the casimir-polder force: a manifestation of the qed vacuum · • modification of atomic level...

76
Qumtul Oothbs II 2004 Cnzuldk FSU Jdm The Chsimir-Polder force A mhnifesthtion of the QED vhcuum Stdem Ynsgh Buglmm mc Dhrj-Gummr Wdksbg Friedrich-Schiller-Universit¨ it Jeni, Germiny

Upload: others

Post on 19-Apr-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

The Casimir-Polder force:

A manifestation of the QED

vacuum

Stefan Yoshi Buhmann and Dirk-Gunnar Welsch

Friedrich-Schiller-Universitat Jena, Germany

Page 2: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Puzzle

What is greater than God,

more evil than the devil?

The poor have it,

the happy need it,

and if you eat it, you will die.

Page 3: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Puzzle

What is greater than God,

more evil than the devil?

The poor have it,

the happy need it,

and if you eat it, you will die.

Answer: Nothing

Page 4: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Content

• Introduction: Body-assisted QED vacuum

– Quantization scheme

– vacuum QED effects

Page 5: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Content

• Introduction: Body-assisted QED vacuum

– Quantization scheme

– vacuum QED effects

• Casimir-Polder force: Perturbative approach

– Ground-state atom near magnetodielectric half space

Page 6: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Content

• Introduction: Body-assisted QED vacuum

– Quantization scheme

– vacuum QED effects

• Casimir-Polder force: Perturbative approach

– Ground-state atom near magnetodielectric half space

• Casimir-Polder force: Beyond perturbation theory

– General theory

– Dynamics in weak-coupling limit

– Excited-state atom

Page 7: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Content

• Introduction: Body-assisted QED vacuum

– Quantization scheme

– vacuum QED effects

• Casimir-Polder force: Perturbative approach

– Ground-state atom near magnetodielectric half space

• Casimir-Polder force: Beyond perturbation theory

– General theory

– Dynamics in weak-coupling limit

– Excited-state atom

• Summary and outlook

Page 8: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

The QED vacuum

vacuus [lat.]: empty

Classical electrodynamics:

E(r) = 0, B(r) = 0 (no electromagnetic field)

Page 9: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

The QED vacuum

vacuus [lat.]: empty

Classical electrodynamics:

E(r) = 0, B(r) = 0 (no electromagnetic field)

QED: [ε0Ei(r), Bj(r′)] = −i~εijk∂kδ(r− r′)

∆A∆B ≥ 12|〈[A, B]〉| (Heisenberg uncertainty relation)

⇓〈E(r)〉 = 0, 〈B(r)〉 = 0 (no e.m. field on average)

but: ∆E(r) 6= 0, ∆B(r) 6= 0 (field fluctuations)

Page 10: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

The QED vacuum

vacuus [lat.]: empty

Classical electrodynamics:

E(r) = 0, B(r) = 0 (no electromagnetic field)

QED: [ε0Ei(r), Bj(r′)] = −i~εijk∂kδ(r− r′)

∆A∆B ≥ 12|〈[A, B]〉| (Heisenberg uncertainty relation)

⇓〈E(r)〉 = 0, 〈B(r)〉 = 0 (no e.m. field on average)

but: ∆E(r) 6= 0, ∆B(r) 6= 0 (field fluctuations)

QED vacuum = vanishing of average electromagnetic

fields

Page 11: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Normal-mode quantization

Quantized electric field:

E(r) =∑k

gk(r)ak + H.c.

gk(r): normal modes

a†k, ak: creation, annihilation operators

Page 12: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Normal-mode quantization

Quantized electric field:

E(r) =∑k

gk(r)ak + H.c.

gk(r): normal modes

a†k, ak: creation, annihilation operators

QED vacuum: ak|0〉 = 0

⇒ 〈E(r)〉 = 0, ∆E(r) 6= 0

Page 13: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Normal-mode quantization

Quantized electric field:

E(r) =∑k

gk(r)ak + H.c.

gk(r): normal modes

a†k, ak: creation, annihilation operators

QED vacuum: ak|0〉 = 0

⇒ 〈E(r)〉 = 0, ∆E(r) 6= 0

Applicability:

• free space

Page 14: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Normal-mode quantization

Quantized electric field:

E(r) =∑k

gk(r)ak + H.c.

gk(r): normal modes

a†k, ak: creation, annihilation operators

QED vacuum: ak|0〉 = 0

⇒ 〈E(r)〉 = 0, ∆E(r) 6= 0

Applicability:

• free space• arbitrary arrangement of

– perfectly reflecting bodies

Page 15: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Normal-mode quantization

Quantized electric field:

E(r) =∑k

gk(r)ak + H.c.

gk(r): normal modes

a†k, ak: creation, annihilation operators

QED vacuum: ak|0〉 = 0

⇒ 〈E(r)〉 = 0, ∆E(r) 6= 0

Applicability:

• free space• arbitrary arrangement of

– perfectly reflecting bodies

– nondispersive, nonabsorbing bodies

Not applicable to dispersing and absorbing bodies!

