the co2 project (design with constraint solving) laurent zimmer dassault aviation research and...

39
The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault- aviation.fr

Upload: magnus-mcdaniel

Post on 12-Jan-2016

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

The CO2 Project(Design with Constraint Solving)

Laurent ZIMMER

DASSAULT AVIATION

Research and Future Business Division

[email protected]

Page 2: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

2

FJCP WORKSHOP25-27/10/94

• A National Research Project– Labelled by a network for Software Development of

the French Ministry of Research

Context

– Granted by the French Ministry of Economy, Finance and Industry

Page 3: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

3

FJCP WORKSHOP25-27/10/94

• 6 partners

– 2 Industrial

– 2 Informatics Labs

– 2 Engineering Labs

Context

Page 4: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

4

FJCP WORKSHOP25-27/10/94

Purpose

• To develop in parallel– A (mainly) interval constraint-based software

dedicated to engineering design called CE :• Modelling• Solving

– A relating design methodology:• inverted and integrated design• constraint formulation

Page 5: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

5

FJCP WORKSHOP25-27/10/94

Basic Principle

Concept

Calculus Calculus

Sol2

Model

Sol 1 Sol N...Solution

Requirements

Req.

DV

PV

PV

DV+PV

Point to Point design Set-based design (Toyota)

Classical Design Process I.I. Design Process

Page 6: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

6

FJCP WORKSHOP25-27/10/94

Methodology

To test the approach through many case studies:

• Academic case studies– preliminary aircraft vehicle design

• Industrial case studies– mechanical design problem– design of an Air Conditioning System (ACS)

Page 7: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

7

FJCP WORKSHOP25-27/10/94

Software Development

• Every 6 months Release• Initial version of the tool:

– Hull consistency with decomposition (HC3)– Interval arithmetic directly implemented with the

floating point arithmetic instructions of the C++ compiler (outer rounding)

– infinite numbers are not processed

Page 8: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

First Case-Study

Global Unmanned Aircraft Preliminary Design

Page 9: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

9

FJCP WORKSHOP25-27/10/94

Problem Description

• Requirements resulting from mission profile:– Range, cruise speed, cruise altitude, volume of

payload ..

• Constraint Model:– 51 variables,35 equations and 26 inequalities,– 5 Geometrical Design Variables :

• Body diameter, Wing span, Wing root chord• Wing thickness/chord ratio, Wing aspect ratio

Page 10: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

10

FJCP WORKSHOP25-27/10/94

PossibleDesigns

TL

Swl

arrow

delta

trapezoidalTiCRaT = T / L

wing thickness/chord ratio

Swl

wing leading sweep angle

Page 11: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

11

FJCP WORKSHOP25-27/10/94

Some tests

• T1: Dimensioning (VC -> VP)– to fix the geometrical variables– Range = f(MachNo)

• T2: Reverse Computing– MachNo = f(Range)

• T3:Parametric Study– Range=f(Swl)

Page 12: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

12

FJCP WORKSHOP25-27/10/94

T1

AspRat Bdepth Croot Span TiCRat MachNo Range

[0 , ns] [0 , ns] [0 , ns] [0 , ns] [0 , ns] [0 , ns] [0 ,ns]

2 0.5 4 [3.99 ,6.03] [0.166 , 79330.79] [0 , 2.1673990604568] [0, ns]

2 0.5 4 4 [0.482 , 55055.147] [0 , 0.8469449298259] [0 , ns]

2 0.5 4 4 0.483 [0 , 0.8467896833306] [0 , ns]

2 0.5 4 4 0.483 0.7 3496.159

H = 5000

Page 13: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

13

FJCP WORKSHOP25-27/10/94

T2

H = 5000, Range = 3496

AspRat Bdepth Croot Span TiCRat MachNo Range

2 0.5 4 4 0.483 [0 , ns] 3496

2 0.5 4 4 0.483 [0.346 , 0.847] 3496

AspRat Bdepth Croot Span TiCRat MachNo Range

2 0.5 4 4 0.483 0.69987131 3496

AspRat Bdepth Croot Span TiCRat MachNo Range

2 0.5 4 4 0.483 0.82245094 3496

Page 14: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

14

FJCP WORKSHOP25-27/10/94

T3

H Bdepth Croot Swl TiCRat MachNo Range

[0 , ns] [0 , ns] [0 , ns] [0 , ns] [0 , ns] [0 , ns] [0 ,ns]

