the cohomology of so(n) - cornell universitypi.math.cornell.edu/~hatcher/so/so(n).pdfthe cohomology...

10
The Cohomology of SO(n) Computer-generated pictures created by M.A. Agosto and J.J. Perez Commentary by Allen Hatcher The special orthogonal group SO(n) is high on the list of important topological spaces, yet its homology and cohomology exhibit some surprising subtleties. The complications arise from the presence of torsion in the integer homology and cohomology, but fortunately the torsion consists just of elements of order 2. Both the integer cohomology ring modulo torsion and the mod 2 cohomology ring have structures that are easy to describe (see Section 3D of my book): (1) H (SO(n); Z) modulo torsion is the exterior algebra on generators a 3 ,a 7 , ··· ,a 4k1 for n =2k + 1 and a 3 ,a 7 , ··· ,a 4k1 ,a 2k+1 for n =2k + 2. Here subscripts denote degrees, so a i H i and a 2k+1 H 2k+1 . (2) H (SO(n); Z 2 ) is the polynomial algebra on generators b i of odd degree i<n, trun- cated by the relations b p i i = 0 where p i is the smallest power of 2 such that b p i i has degree n. The subtleties arise when one tries to describe the actual integral cohomology ring itself. In principle this follows from a calculation of mod 2 Bockstein homomorphisms, which is not difficult and is described in Example 3E.7 of my book. The cases of SO(5) and SO(7) are worked out in detail there. Here’s what the Bocksteins look like for SO(7): The numbers across the top of the figure denote degrees. Each dot in the ith column represents a basis element for H i (SO(7); Z 2 ) viewed as a vector space over Z 2 , with the label on the dot telling which class the dot represents. For example the dot labeled 234 is the product b 2 b 3 b 4 , where the relations b 2i = b 2 i allow the b i ’s with even subscripts to be

Upload: others

Post on 12-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Cohomology of SO(n) - Cornell Universitypi.math.cornell.edu/~hatcher/SO/SO(n).pdfThe Cohomology of SO(n) Computer-generated pictures created by M.A.Agosto and J.J.Perez Commentary

The Cohomology of SO(n)

Computer-generated pictures created by M.A.Agosto and J.J. Perez

Commentary by Allen Hatcher

The special orthogonal group SO(n) is high on the list of important topological spaces,

yet its homology and cohomology exhibit some surprising subtleties. The complications

arise from the presence of torsion in the integer homology and cohomology, but fortunately

the torsion consists just of elements of order 2. Both the integer cohomology ring modulo

torsion and the mod 2 cohomology ring have structures that are easy to describe (see

Section 3D of my book):

(1) H∗(SO(n); Z) modulo torsion is the exterior algebra on generators a3, a7, · · · , a4k−1

for n = 2k + 1 and a3, a7, · · · , a4k−1, a′

2k+1 for n = 2k + 2. Here subscripts denote degrees,

so ai ∈ Hi and a′

2k+1 ∈ H2k+1.

(2) H∗(SO(n); Z2) is the polynomial algebra on generators bi of odd degree i < n, trun-

cated by the relations bpi

i = 0 where pi is the smallest power of 2 such that bpi

i has degree

≥ n.

The subtleties arise when one tries to describe the actual integral cohomology ring itself.

In principle this follows from a calculation of mod 2 Bockstein homomorphisms, which is

not difficult and is described in Example 3E.7 of my book. The cases of SO(5) and SO(7)

are worked out in detail there. Here’s what the Bocksteins look like for SO(7):

The numbers across the top of the figure denote degrees. Each dot in the ith column

represents a basis element for Hi(SO(7); Z2) viewed as a vector space over Z2, with the

label on the dot telling which class the dot represents. For example the dot labeled 234 is

the product b2b3b4, where the relations b2i = b2

i allow the bi’s with even subscripts to be

Page 2: The Cohomology of SO(n) - Cornell Universitypi.math.cornell.edu/~hatcher/SO/SO(n).pdfThe Cohomology of SO(n) Computer-generated pictures created by M.A.Agosto and J.J.Perez Commentary

expressed in terms of those with odd subscripts, the generators in statement (2) above. The

line segments in the diagram indicate the nonzero Bocksteins. These are homomorphisms