Page 16: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Relevance of dispersionand absorption

1. World is not perfect:

absorption always present and relevant in experiments

Page 17: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Relevance of dispersionand absorption

1. World is not perfect:

absorption always present and relevant in experiments

2. Fluctuations associated with absorption:

additional fluctuations which contribute to the net fluctuations

Page 18: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Relevance of dispersionand absorption

1. World is not perfect:

absorption always present and relevant in experiments

2. Fluctuations associated with absorption:

additional fluctuations which contribute to the net fluctuations

3. New materials:

artificial metamaterials with left-handed properties1

→ strongly dispersing and absorbing

1D. R. Smith et. al., PRL 84, 18, 4184 (2000)

Page 19: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Generalized quantization scheme

Normal-mode quantization of electric field:

E(r) =∑k

gk(r)ak + H.c.

Page 20: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Generalized quantization scheme

Normal-mode quantization of electric field:

E(r) =∑k

gk(r)ak + H.c.

⇑c-number functions

⇑creation/annihilation

operators

Page 21: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Generalized quantization scheme

Normal-mode quantization of electric field:

E(r) =∑k

gk(r)ak + H.c.

⇑c-number functions

⇑creation/annihilation

operators

Quantized electric field in linear, causal media:

E(r) =∫ ∞

0dω

∫d3r′ i

√~πε0

ω2

c2

√Im ε(r′, ω)G(r, r′, ω)fe(r

′, ω)

c

√−Imµ−1(r′, ω)

[∇′ ×G(r, r′, ω)

]fm(r′, ω)

+H.c.

Page 22: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Classical Green tensor

[∇× µ−1(r, ω)∇× −

ω2

c2ε(r, ω)

]G(r, r′, ω) = δ(r− r′)

Page 23: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Classical Green tensor

[∇× µ−1(r, ω)∇× −

ω2

c2ε(r, ω)

]G(r, r′, ω) = δ(r− r′)

Physical interpretation:

Source at r

Page 24: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Classical Green tensor

[∇× µ−1(r, ω)∇× −

ω2

c2ε(r, ω)

]G(r, r′, ω) = δ(r− r′)

Physical interpretation:

Source at r G(r,r′,ω)−→−→

Page 25: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Classical Green tensor

[∇× µ−1(r, ω)∇× −

ω2

c2ε(r, ω)

]G(r, r′, ω) = δ(r− r′)

Physical interpretation:

Source at r G(r,r′,ω)−→−→ Electric field at r′

Page 26: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Creation/annihilation operators

Bosonic commutation relations:[fλi(r, ω), f†

λ′j(r′, ω′)

]= δλλ′δijδ(r− r′)δ(ω − ω′) (λ = e,m)

Page 27: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Creation/annihilation operators

Bosonic commutation relations:[fλi(r, ω), f†

λ′j(r′, ω′)

]= δλλ′δijδ(r− r′)δ(ω − ω′) (λ = e,m)

Physical interpretation:

Noise polarization:

PN(r, ω) = i

√~ε0π

×√

Imε(r, ω) fe(r, ω)

+ +

++

++

+

+

+−−

−−

−−

−−

Page 28: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Creation/annihilation operators

Bosonic commutation relations:[fλi(r, ω), f†

λ′j(r′, ω′)

]= δλλ′δijδ(r− r′)δ(ω − ω′) (λ = e,m)

Physical interpretation:

Noise polarization:

PN(r, ω) = i

√~ε0π

×√

Imε(r, ω) fe(r, ω)

+ +

++

++

+

+

+−−

−−

−−

−−

Noise magnetization:

MN(r, ω) =

√−

~κ0

π

×√

Imµ−1(r, ω) fm(r, ω)

NN

N

N

NN

N

NN

SS

S

S

S

SS

S

S

Page 29: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Atom-field dynamics

H = HMF + HA + HAMF

Page 30: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Atom-field dynamics

H = HMF + HA + HAMF

Medium-assisted field Hamiltonian:

HMF =∑

λ=e,m

∫d3r

∫ ∞

0dω ~ω f†λ(r, ω)fλ(r, ω)

Page 31: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Atom-field dynamics

H = HMF + HA + HAMF

Medium-assisted field Hamiltonian:

HMF =∑

λ=e,m

∫d3r

∫ ∞

0dω ~ω f†λ(r, ω)fλ(r, ω)

Atomic Hamiltonian:

HA =∑α

pα2

2mα+

1

2ε0

∫d3rPA

2(r)

Page 32: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Atom-field dynamics

H = HMF + HA + HAMF

Medium-assisted field Hamiltonian:

HMF =∑

λ=e,m

∫d3r

∫ ∞

0dω ~ω f†λ(r, ω)fλ(r, ω)

Atomic Hamiltonian:

HA =∑α

pα2

2mα+

1

2ε0

∫d3rPA

2(r)

Electric dipole interaction:

HAMF = −dE(rA) +1

2mA

[pA, d× B(rA)

]+

Page 33: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

QED vacuum in presence oflinear, causal media

QED vacuum: fλ(r, ω)|0〉 = 0 (λ = e,m)

⇒ 〈E(r)〉 = 0, [∆E(r)]2 =~πε0

∫ ∞

0dω

ω2

c2Im[TrG(r, r, ω)]

Page 34: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

QED vacuum in presence oflinear, causal media

QED vacuum: fλ(r, ω)|0〉 = 0 (λ = e,m)

⇒ 〈E(r)〉 = 0, [∆E(r)]2 =~πε0

∫ ∞

0dω

ω2

c2Im[TrG(r, r, ω)]

Highly structured fluctuations of the electromagnetic field!

Page 35: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Manifestations of the QED vacuum

• Casimir force [C. Raabe et. al., PRA 68, 033810 (2003)]

Page 36: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Manifestations of the QED vacuum

• Casimir force [C. Raabe et. al., PRA 68, 033810 (2003)]

• Casimir-Polder force [S. Y. Buhmann et. al., PRA 70, 052117

(2004)]

Page 37: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Manifestations of the QED vacuum

• Casimir force [C. Raabe et. al., PRA 68, 033810 (2003)]

• Casimir-Polder force [S. Y. Buhmann et. al., PRA 70, 052117

(2004)]

• Modification of atomic level structure [as above]

Page 38: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Manifestations of the QED vacuum

• Casimir force [C. Raabe et. al., PRA 68, 033810 (2003)]

• Casimir-Polder force [S. Y. Buhmann et. al., PRA 70, 052117

(2004)]

• Modification of atomic level structure [as above]

• Spontaneous decay [Ho et. al., PRA 68, 043816 (2003)]

Page 39: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Relevance of Casimir-Polder forces

• Adsorption of atoms/molecules

to surfaces1

1M. A. Chesters et. al., Surf. Sci. 35, 161 (1973);J. Darville, in Vibrations at Surfaces (Plenum, New York, 1982)

Page 40: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Relevance of Casimir-Polder forces

• Adsorption of atoms/molecules

to surfaces1

• Atom optics2

1M. A. Chesters et. al., Surf. Sci. 35, 161 (1973);J. Darville, in Vibrations at Surfaces (Plenum, New York, 1982)

2F. Shimizu and J. Fujita, PRL 88, 123201 (2002)

Page 41: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Relevance of Casimir-Polder forces

• Adsorption of atoms/molecules

to surfaces1

• Atom optics2

• Atomic-force microscopes3

1M. A. Chesters et. al., Surf. Sci. 35, 161 (1973);J. Darville, in Vibrations at Surfaces (Plenum, New York, 1982)

2F. Shimizu and J. Fujita, PRL 88, 123201 (2002)3G. Binnig et. al., PRL 56, 930 (1986)

Page 42: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Casimir-Polder force:

Perturbative approach (ground-state atoms)

Open issues

• Role of material absorption

• Influence of magnetic properties

Page 43: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Van der Waals potential

Idea: system in state |0〉 ⊗ |0〉

interaction HAMF ⇒ energy shift ∆E0

⇒ van-der-Waals potential ∆E0 = ∆E(0)0 + U0(rA)

⇒ van-der-Waals force F0(rA) = −∇AU0(rA)

Page 44: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Van der Waals potential

Idea: system in state |0〉 ⊗ |0〉

interaction HAMF ⇒ energy shift ∆E0

⇒ van-der-Waals potential ∆E0 = ∆E(0)0 + U0(rA)