10000 0.5 4 42 0.1 0.7 3879.405

10000 0.5 4 43 0.1 0.7 3873.318

10000 0.5…

4…

44…

0.1…

0.7…

3866.85…

1000 0.5 4 52 0.1 0.7 3796.78

10000 0.5 4 53 0.1 0.7 XXXXXX

Page 15: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

15

FJCP WORKSHOP25-27/10/94

Results

• T1 is OK

• T2 is OK but not very efficient

• T3 is OK however parametric study is to automate

Page 16: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

16

FJCP WORKSHOP25-27/10/94

reverse calculus vs direct parametric study

Range against MachNo

34903492349434963498350035023504350635083510351235143516351835203522352435263528353035323534

0.69 0.71 0.73 0.75 0.77 0.79 0.81 0.83

MachNo

Ran

ge

Page 17: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

17

FJCP WORKSHOP25-27/10/94

Revised version

• A correct Interval Arithmetic Library implemented on a robust floating point library(Gaol F. Goualard 2000)

• A new propagation architecture implementing up-to-date consistency algorithms(L. Granvilliers & M. Christie)

• Some specialised solving strategies– parametric studies– optimisation (min, iterative approximating S. Preswitch 99)

Page 18: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

Second Case-Study

Pressure Device Design

Page 19: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

19

FJCP WORKSHOP25-27/10/94

PurposePurpose

Stiffened Plate

Stiffener Plate

Pressure2,5 Bar

Design of a Pressure device

Page 20: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

20

FJCP WORKSHOP25-27/10/94

Design problem of a stiffened plateDesign problem of a stiffened plate

Design challenge • Increasing the mechanical resistance without decreasing the cost of

the resulting product

Design variables • Thickness of the plate

• Type of stiffeners,

• Type of material,

• number of longitudinal and lateral stiffeners

ny

nx

type de raidisseur

h

Page 21: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

21

FJCP WORKSHOP25-27/10/94

Constraint Formulation

Not only analytical functions !

Like:• Cost models• Use of components of the shelf• A global physical model of the behaviour of

the plate

Page 22: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

22

FJCP WORKSHOP25-27/10/94

Cost models(*******************************************************************)(* Définition du process de fabrication *)(*******************************************************************)

(* Temps de Découpe de la tôle *)h<=8E-3 -> T1=1/2;h>8E-3 -> T1=(1/2)*(L1+L2);T1>0;

(* Cassure des raidisseurs *)hauteur<=1E-2 -> T2=ny*(nx+1)/20;hauteur>1E-2 -> T2=ny*(nx+1)/10;T2>0;

Need of a trigger mechanismto express

Experience or Business rules

Page 23: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

23

FJCP WORKSHOP25-27/10/94

Components of the shelf

IPE80 à IPE600 Carrés22 à carrés200

Catalogue of stiffeners

Catalogue of materials

Steel, Iron, Iron cast, Titanium ..

Page 24: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

24

FJCP WORKSHOP25-27/10/94

Catalogues

Page 25: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

25

FJCP WORKSHOP25-27/10/94

Global Physical Model

Finite Elements Model

Page 26: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

26

FJCP WORKSHOP25-27/10/94

Global Physical Model

LearningCasebase

Approximation by a set of analytical functions

Page 27: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

27

FJCP WORKSHOP25-27/10/94

Feedback

• The case study has been processed• The processing of non analytical knowledge is

not easy :– Finite Elements models– Interpolation tables– existing programs– ..

It is a real bottleneck for ICP

Page 28: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

And Nowwe are working on

an industrial case study

An Aircraft Air Conditioning System Design

Page 29: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

29

FJCP WORKSHOP25-27/10/94

Half closed motorised Air conditioning cycle

soute avion iquepressurisée

T M oteur C

a irdynam ique

giffard

vanne by-pass

pré-refro id isseuréchangeur princ ipa l

dess icant

Turbo-réacteur

vanne d 'arrê t

vanne d 'arrê t g iffard

vanne de régulation

pressurisationcarburant

Page 30: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

30

FJCP WORKSHOP25-27/10/94

Close/Half-Close Cycle Design

Pre-coolingHeat Exchanger

Turbo

reactor

Atmosphere Cabin

Atmosphere

Main Heat Exchanger

Turbine

Compressor

motor

switch on

Page 31: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

31

FJCP WORKSHOP25-27/10/94

Schéma d’architecture global du SCASchéma d’architecture global du SCA

T7 entre –40 °C et 71 °CSection d’ entrée

Ai

Ouvert

Fermé

Page 32: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

32

FJCP WORKSHOP25-27/10/94

Variability in the Design Problem

Possible free parameters:• Motor Power• Ram Air section• Heat exchangers characteristics