β : Hi(SO(7); Z2) → Hi+1(SO(7); Z2) satisying β2 = 0. The nontorsion in H∗(SO(7); Z)

corresponds to Ker β/Im β, while the torsion elements correspond to Im β. For example,

the nontorsion element a3 corresponds to b3 + b1b2 (these are Z2 classes so signs don’t

matter) and a7 corresponds to either b1b2b4 or b3b4.

An additive basis for H∗(SO(n); Z2) consists of the products bi1· · · bik

with 0 < i1 <

· · · < ik < n. These classes are in one-to-one correspondence with the cells in a CW

structure on SO(n). There are 2n−1 of these classes, so the size of H∗(SO(n); Z2) grows

exponentially with n, in contrast with the dimension of SO(n) which is n(n − 1)/2, just

quadratic in n. Thus the maximum size of the individual groups Hi(SO(n); Z2) is also

growing exponentially with n, although for fixed i this group is independent of n when

n > i + 1.

M.A.Agosto and J.J. Perez have written a Mathematica program to draw diagrams show-

ing nonzero Bocksteins in H∗(SO(n); Z2) for general n. In the range 5 ≤ n ≤ 12 these are

shown starting on the next page, with a different convention for displaying the picture than

in the figure above, so that Poincare duality appears as a 180 degree rotational symmetry

about the center point of the diagram rather than as reflection across a vertical line. The

labels on the classes are omitted for n > 7 since they become too small to read. There

are some arbitrary choices made in how to draw the diagrams as two-dimensional arrays,

and it might be possible to make different choices so that the diagrams had fewer crossing

edges.

Page 3: The Cohomology of SO(n) - Cornell Universitypi.math.cornell.edu/~hatcher/SO/SO(n).pdfThe Cohomology of SO(n) Computer-generated pictures created by M.A.Agosto and J.J.Perez Commentary

Null 1 2 3

12

4

13

14

23

24

123

34

124 134 234 1234

SO(5)

Null 1 2 3

12

4

13

5

14

23

15

24

123

25

34

124

35

125

134

45

135

234

145

235

1234

245

1235

345

1245 1345 2345 12 345

SO(6)

Null 1 2 3

12

4

13

5

14

23

6

15

24

123

16

25

34

124

26

35

125

134

36

126

45

135

234

46

136

145

235

1234

56

146

236

245

1235

156

246

1236

345

1245

256

346

1246

1345

356

1256

1346

2345

456

1356

2346

12 345

1456

2356

12 346

2456

12 356

3456

12 456 13 456 23 456 123 456

SO(7)

Page 4: The Cohomology of SO(n) - Cornell Universitypi.math.cornell.edu/~hatcher/SO/SO(n).pdfThe Cohomology of SO(n) Computer-generated pictures created by M.A.Agosto and J.J.Perez Commentary

SO(8)

SO(9)

Page 5: The Cohomology of SO(n) - Cornell Universitypi.math.cornell.edu/~hatcher/SO/SO(n).pdfThe Cohomology of SO(n) Computer-generated pictures created by M.A.Agosto and J.J.Perez Commentary

SO(10)

SO(11)

Page 6: The Cohomology of SO(n) - Cornell Universitypi.math.cornell.edu/~hatcher/SO/SO(n).pdfThe Cohomology of SO(n) Computer-generated pictures created by M.A.Agosto and J.J.Perez Commentary

SO(12)

Page 7: The Cohomology of SO(n) - Cornell Universitypi.math.cornell.edu/~hatcher/SO/SO(n).pdfThe Cohomology of SO(n) Computer-generated pictures created by M.A.Agosto and J.J.Perez Commentary

SO(7) ⊂ SO(8) ⊂ SO(9)

