the asymptotic behavior of blowup solution of localized nonlinear equation

7
Ž . JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 200, 315]321 1996 ARTICLE NO. 0207 The Asymptotic Behavior of Blowup Solution of Localized Nonlinear Equation Liwen Wang and Qingyi Chen Department of Mathematics, Huazhong Uni ¤ ersity of Science and Technology, Wuhan 430074, People’s Republic of China Submitted by A¤ ner Friedman Received April 8, 1994 In this paper we are concerned with the growth rate of blowup solution to the equation u x , t y u x , t s u p 0, t , x , t g yl , l = 0, T . Ž . Ž . Ž . Ž . Ž . Ž . t xx Using self-similar solution technique and comparison method, we obtain the growth rate of blowup solution and observe that the boundary-layer phenomena occurs. Q 1996 Academic Press, Inc. I. INTRODUCTION In this paper, we consider the problem u x , t s u x , t q u p 0, t , x , t g yl , l = 0, T , 1 Ž . Ž . Ž . Ž . Ž . Ž . Ž. t xx u "l , t s 0, t ) 0, 2 Ž . Ž. u x ,0 s u x , x g yl , l , 3 Ž . Ž . Ž . Ž. 0 Ž . where p ) 1, l ) 0, and u x is nonnegative, nonzero, bounded, and 0 Ž . Ž . symmetric, and u x nondecreaces in yl,0, 0 2 u x Ž . 0 p q bu 0 G 0, in yl , l , 4 Ž. Ž . Ž. 0 2 x Ž . Ž . Ž . Ž . where b g 0, 1 , obviously, ux, t G 0 and u 0, t G ux, t , x, t g Ž . Ž . yl, l = 0, T by the maximum principle. 315 0022-247Xr96 $18.00 Copyright Q 1996 by Academic Press, Inc. All rights of reproduction in any form reserved.

Upload: liwen-wang

Post on 15-Jun-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Ž .JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 200, 315]321 1996ARTICLE NO. 0207

The Asymptotic Behavior of Blowup Solution ofLocalized Nonlinear Equation

Liwen Wang and Qingyi Chen

Department of Mathematics, Huazhong Uni ersity of Science and Technology,Wuhan 430074, People’s Republic of China

Submitted by A¨ner Friedman

Received April 8, 1994

In this paper we are concerned with the growth rate of blowup solution to theequation

u x , t y u x , t s u p 0, t , x , t g yl , l = 0, T .Ž . Ž . Ž . Ž . Ž . Ž .t x x

Using self-similar solution technique and comparison method, we obtain thegrowth rate of blowup solution and observe that the boundary-layer phenomenaoccurs. Q 1996 Academic Press, Inc.

I. INTRODUCTION

In this paper, we consider the problem

u x , t s u x , t q u p 0, t , x , t g yl , l = 0, T , 1Ž . Ž . Ž . Ž . Ž . Ž . Ž .t x x

u "l , t s 0, t ) 0, 2Ž . Ž .u x , 0 s u x , x g yl , l , 3Ž . Ž . Ž . Ž .0

Ž .where p ) 1, l ) 0, and u x is nonnegative, nonzero, bounded, and0Ž . Ž .symmetric, and u x nondecreaces in yl, 0 ,0

­ 2 u xŽ .0 pq bu 0 G 0, in yl , l , 4Ž . Ž . Ž .02­ x

Ž . Ž . Ž . Ž . Ž .where b g 0, 1 , obviously, u x, t G 0 and u 0, t G u x, t , x, t gŽ . Ž .yl, l = 0, T by the maximum principle.

315

0022-247Xr96 $18.00Copyright Q 1996 by Academic Press, Inc.

All rights of reproduction in any form reserved.

WANG AND CHEN316

Ž .Equation 1 describes some physical phenomena in which the nonlinearŽreaction in a dynamical system takes place only at a single or sometimes

. Ž .several site s . As an example, the influence of defect structures on aw x w x w xcatalytic surface can be modelled by a similar equation in 1 , 6 . In 2 ,

Chadam et al. investigated this equation and proved the following:Ž . Ž . Ž . Ž . Ž .If u x, t is a solution of Eqs. 1 , 2 , 3 , then u x, t blows up in finite time T

Ž .and the blowup set is the whole domain yl, l .

Ž . Ž . Ž .But they said that the asymptotic behavior of solution of Eqs. 1 , 2 , 3was open.

w xIn this paper, using self-similar solution technique in 3]5 and maxi-mum principle we obtain that

b blim u 0, t T y t s b ,Ž . Ž .tªT

Ž .moreover, for any a g yl, l , we obtain thatb blim u a, t T y t s b .Ž . Ž .

tªT

We observe thatŽ .Ž . b b ŽWhen t sufficiently near T , u x, t T y t approximately equals b in yl q

.d , l y d , where d tends 0 as t tends T. This is so-called boundary-layerphonomena.

