehttp://simple.wikipedia.org/wiki/Limestonehttp://simple.wikipedia.org/wiki/Limestonehttp://simple.wikipedia.org/wiki/Weatheringhttp://simple.wikipedia.org/wiki/Weatheringhttp://simple.wikipedia.org/wiki/Weatheringhttp://simple.wikipedia.org/w/index.php?title=Carbonic_acid&action=edit&redlink=1http://simple.wikipedia.org/w/index.php?title=Carbonic_acid&action=edit&redlink=1http://simple.wikipedia.org/w/index.php?title=Carbonic_acid&action=edit&redlink=1http://simple.wikipedia.org/wiki/Carbon_cycle#cite_note-Andel-1http://simple.wikipedia.org/wiki/Carbon_cycle#cite_note-Andel-1http://simple.wikipedia.org/wiki/Carbon_cycle#cite_note-Andel-1http://simple.wikipedia.org/wiki/Sedimentary_rockhttp://simple.wikipedia.org/wiki/Sedimentary_rockhttp://simple.wikipedia.org/wiki/Sedimentary_rockhttp://simple.wikipedia.org/wiki/Plate_tectonicshttp://simple.wikipedia.org/wiki/Plate_tectonicshttp://simple.wikipedia.org/wiki/Plate_tectonicshttp://simple.wikipedia.org/wiki/File:Carbon_cycle-cute_diagram.jpeghttp://simple.wikipedia.org/wiki/Plate_tectonicshttp://simple.wikipedia.org/wiki/Sedimentary_rockhttp://simple.wikipedia.org/wiki/Carbon_cycle#cite_note-Andel-1http://simple.wikipedia.org/w/index.php?title=Carbonic_acid&action=edit&redlink=1http://simple.wikipedia.org/wiki/Weatheringhttp://simple.wikipedia.org/wiki/Limestonehttp://simple.wikipedia.org/wiki/Rock_(geology)http://simple.wikipedia.org/wiki/Sedimenthttp://simple.wikipedia.org/wiki/Photosynthesishttp://simple.wikipedia.org/wiki/Earth
  • 7/29/2019 The Cycles

    2/6

    The Carbon Cycle is a process wherecarbonisrecycledthrough theecosystem.

    Theconcentrationof carbon inlivingmatter(18%) is almost 100 times greater than its concentration

    in the earth (0.19%). So living things extract carbon from their nonlivingenvironment. For life to

    continue, this carbon must be recycled.[2]

    See the diagram for a detailed look at the carbon cycle. An

    example of a route carbon takes in thiscycleiscarbon dioxidein theatmosphereis absorbed

    byplantsand used inphotosynthesisto producesugarswhich the plant uses forenergy. When theplant dies, it decomposes and the carbon stored in the plant will, over millions of years, form

    intocoal(afossil fuel). The coal isburntand gives off carbon dioxide which goes into the

    atmosphere. Also the carbon cycle has to relate to quantum mechanics due to the restoration of

    water

    At the moment, the carbon cycle, and how human activity is affecting it, is a big topic in international

    news. Fossil fuels are anon-renewable resourcewhich means that once we've burned them all, there

    is not any more, and our use of fossil fuels has nearly doubled every 20 years since 1900 .[3]

    Also, the

    burning of fossil fuels producespollutionwhich contributes to thegreenhouse effectandacid rain.

    The sulfur cycle is the collection of processes by which sulfur moves to and from minerals (including the

    waterways) and living systems. Suchbiogeochemical cyclesare important ingeologybecause they affect

    many minerals. Biogeochemical cycles are also important for life becausesulfuris anessential element,

    being a constituent of manyproteinsandcofactors.[1]

    Steps of the sulfur cycle are:

    Mineralization oforganic sulfurinto inorganic forms, such ashydrogen sulfide(H2S), elemental sulfur,

    as well assulfide minerals.