SO(5) ⊂ SO(6) ⊂ SO(7) ⊂ SO(8) ⊂ SO(9)

Page 8: The Cohomology of SO(n) - Cornell Universitypi.math.cornell.edu/~hatcher/SO/SO(n).pdfThe Cohomology of SO(n) Computer-generated pictures created by M.A.Agosto and J.J.Perez Commentary

SO(6) ⊂ SO(8) ⊂ SO(10)

Null 1 2 3

12

4

13

5

14

23

6

15

24

123

7

16

25

34

124

8

17

26

35

125

134

9

18

27

36

126

45

135

234

10

19

28

37

127

46

136

145

235

1234

110

29

38

128

47

137

56

146

236

245

1235

210

39

129

48

138

57

147

237

156

246

1236

345

1245

310

1210

49

139

58

148

238

67

157

247

1237

256

346

1246

1345

410

1310

59

149

239

68

158

248

1238

167

257

347

1247

356

1256

1346

2345

510

1410

2310

69

159

249

1239

78

168

258

348

1248

267

357

1257

1347

456

1356

2346

12 345

610

1510

2410

12 310

79

169

259

349

1249

178

268

358

1258

1348

367

1267

457

1357

2347

1456

2356

12 346

710

1610

2510

3410

12 410

89

179

269

359

1259

1349

278

368

1268

458

1358

2348

467

1367

1457

2357

12 347

2456

12 356

810

1710

2610

3510

12 510

13 410

189

279

369

1269

459

1359

2349

378

1278

468

1368

1458

2358

12 348

567

1467

2367

2457

12 357

3456

12 456

910

1810

2710

3610

12 610

4510

13 510

23 410

289

379

1279

469

1369

1459

2359

12 349

478

1378

568

1468

2368

2458

12 358

1567

2467

12 367

3457

12 457

13 456

1910

2810

3710

12 710

4610

13 610

14 510

23 510

123 410

389

1289

479

1379

569

1469

2369

2459

12 359

578

1478

2378

1568

2468

12 368

3458

12 458

2567

3467

12 467

13 457

23 456

2910

3810

12 810

4710

13 710

5610

14 610

23 610

24 510

123 510

489

1389

579

1479

2379

1569

2469

12 369

3459

12 459

678

1578

2478

12 378

2568

3468

12 468

13 458

3567

12 567

13 467

23 457

123 456

3910

12 910

4810

13 810

5710

14 710

23 710

15 610

24 610

123 610

34 510

124 510

589

1489

2389

679

1579

2479

12 379

2569

3469

12 469

13 459

1678

2578

3478

12 478

3568

12 568

13 468

23 458

4567

13 567

23 467

123 457

4910

13 910

5810

14 810

23 810

6710

15 710

24 710

123 710

25 610

34 610

124 610

134 510

689

1589

2489

12 389

1679

2579

3479

12 479

3569

12 569

13 469

23 459

2678

3578

12 578

13 478

4568

13 568

23 468

123 458

14 567

23 567

123 467

5910

14 910

23 910

6810

15 810

24 810

123 810

16 710

25 710

34 710

124 710

35 610

125 610

134 610

234 510

789

1689

2589

3489

12 489

2679

3579

12 579

13 479

4569

13 569

23 469

123 459

3678

12 678

4578

13 578

23 478

14 568

23 568

123 468

24 567

123 567

6910

15 910

24 910

123 910

7810

16 810

25 810

34 810

124 810

26 710

35 710

125 710

134 710

45 610

135 610

234 610

1 234 510

1789

2689

3589

12 589

13 489

3679

12 679

4579

13 579

23 479

14 569

23 569

123 469

4678

13 678

14 578

23 578

123 478

24 568

123 568

34 567

124 567

7910

16 910

25 910

34 910

124 910

17 810

26 810

35 810

125 810

134 810

36 710

126 710

45 710

135 710

234 710

145 610

235 610

1 234 610

2789

3689

12 689