⇒ van-der-Waals force F0(rA) = −∇AU0(rA)

2nd-order perturbation theory: ∆2E0 =∑ψ

|〈0|〈0|HAMF|ψ〉|2

E0 − Eψ

Page 45: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Van der Waals potential

Idea: system in state |0〉 ⊗ |0〉

interaction HAMF ⇒ energy shift ∆E0

⇒ van-der-Waals potential ∆E0 = ∆E(0)0 + U0(rA)

⇒ van-der-Waals force F0(rA) = −∇AU0(rA)

2nd-order perturbation theory: ∆2E0 =∑ψ

|〈0|〈0|HAMF|ψ〉|2

E0 − Eψ

Result:

U0(rA) =~µ0

∫ ∞

0duu2α

(0)0 (iu)TrG(1)(rA, rA, iu)

atomic polarizability:

α(0)0 (ω) = lim

ε→0

2

3~∑k

ωk0|d0k|2

ω2k0 − ω2 − iωε

Scattering Green

tensor:

G(1)(rA, rA, iu)

Page 46: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Atom near half space1

Azε (ω) µ ω( )

Page 47: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Atom near half space1

Azε (ω) µ ω( )

Nonretarded limit: zA c/ωt

Page 48: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Atom near half space1

Azε (ω)

Nonretarded limit: zA c/ωt

Purely dielectric half space: U0(zA) = −C3

z3A

C3 =~

16π2ε0

∫ ∞

0duα(0)

0 (iu)ε(iu)− 1

ε(iu) + 1≥ 0

Page 49: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Atom near half space1

Azµ ω( )

Nonretarded limit: zA c/ωt

Purely dielectric half space: U0(zA) = −C3

z3A

C3 =~

16π2ε0

∫ ∞

0duα(0)

0 (iu)ε(iu)− 1

ε(iu) + 1≥ 0

Purely magnetic half space: U0(zA) = +C1

z3A

C1 =~

16π2ε0

∫ ∞

0du

(u

c

)2α(0)0 (iu)

µ(iu)− 1

µ(iu) + 1+

[µ(iu)− 1]

2

≥ 0

1S. Y. Buhmann, T. Kampf, and D.-G. Welsch, in preparation

Page 50: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Atom near half spaceRetarded limit: zA c/ωr, c/ωk0

U0(zA) =C4

z4AC4 = C4[α(0), ε(0), µ(0)] T 0

Page 51: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Atom near half spaceRetarded limit: zA c/ωr, c/ωk0

U0(zA) =C4

z4AC4 = C4[α(0), ε(0), µ(0)] T 0

0

2

4

6

8

10

12

1 1.5 2 2.5 3

µ(0)

(0)εattractive

repulsive

Page 52: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Atom near half space

Numerical results: two-level atom, Drude-Lorentz model

-0.0004

0

0.0004

0.0008

0 2 4 6 8 10

’bar200.txt’ u 3:8’bar180.txt’ u 3:8’bar160.txt’ u 3:8’bar120.txt’ u 3:8’bar043.txt’ u 3:8

PSfrag replacements

zAωT,m/c

U0(z

A)1

2c/

(µ0ω

3 T,m

d2 10) ωP,m = 2.00

ωP,m = 1.80ωP,m = 1.60ωP,m = 1.20ωP,m = 0.43

C1

C3

C4

Page 53: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Comparison of different forces

distance nonretarded retardedobjects e↔ e e↔ m e↔ e e↔ m

U ∝ +1

z3U ∝ −

1

zU ∝ +

1

z4U ∝ −

1

z4

Page 54: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Comparison of different forces

distance nonretarded retardedobjects e↔ e e↔ m e↔ e e↔ m

U ∝ +1

z3U ∝ −

1

zU ∝ +

1

z4U ∝ −

1

z4

U ∝ +1

z6U ∝ −

1

z4U ∝ +

1

z7U ∝ −

1

z7

Page 55: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Comparison of different forces

distance nonretarded retardedobjects e↔ e e↔ m e↔ e e↔ m

U ∝ +1

z3U ∝ −

1

zU ∝ +

1

z4U ∝ −

1

z4

U ∝ +1

z6U ∝ −

1

z4U ∝ +

1

z7U ∝ −

1

z7

F ∝ +1

z3F ∝ −

1

zF ∝ +

1

z4F ∝ −

1

z4

Page 56: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Casimir-Polder force:

Beyond perturbation theory

Open issues

• Temporal evolution of the force

• Influence of body-induced shifting and broadening of atomic

transition lines

• Force for arbitrary atomic states

• Force in case of strong atom-field coupling

• Force for arbitrary field states

Page 57: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

General theory

Lorentz force on charged particles (electric dipole app.):

fα = qαE(rA)−∇ϕA(rA)

+12

[˙rα × B(rA)− B(rA)× ˙rα

]

Page 58: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

General theory

Lorentz force on charged particles (electric dipole app.):

fα = qαE(rA)−∇ϕA(rA)

+12

[˙rα × B(rA)− B(rA)× ˙rα

]Lorentz force on an atom:⟨

F⟩AMF

=∇

⟨dE(r)

⟩AMF

+d

dt

⟨d× B(r)

⟩AMF

r=rA

Page 59: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

General theory

Lorentz force on charged particles (electric dipole app.):

fα = qαE(rA)−∇ϕA(rA)

+12

[˙rα × B(rA)− B(rA)× ˙rα

]Lorentz force on an atom:⟨

F⟩AMF

=∇

⟨dE(r)

⟩AMF

+d

dt

⟨d× B(r)

⟩AMF

r=rA

Applicability:

• Field state: arbitrary

• Atomic state: arbitrary

• Coupling: strong/weak

Page 60: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

General theory

Lorentz force on charged particles (electric dipole app.):

fα = qαE(rA)−∇ϕA(rA)

+12

[˙rα × B(rA)− B(rA)× ˙rα

]Lorentz force on an atom:⟨

F⟩AMF

=∇

⟨dE(r)

⟩AMF

+d

dt

⟨d× B(r)

⟩AMF

r=rA

Applicability:

• Field state: arbitrary

• Atomic state: arbitrary

• Coupling: strong/weak

In the following:

→ vacuum: ρMF = |0〉〈0|

→ weak coupling

Page 61: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

CP force: Weak-coupling limitRemaining task: Solving the dynamics (Markov approximation)

E(r) = E(r, t) =?, d = d(t) =?

Page 62: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

CP force: Weak-coupling limitRemaining task: Solving the dynamics (Markov approximation)

E(r) = E(r, t) =?, d = d(t) =?

Casimir-Polder force:

F(rA, t) =∑m,n

σnm(t)Fmn(rA)

Page 63: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

CP force: Weak-coupling limitRemaining task: Solving the dynamics (Markov approximation)

E(r) = E(r, t) =?, d = d(t) =?

Casimir-Polder force:

F(rA, t) =∑m,n

σnm(t)Fmn(rA)

⇑ ⇑

Atomic density

matrix elements:

σnm(t)

Associated force

components:

Fmn(rA)

Page 64: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

CP force: Weak-coupling limitRemaining task: Solving the dynamics (Markov approximation)

E(r) = E(r, t) =?, d = d(t) =?

Casimir-Polder force:

F(rA, t) =∑m,n

σnm(t)Fmn(rA)

⇑ ⇑

Atomic density

matrix elements:

σnm(t)

Associated force

components:

Fmn(rA)

⇑ ⇑

Body-induced change of atomic level structure:

ωnm → ωnm(rA), Γn(rA)

Page 65: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Change of atomic level structure

Shift of atomic transition frequencies:

ωnm(rA) = ωnm + δωn(rA)− δωm(rA)

δωn(rA) =∑k

µ0

π~P

∫ ∞

0dω ω2dnkImG(1)(rA, rA, ω)dkn

ωnk − ω

Page 66: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Change of atomic level structure

Shift of atomic transition frequencies:

ωnm(rA) = ωnm + δωn(rA)− δωm(rA)

δωn(rA) =∑k

µ0

π~P

∫ ∞

0dω ω2dnkImG(1)(rA, rA, ω)dkn

ωnk − ω

Example: Two-level atom near dielectric half space

(single-resonance medium, nonretarded limit)

-0.002

0

0.002

1.12 1.13 1.14

δω/ ωT

/ ωTω10-0.002

0

0.002

1.12 1.13 1.14

zA = 4.5 nm

zA = 5.4 nm

Page 67: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Decay-induced broadening of atomic levels:

Γn(rA) =∑k

Θ[ωnk(rA)]Γnk(rA)

=2µ0

~Θ[ωnk(rA)]ω2

nk(rA)dnkImG [rA, rA, ωnk(rA)]dkn

Page 68: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Decay-induced broadening of atomic levels:

Γn(rA) =∑k

Θ[ωnk(rA)]Γnk(rA)

=2µ0

~Θ[ωnk(rA)]ω2

nk(rA)dnkImG [rA, rA, ωnk(rA)]dkn

Example: Two-level atom near dielectric half space

(single-resonance medium, nonretarded limit)

0

0.004

0.008

1.12 1.13 1.14

T/ ωω10

Γ/ ωT

0

0.004

0.008

1.12 1.13 1.14

zA = 4.5 nm

zA = 5.4 nm

Page 69: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Excited-(eigen)state force

Dominant contribution to the force:

Frnn(rA)

=µ0

2

∑k

Θ[ωnk(rA)]Ω2nk(rA)

∇ ⊗ dnkG

(1)[r, r,Ωnk(rA)]dknr=rA

+H.c.

Ωnk(rA) = ωnk(rA) + i[Γn(rA) + Γk(rA)]/2

→ Influenced by level shifting and broadening!

Page 70: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Excited-(eigen)state force

Dominant contribution to the force:

Frnn(rA)

=µ0

2

∑k

Θ[ωnk(rA)]Ω2nk(rA)

∇ ⊗ dnkG

(1)[r, r,Ωnk(rA)]dknr=rA

+H.c.

Ωnk(rA) = ωnk(rA) + i[Γn(rA) + Γk(rA)]/2

→ Influenced by level shifting and broadening!

Example: Two-level atom near dielectric half space(single-resonance medium, nonretarded limit)

F11(zA) = −3(d2x + d2y + 2d2z)

32πε0z4A

|ε[Ω10(zA)]|2 − 1

|ε[Ω10(zA)] + 1|2

ε[Ω10(zA)] = 1 +ω2P

ω2T − ω2

10(zA)− i[Γ(zA) + γ]ω10(zA)

→ Γ(zA) + γ plays the role of total absorption parameter!

Page 71: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Excited-(eigen)state force

Example: Two-level atom near dielectric half space

(single-resonance medium, nonretarded limit)

-3

0

3

1.12 1.13 1.14

(F11r )

z

10/ ωTω

x10 9/(3C / λT4 )

z =4.5 nmA

ω10

|1>

|0>

Page 72: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Excited-(eigen)state force

Example: Two-level atom near dielectric half space

(single-resonance medium, nonretarded limit)

-3

0

3

1.12 1.13 1.14

(F11r )

z

10/ ωTω

x10 9/(3C / λT4 )

z =4.5 nmA

-3

0

3

1.12 1.13 1.14

ω10

|1>

|0>

|1>

ω10

|0>

Page 73: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Excited-(eigen)state force

Example: Two-level atom near dielectric half space

(single-resonance medium, nonretarded limit)

-3

0

3

1.12 1.13 1.14

(F11r )

z

10/ ωTω

x10 9/(3C / λT4 )

z =4.5 nmA

-3

0

3

1.12 1.13 1.14

-3

0

3

1.12 1.13 1.14

ω10

|1>

|0>

|1>

|0>

ω10

|1>

ω10

|0>

Page 74: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Excited-(eigen)state force

Example: Two-level atom near dielectric half space

(single-resonance medium, nonretarded limit)

-3

0

3

1.12 1.13 1.14

(F11r )

z

10/ ωTω

x10 9/(3C / λT4 )

z =4.5 nmA

-3

0

3

1.12 1.13 1.14

-3

0

3

1.12 1.13 1.14

-3

0

3

1.12 1.13 1.14

ω10

|1>

|0>

|1>

|0>

ω10

|1>

ω10

|0>

|1>

ω10

|0>

Page 75: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Casimir-Polder force: Summary

• Absorption: included in Green tensor formalism

• Magnetic bodies → attractive vs repulsive van der Waals po-

tentials

• Spontaneous decay → temporal evolution of the force

• Shifting and broadening of atomic transition lines

→ noticeable influence in nonretarded limit

Page 76: The Casimir-Polder force: A manifestation of the QED vacuum · • Modification of atomic level structure [as above] Quantum Optics II 2004 Cozumel FSU Jena Manifestations of the

Quantum Optics II 2004 Cozumel FSU Jena

Casimir-Polder force: Summary

• Absorption: included in Green tensor formalism

• Magnetic bodies → attractive vs repulsive van der Waals po-

tentials

• Spontaneous decay → temporal evolution of the force

• Shifting and broadening of atomic transition lines

→ noticeable influence in nonretarded limit

Outlook

• Closer investigation of off-diagonal force components

• Force in case of strong atom-field coupling

• Force for arbitrary field states