    http://simple.wikipedia.org/wiki/Carbonhttp://simple.wikipedia.org/wiki/Carbonhttp://simple.wikipedia.org/wiki/Carbonhttp://simple.wikipedia.org/wiki/Recyclehttp://simple.wikipedia.org/wiki/Recyclehttp://simple.wikipedia.org/wiki/Recyclehttp://simple.wikipedia.org/wiki/Ecosystemhttp://simple.wikipedia.org/wiki/Ecosystemhttp://simple.wikipedia.org/wiki/Ecosystemhttp://simple.wikipedia.org/wiki/Concentrationhttp://simple.wikipedia.org/wiki/Concentrationhttp://simple.wikipedia.org/wiki/Concentrationhttp://simple.wikipedia.org/wiki/Lifehttp://simple.wikipedia.org/wiki/Lifehttp://simple.wikipedia.org/wiki/Matterhttp://simple.wikipedia.org/wiki/Matterhttp://simple.wikipedia.org/wiki/Matterhttp://simple.wikipedia.org/wiki/Environmenthttp://simple.wikipedia.org/wiki/Environmenthttp://simple.wikipedia.org/wiki/Environmenthttp://simple.wikipedia.org/wiki/Carbon_cycle#cite_note-2http://simple.wikipedia.org/wiki/Carbon_cycle#cite_note-2http://simple.wikipedia.org/wiki/Carbon_cycle#cite_note-2http://simple.wikipedia.org/wiki/Cyclehttp://simple.wikipedia.org/wiki/Cyclehttp://simple.wikipedia.org/wiki/Cyclehttp://simple.wikipedia.org/wiki/Carbon_dioxidehttp://simple.wikipedia.org/wiki/Carbon_dioxidehttp://simple.wikipedia.org/wiki/Carbon_dioxidehttp://simple.wikipedia.org/wiki/Atmospherehttp://simple.wikipedia.org/wiki/Atmospherehttp://simple.wikipedia.org/wiki/Atmospherehttp://simple.wikipedia.org/wiki/Planthttp://simple.wikipedia.org/wiki/Planthttp://simple.wikipedia.org/wiki/Planthttp://simple.wikipedia.org/wiki/Photosynthesishttp://simple.wikipedia.org/wiki/Photosynthesishttp://simple.wikipedia.org/wiki/Photosynthesishttp://simple.wikipedia.org/wiki/Sugarhttp://simple.wikipedia.org/wiki/Sugarhttp://simple.wikipedia.org/wiki/Sugarhttp://simple.wikipedia.org/wiki/Energyhttp://simple.wikipedia.org/wiki/Energyhttp://simple.wikipedia.org/wiki/Energyhttp://simple.wikipedia.org/wiki/Coalhttp://simple.wikipedia.org/wiki/Coalhttp://simple.wikipedia.org/wiki/Coalhttp://simple.wikipedia.org/wiki/Fossil_fuelhttp://simple.wikipedia.org/wiki/Fossil_fuelhttp://simple.wikipedia.org/wiki/Fossil_fuelhttp://simple.wikipedia.org/wiki/Combustionhttp://simple.wikipedia.org/wiki/Combustionhttp://simple.wikipedia.org/wiki/Combustionhttp://simple.wikipedia.org/wiki/Non-renewable_resourceshttp://simple.wikipedia.org/wiki/Non-renewable_resourceshttp://simple.wikipedia.org/wiki/Non-renewable_resourceshttp://simple.wikipedia.org/wiki/Carbon_cycle#cite_note-3http://simple.wikipedia.org/wiki/Carbon_cycle#cite_note-3http://simple.wikipedia.org/wiki/Carbon_cycle#cite_note-3http://simple.wikipedia.org/wiki/Pollutionhttp://simple.wikipedia.org/wiki/Pollutionhttp://simple.wikipedia.org/wiki/Pollutionhttp://simple.wikipedia.org/wiki/Greenhouse_effecthttp://simple.wikipedia.org/wiki/Greenhouse_effecthttp://simple.wikipedia.org/wiki/Greenhouse_effecthttp://simple.wikipedia.org/wiki/Acid_rainhttp://simple.wikipedia.org/wiki/Acid_rainhttp://simple.wikipedia.org/wiki/Acid_rainhttp://en.wikipedia.org/wiki/Biogeochemical_cyclehttp://en.wikipedia.org/wiki/Biogeochemical_cyclehttp://en.wikipedia.org/wiki/Biogeochemical_cyclehttp://en.wikipedia.org/wiki/Geologyhttp://en.wikipedia.org/wiki/Geologyhttp://en.wikipedia.org/wiki/Geologyhttp://en.wikipedia.org/wiki/Sulfurhttp://en.wikipedia.org/wiki/Sulfurhttp://en.wikipedia.org/wiki/Sulfurhttp://en.wikipedia.org/wiki/Essential_elementhttp://en.wikipedia.org/wiki/Essential_elementhttp://en.wikipedia.org/wiki/Essential_elementhttp://en.wikipedia.org/wiki/Proteinhttp://en.wikipedia.org/wiki/Proteinhttp://en.wikipedia.org/wiki/Proteinhttp://en.wikipedia.org/wiki/Cofactor_(biochemistry)http://en.wikipedia.org/wiki/Cofactor_(biochemistry)http://en.wikipedia.org/wiki/Sulfur_cycle#cite_note-Brock-1http://en.wikipedia.org/wiki/Sulfur_cycle#cite_note-Brock-1http://en.wikipedia.org/wiki/Sulfur_cycle#cite_note-Brock-1http://en.wikipedia.org/wiki/Organosulfur_compoundshttp://en.wikipedia.org/wiki/Organosulfur_compoundshttp://en.wikipedia.org/wiki/Organosulfur_compoundshttp://en.wikipedia.org/wiki/Hydrogen_sulfidehttp://en.wikipedia.org/wiki/Hydrogen_sulfidehttp://en.wikipedia.org/wiki/Hydrogen_sulfidehttp://en.wikipedia.org/wiki/Sulfide_mineralshttp://en.wikipedia.org/wiki/Sulfide_mineralshttp://en.wikipedia.org/wiki/Sulfide_mineralshttp://en.wikipedia.org/wiki/File:Sulfur_cycle_-_English.jpghttp://en.wikipedia.org/wiki/Sulfide_mineralshttp://en.wikipedia.org/wiki/Hydrogen_sulfidehttp://en.wikipedia.org/wiki/Organosulfur_compoundshttp://en.wikipedia.org/wiki/Sulfur_cycle#cite_note-Brock-1http://en.wikipedia.org/wiki/Cofactor_(biochemistry)http://en.wikipedia.org/wiki/Proteinhttp://en.wikipedia.org/wiki/Essential_elementhttp://en.wikipedia.org/wiki/Sulfurhttp://en.wikipedia.org/wiki/Geologyhttp://en.wikipedia.org/wiki/Biogeochemical_cyclehttp://simple.wikipedia.org/wiki/Acid_rainhttp://simple.wikipedia.org/wiki/Greenhouse_effecthttp://simple.wikipedia.org/wiki/Pollutionhttp://simple.wikipedia.org/wiki/Carbon_cycle#cite_note-3http://simple.wikipedia.org/wiki/Non-renewable_resourceshttp://simple.wikipedia.org/wiki/Combustionhttp://simple.wikipedia.org/wiki/Fossil_fuelhttp://simple.wikipedia.org/wiki/Coalhttp://simple.wikipedia.org/wiki/Energyhttp://simple.wikipedia.org/wiki/Sugarhttp://simple.wikipedia.org/wiki/Photosynthesishttp://simple.wikipedia.org/wiki/Planthttp://simple.wikipedia.org/wiki/Atmospherehttp://simple.wikipedia.org/wiki/Carbon_dioxidehttp://simple.wikipedia.org/wiki/Cyclehttp://simple.wikipedia.org/wiki/Carbon_cycle#cite_note-2http://simple.wikipedia.org/wiki/Environmenthttp://simple.wikipedia.org/wiki/Matterhttp://simple.wikipedia.org/wiki/Lifehttp://simple.wikipedia.org/wiki/Concentrationhttp://simple.wikipedia.org/wiki/Ecosystemhttp://simple.wikipedia.org/wiki/Recyclehttp://simple.wikipedia.org/wiki/Carbon
  • 7/29/2019 The Cycles