4589

13 589

23 489

4679

13 679

14 579

23 579

123 479

24 569

123 569

5678

14 678

23 678

24 578

123 578

34 568

124 568

134 567

8910

17 910

26 910

35 910

125 910

134 910

27 810

36 810

126 810

45 810

135 810

234 810

46 710

136 710

145 710

235 710

1 234 710

245 610

1 235 610

3789

12 789

4689

13 689

14 589

23 589

123 489

5679

14 679

23 679

24 579

123 579

34 569

124 569

15 678

24 678

123 678

34 578

124 578

134 568

234 567

18 910

27 910

36 910

126 910

45 910

135 910

234 910

37 810

127 810

46 810

136 810

145 810

235 810

1 234 810

56 710

146 710

236 710

245 710

1 235 710

345 610

1 245 610

4789

13 789

5689

14 689

23 689

24 589

123 589

15 679

24 679

123 679

34 579

124 579

134 569

25 678

34 678

124 678

134 578

234 568

1 234 567

28 910

37 910

127 910

46 910

136 910

145 910

235 910

1 234 910

47 810

137 810

56 810

146 810

236 810

245 810

1 235 810

156 710

246 710

1 236 710

345 710

1 245 710

1 345 610

5789

14 789

23 789

15 689

24 689

123 689

34 589

124 589

25 679

34 679

124 679

134 579

234 569

35 678

125 678

134 678

234 578

1 234 568

38 910

128 910

47 910

137 910

56 910

146 910

236 910

245 910

1 235 910

57 810

147 810

237 810

156 810

246 810

1 236 810

345 810

1 245 810

256 710

346 710

1 246 710

1 345 710

2 345 610

6789

15 789

24 789

123 789

25 689

34 689

124 689

134 589

35 679

125 679

134 679

234 579

1 234 569

45 678

135 678

234 678

1 234 578

48 910

138 910

57 910

147 910

237 910

156 910

246 910

1 236 910

345 910

1 245 910

67 810

157 810

247 810

1 237 810

256 810

346 810

1 246 810

1 345 810

356 710

1 256 710

1 346 710

2 345 710

12 345 610

16 789

25 789

34 789

124 789

35 689

125 689

134 689

234 589

45 679

135 679

234 679

1 234 579

145 678

235 678

1 234 678

58 910

148 910

238 910

67 910

157 910

247 910

1 237 910

256 910

346 910

1 246 910

1 345 910

167 810

257 810

347 810

1 247 810

356 810

1 256 810

1 346 810

2 345 810

456 710

1 356 710

2 346 710

12 345 710

26 789

35 789

125 789

134 789

45 689

135 689

234 689

1 234 589

145 679

235 679

1 234 679

245 678

1 235 678

68 910

158 910

248 910

1 238 910

167 910

257 910

347 910

1 247 910

356 910

1 256 910

1 346 910

2 345 910

267 810

357 810

1 257 810

1 347 810

456 810

1 356 810

2 346 810

12 345 810

1 456 710

2 356 710

12 346 710

36 789

126 789

45 789

135 789

234 789

145 689

235 689

1 234 689

245 679

1 235 679

345 678

1 245 678

78 910

168 910

258 910

348 910

1 248 910

267 910

357 910

1 257 910

1 347 910

456 910

1 356 910

2 346 910

12 345 910

367 810

1 267 810

457 810

1 357 810

2 347 810

1 456 810

2 356 810

12 346 810

2 456 710

12 356 710

46 789

136 789

145 789

235 789

1 234 789

245 689

1 235 689

345 679

1 245 679

1 345 678

178 910

268 910

358 910

1 258 910

1 348 910

367 910

1 267 910

457 910

1 357 910

2 347 910

1 456 910

2 356 910

12 346 910

467 810

1 367 810

1 457 810

2 357 810

12 347 810

2 456 810

12 356 810

3 456 710

12 456 710