Design is hard

Page 33: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

33

FJCP WORKSHOP25-27/10/94

Cross-Flow Heat Exchangers

Lx

MAIN AIR

RAM AIR

Lz

Ly

Page 34: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

34

FJCP WORKSHOP25-27/10/94

Dimensioning Heat Exchangers

Lx, Ly, Lz

Type of Exchange Surfacesdifferent typesdifferent properties (5)

Type of ExchangersCross-Flow, Multi-pass ...

Page 35: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

35

FJCP WORKSHOP25-27/10/94

equations

u s ec t i o n

1 - 3

1

113r3r

4r

PT

T an

P

raq̂maq

λ 1,1.0λ

u s e u r 4 , 5

2

11 MT a1rT 1

12

MPη ad1 rP

6

11

11

11

1

21

11

ˆ

ˆˆ²ˆ1ˆ

ˆˆ

ˆˆ1

ˆ

ˆ2²ˆ1ˆ

2

ˆ²ˆ

m

em

c

c KA

AfK

G

11

21

PP

PP

7

r

merr

r

m

cr

rr

r

rrcr

r KA

AfK

G

21

21

11

2

31

21

ˆ

ˆˆ²ˆ1ˆ

ˆˆ

ˆˆ1

ˆ

ˆ2²ˆ1ˆ

2

ˆ²ˆ

2 r2 r

3 r2 r

PP

PPr é -r e f r o i d i s s e u r

8 , 91

21

1

12 r ε

TT

ε

εT

11

2 r1 r2 T

λ

T

λ

TT

1 0

32

32

22

3

42

32

ˆ

ˆˆ²ˆ1ˆ

ˆˆ

ˆˆ1

ˆ

ˆ2²ˆ1ˆ

2

ˆ²ˆ

m

em

c

c KA

AfK

G

33

43

PP

PP

1 1

r

merr

r

m

cr

rr

r

rrcr

r KA

AfK

G

12

12

22

1

22

12

ˆ

ˆˆ²ˆ1ˆ

ˆˆ

ˆˆ1

ˆ

ˆ2²ˆ1ˆ

2

ˆ²ˆ

1 r1 r

2 r1 r

PP

PP

n g e u rc i p a l

1 2 , 1 32

43

2

21r ε

TT

ε

εT

1

30

2 r

0

1 r4 T

-1λ

T

τ-1λ

TT

Page 36: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

36

FJCP WORKSHOP25-27/10/94

State Space ConfigurationState Space Configuration

Critères Point 1COP 2,71

Mma (kg) non définiMra (kg) 101,00

M soute (kg) 67,40

Critères Point 2COP 0,60

Mma (kg) non définiMra (kg) 29,43

M soute (kg) 57,10

Critères Point 3COP 0,85

Mma (kg) 781,55Mra (kg) 135,39

Msoute (kg) 96,86

Critères Point 4COP 0,77

Mma (kg) 276,12Mra (kg) 186,45

M soute (kg) 42,33

Altitude

Temps

3000 m

16500 m

7500 m

6000 m

M=0.6

M=0.3

M=0.6

M=0.65

Page 37: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

37

FJCP WORKSHOP25-27/10/94

Partial results

• We are able to dimension the ACS in a given configuration

• if we enlarge the search space:– type of exchange surfaces– type of exchangers– number of configurations

then we address a problem currently out of scope

Page 38: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

38

FJCP WORKSHOP25-27/10/94

Conclusion

A lot of research effort remain to do if we want to fully address the field of Design

Interesting themes :– Hard mixed integer and real non linear problems– Large search spaces of numerical underconstraint

problems– Decision Support

Page 39: The CO2 Project (Design with Constraint Solving) Laurent ZIMMER DASSAULT AVIATION Research and Future Business Division laurent.zimmer@dassault-aviation.fr

39

FJCP WORKSHOP25-27/10/94

Decision Support Model of soft flexible interval constraints

• Easy and relevant engineer ’s preferences expression

• Automatic generation of Pareto Frontier

ADCdefconXii

i

/

:)(