    3/6

    Oxidationof hydrogen sulfide,sulfide, and elemental sulfur (S) tosulfate(SO42

    ).

    Reduction of sulfate to sulfide.

    Incorporation of sulfide into organic compounds (including metal-containing derivatives).

    These are often termed as follows:

    Assimilative sulfate reduction (see alsosulfur assimilation) in which sulfate (SO42) is reduced

    byplants,fungiand variousprokaryotes. The oxidation states of sulfur are +6 in sulfate and 2 in

    RSH.

    Desulfurization in which organic molecules containing sulfur can be desulfurized, producing

    hydrogen sulfide gas (H2S, oxidation state = 2). An analogous process for organic nitrogen

    compounds is deamination.

    Oxidation of hydrogen sulfide produces elemental sulfur (S8), oxidation state = 0. This reaction

    occurs in thephotosyntheticgreen and purple sulfurbacteriaand somechemolithotrophs. Often

    the elemental sulfur is stored aspolysulfides.Oxidation of elemental sulfurby sulfur oxidizers produces sulfate.

    Dissimilative sulfur reduction in which elemental sulfur can be reduced to hydrogen sulfide.

    Dissimilative sulfate reduction in whichsulfate reducersgenerate hydrogen sulfide from sulfate.

    Sulfur cycle

    Part IV of "Matter cycles": The sulfur cycle

    Sulphuris one of the components that make up proteins and vitamins. Proteins consist of amino acidsthat contain sulphur atoms. Sulphur is important for the functioning of proteins and enzymes inplants, and in animals that depend upon plants for sulphur. Plants absorb sulphur when it is dissolvedin water. Animals consume these plants, so that they take up enough sulphur to maintain their health.

    Most of the earth's sulphur is tied up in rocks and salts or buried deep in the ocean in oceanicsediments. Sulphur can also be found in the atmosphere. It enters the atmosphere through bothnatural and human sources. Natural recourses can be for instance volcanic eruptions, bacterialprocesses, evaporation from water, or decaying organisms. When sulphur enters the atmospherethrough human activity, this is mainly a consequence of industrial processes where sulphur dioxide(SO2) and hydrogen sulphide (H2S) gases are emitted on a wide scale.

    When sulphur dioxide enters the atmosphere it will react with oxygen to produce sulphur trioxide gas(SO3), or with other chemicals in the atmosphere, to produce sulphur salts. Sulphur dioxide may also

    react with water to produce sulphuric acid (H2SO4). Sulphuric acid may also be produced fromdemethylsulphide, which is emitted to the atmosphere by plankton species.All these particles will settle back onto earth, or react with rain and fall back onto earth asaciddeposition. The particles will than be absorbed by plants again and are released back into theatmosphere, so that the sulphur cycle will start over again.

    http://en.wikipedia.org/wiki/Oxidationhttp://en.wikipedia.org/wiki/Oxidationhttp://en.wikipedia.org/wiki/Sulfidehttp://en.wikipedia.org/wiki/Sulfidehttp://en.wikipedia.org/wiki/Sulfidehttp://en.wikipedia.org/wiki/Sulfatehttp://en.wikipedia.org/wiki/Sulfatehttp://en.wikipedia.org/wiki/Sulfatehttp://en.wikipedia.org/wiki/Sulfur_assimilationhttp://en.wikipedia.org/wiki/Sulfur_assimilationhttp://en.wikipedia.org/wiki/Sulfur_assimilationhttp://en.wikipedia.org/wiki/Planthttp://en.wikipedia.org/wiki/Planthttp://en.wikipedia.org/wiki/Planthttp://en.wikipedia.org/wiki/Fungihttp://en.wikipedia.org/wiki/Fungihttp://en.wikipedia.org/wiki/Fungihttp://en.wikipedia.org/wiki/Prokaryotehttp://en.wikipedia.org/wiki/Prokaryotehttp://en.wikipedia.org/wiki/Prokaryotehttp://en.wikipedia.org/wiki/Photosynthesishttp://en.wikipedia.org/wiki/Photosynthesishttp://en.wikipedia.org/wiki/Photosynthesishttp://en.wikipedia.org/wiki/Bacteriahttp://en.wikipedia.org/wiki/Bacteriahttp://en.wikipedia.org/wiki/Bacteriahttp://en.wikipedia.org/wiki/Chemolithotrophhttp://en.wikipedia.org/wiki/Chemolithotrophhttp://en.wikipedia.org/wiki/Chemolithotrophhttp://en.wikipedia.org/wiki/Polysulfidehttp://en.wikipedia.org/wiki/Polysulfidehttp://en.wikipedia.org/wiki/Polysulfidehttp://en.wikipedia.org/wiki/Sulfate-reducing_bacteriahttp://en.wikipedia.org/wiki/Sulfate-reducing_bacteriahttp://en.wikipedia.org/wiki/Sulfate-reducing_bacteriahttp://www.lenntech.com/Periodic-chart-elements/S-en.htmhttp://www.lenntech.com/Periodic-chart-elements/S-en.htmhttp://www.lenntech.com/acid-deposition.htmhttp://www.lenntech.com/acid-deposition.htmhttp://www.lenntech.com/acid-deposition.htmhttp://www.lenntech.com/acid-deposition.htmhttp://www.lenntech.com/acid-deposition.htmhttp://www.lenntech.com/acid-deposition.htmhttp://www.lenntech.com/Periodic-chart-elements/S-en.htmhttp://en.wikipedia.org/wiki/Sulfate-reducing_bacteriahttp://en.wikipedia.org/wiki/Polysulfidehttp://en.wikipedia.org/wiki/Chemolithotrophhttp://en.wikipedia.org/wiki/Bacteriahttp://en.wikipedia.org/wiki/Photosynthesishttp://en.wikipedia.org/wiki/Prokaryotehttp://en.wikipedia.org/wiki/Fungihttp://en.wikipedia.org/wiki/Planthttp://en.wikipedia.org/wiki/Sulfur_assimilationhttp://en.wikipedia.org/wiki/Sulfatehttp://en.wikipedia.org/wiki/Sulfidehttp://en.wikipedia.org/wiki/Oxidation
  • 7/29/2019 The Cycles