56 789

146 789

236 789

245 789

1 235 789

345 689

1 245 689

1 345 679

2 345 678

278 910

368 910

1 268 910

458 910

1 358 910

2 348 910

467 910

1 367 910

1 457 910

2 357 910

12 347 910

2 456 910

12 356 910

567 810

1 467 810

2 367 810

2 457 810

12 357 810

3 456 810

12 456 810

13 456 710

156 789

246 789

1 236 789

345 789

1 245 789

1 345 689

2 345 679

12 345 678

378 910

1 278 910

468 910

1 368 910

1 458 910

2 358 910

12 348 910

567 910

1 467 910

2 367 910

2 457 910

12 357 910

3 456 910

12 456 910

1 567 810

2 467 810

12 367 810

3 457 810

12 457 810

13 456 810

23 456 710

256 789

346 789

1 246 789

1 345 789

2 345 689

12 345 679

478 910

1 378 910

568 910

1 468 910

2 368 910

2 458 910

12 358 910

1 567 910

2 467 910

12 367 910

3 457 910

12 457 910

13 456 910

2 567 810

3 467 810

12 467 810

13 457 810

23 456 810

123 456 710

356 789

1 256 789

1 346 789

2 345 789

12 345 689

578 910

1 478 910

2 378 910

1 568 910

2 468 910

12 368 910

3 458 910

12 458 910

2 567 910

3 467 910

12 467 910

13 457 910

23 456 910

3 567 810

12 567 810

13 467 810

23 457 810

123 456 810

456 789

1 356 789

2 346 789

12 345 789

678 910

1 578 910

2 478 910

12 378 910

2 568 910

3 468 910

12 468 910

13 458 910

3 567 910

12 567 910

13 467 910

23 457 910

123 456 910

4 567 810

13 567 810

23 467 810

123 457 810

1 456 789

2 356 789

12 346 789

1 678 910

2 578 910

3 478 910

12 478 910

3 568 910

12 568 910

13 468 910

23 458 910

4 567 910

13 567 910

23 467 910

123 457 910

14 567 810

23 567 810

123 467 810

2 456 789

12 356 789

2 678 910

3 578 910

12 578 910

13 478 910

4 568 910

13 568 910

23 468 910

123 458 910

14 567 910

23 567 910

123 467 910

24 567 810

123 567 810

3 456 789

12 456 789

3 678 910

12 678 910

4 578 910

13 578 910

23 478 910

14 568 910

23 568 910

123 468 910

24 567 910

123 567 910

34 567 810

124 567 810

13 456 789

4 678 910

13 678 910

14 578 910

23 578 910

123 478 910

24 568 910

123 568 910

34 567 910

124 567 910

134 567 810

23 456 789

5 678 910

14 678 910

23 678 910

24 578 910

123 578 910

34 568 910

124 568 910

134 567 910

234 567 810

123 456 789

15 678 910

24 678 910

123 678 910

34 578 910

124 578 910

134 568 910

234 567 910

1 234 567 810

25 678 910

34 678 910

124 678 910

134 578 910

234 568 910

1 234 567 910

35 678 910

125 678 910

134 678 910

234 578 910

1 234 568 910

45 678 910

135 678 910

234 678 910

1 234 578 910

145 678 910

235 678 910

1 234 678 910

245 678 910

1 235 678 910

345 678 910

1 245 678 910 1 345 678 910 2 345 678 910 12 345 678 910

SO(9) ⊂ SO(10) ⊂ SO(11)

Page 9: The Cohomology of SO(n) - Cornell Universitypi.math.cornell.edu/~hatcher/SO/SO(n).pdfThe Cohomology of SO(n) Computer-generated pictures created by M.A.Agosto and J.J.Perez Commentary

SO(7) ⊂ SO(8) ⊂ SO(9) ⊂ SO(10) ⊂ SO(11)

Page 10: The Cohomology of SO(n) - Cornell Universitypi.math.cornell.edu/~hatcher/SO/SO(n).pdfThe Cohomology of SO(n) Computer-generated pictures created by M.A.Agosto and J.J.Perez Commentary

SO(10) ⊂ SO(11) ⊂ SO(12)