    4/6

    A schematic representation of the sulphur cycle:

    Read more:http://www.lenntech.com/sulphur-cycle.htm#ixzz2Zgtv4Los

    http://www.lenntech.com/sulphur-cycle.htm#ixzz2Zgtv4Loshttp://www.lenntech.com/sulphur-cycle.htm#ixzz2Zgtv4Loshttp://www.lenntech.com/sulphur-cycle.htm#ixzz2Zgtv4Loshttp://www.lenntech.com/sulphur-cycle.htm#ixzz2Zgtv4Los
  • 7/29/2019 The Cycles

    5/6

    Click for larger image

    Phosphorus Cycle

    Phosphorus enters the environment from rocks

    or deposits laid down on the earth many yearsago. The phosphate rock is commercially

    available form is called apatite. Other deposits

    may be from fossilized bone or bird droppingscalled guano. Weathering and erosion of rocksgradually releases phosphorus as phosphate ions

    which are soluble in water. Land plants need

    phosphate as a fertilizer or nutrient.

    Phosphate is incorporated into many molecules

    essential for life such as ATP, adenosine

    triphosphate, which is important in the storageand use of energy. It is also in the backbone of

    DNA and RNA which is involved with coding

    for genetics.

    When plant materials and waste products decay

    through bacterial action, the phosphate isreleased and returned to the environment for

    reuse.

    Much of the phosphate eventually is washed intothe water from erosion and leaching. Again

    water plants and algae utilize the phosphate as a

    nutrient. Studies have shown that phosphate is

    the limiting agent in the growth of plants andalgae. If not enough is present, the plants are

    slow growing or stunted. If too much phosphate

    is present excess growth may occur, particularlyin algae.

    A large percentage of the phosphate in water isprecipitated from the water as iron phosphate

    which is insoluble. If the phosphate is in shallow

    sediments, it may be readily recycled back into

    the water for further reuse. In deeper sediments

    in water, it is available for use only as part of ageneral uplifting of rock formations for the cycle

    to repeat itself.

    http://www.elmhurst.edu/~chm/vchembook/http://www.elmhurst.edu/~chm/vchembook/http://www.elmhurst.edu/~chm/vchembook/
  • 7/29/2019 The Cycles

    6/6

    Click for larger image

    Human Inputs to the Phosphorus Cycle:

    Human influences on the phosphate cycle come

    mainly from the introduction and use ofcommercial synthetic fertilizers. The phosphate

    is obtained through mining of certain deposits ofcalcium phosphate called apatite. Huge quantitiesof sulfuric acid are used in the conversion of the

    phosphate rock into a fertilizer product called

    "super phosphate".

    Plants may not be able to utilize all of the

    phosphate fertilizer applied, as a consequence,much of it is lost form the land through the water

    run-off. The phosphate in the water is eventually

    precipitated as sediments at the bottom of thebody of water. In certain lakes and ponds this

    may be redissolved and recyled as a problem

    nutrient.

    Animal wastes or manure may also be applied to

    the land as fertilizer. If misapplied on frozen

    ground during the winter, much of it may lost asrun-off during the spring thaw. In certain area

    very large feed lots of animals, may result in

    excessive run-off of phosphate and nitrate into

    streams.

    Other human sources of phosphate are in the out

    flows from municipal sewage treatment plants.Without an expensive tertiary treatment, the

    phosphate in sewage is not removed during

    various treatment operations. Again an extraamount of phosphate enters the water.

    http://www.elmhurst.edu/~chm/vchembook/http://www.elmhurst.edu/~chm/vchembook/http://www.elmhurst.edu/~chm/vchembook/