We organize this paper as follows. In section two we obtain somepreliminary results, in section three we investigate the self-similar solutionand obtain the main results, and in the last section, we obtain the

Ž . Ž . Ž .asymptotic solution of Eqs. 1 , 2 , 3 .

II. PRELIMINARY RESULTS

Our aim in this section is to set up the preliminary estimate of theŽ . Ž . Ž . Ž w x.solution of Eqs. 1 , 2 , 3 . First we state the following lemma see 2 .

Ž . Ž .LEMMA 2.1. The Maximum Principle . Let u x, t be a classical solu-tion of the problem

u y Du G c x , t u x , t , in Q s V = 0, T ,Ž . Ž . Ž .t 0 T

u x , t s 0 or u x , t s 0, x , t g S ,Ž . Ž . Ž .N T

u x , 0 G 0, x g V .Ž .Ž .If 0 F c x, t F c , then0

u x , t F 0, for all x , t g Q .Ž . Ž . T

THE ASYMPTOTIC BEHAVIOR OF BLOWUP SOLUTION 317

Ž . Ž . Ž . Ž . Ž . Ž .THEOREM 2.2. If u x, t is a solution of 1 , 2 , 3 , u x satisfies 4 ,0then there exists B ) 0 such that

Ž .y1r py1u x , t F B T y t , x , t g yl , l = 0, T .Ž . Ž . Ž . Ž . Ž .

Proof. Let

J x , t s u x , t y hu p x , t , 5Ž . Ž . Ž . Ž .t

then we conclude that

J y J s pu py1 0, t u 0, t y hpu py1 x , t u p 0, tŽ . Ž . Ž . Ž .t x x t

q hp p y 1 u2 u py2 x , tŽ . Ž .x

py1 py1G pu x , t u 0, t y hu 0, t 6Ž . Ž . Ž . Ž .t

s pu py1 x , t J 0, t .Ž . Ž .Ž . <Because of 4 , set h F 1 y b, we have J G 0. Thereforets0

¡ py1J y J G pu x , t J 0, t , x , t g yl , l = 0, T ,Ž . Ž . Ž . Ž . Ž .t x x~ <J s 0,< x <sl¢ <J G 0,ts0

Ž .by the maximum principle, J x, t G 0, i.e.,

u x , tŽ .t G h , 7Ž .pu x , tŽ .

Ž .integrating 7 from t to T , we obtain that

Ž .y1r py1u x , t F B T y t , in yl , l = 0, T ,Ž . Ž . Ž . Ž .

Ž . Ž . Ž . Ž .THEOREM 2.3. If u x, t is a solution of Eqs. 1 , 2 , 3 with

bu x , t T y t F B ,Ž . Ž .Ž .where b s 1r p y 1 , then

bq1r2< <u x , t T y t F B9,Ž . Ž .x

bq1< <u x , t T y t F B9,Ž . Ž .x x

bq1< <u x , t T y t F B9.Ž . Ž .t

w xThe proof is similar to the proof of Proposition 1 in 3 , we omit it.

WANG AND CHEN318

III. SELF-SIMILAR SOLUTIONS

We define the function

bw y , s s T y t u x , t , 8Ž . Ž . Ž . Ž .

with

11r2 � 4x s T y t y , T y t s exp ys , b s ,Ž .p y 1

Ž .then w y, s solves

1 pw y , s y w y , s q yw y , s q b w y , s y w 0, s s 0. 9Ž . Ž . Ž . Ž . Ž . Ž .s y y y2

Ž . Ž . Ž . Ž . Ž .If u x, t solves 1 , then w y, s solves 9 . If 0, T is a blowup point, thenŽ .the asymptotics of blowup are encoded in the behavior of w y, s as s ª `

and y ª 0.w xŽ .Now, we denote by E w s the associated ‘‘energy’’ at time s

1 12 2 p< < < <w xE w s s w r dy q b w r dy y w 0 w y r dy ,Ž . Ž . Ž .H H Hy2 2

1 2 sr2� 4 Ž .where r s exp y y and the domain of integration being yl, l = e .4w xUsing the same technique in 3 , we conclude

Ž . Ž . Ž .THEOREM 3.1. If w y, s is a solution of Eq. 9 , then w y, s has a limit,independent of any choice of subsequences, as s ª `, and the limit is the

Ž .solution of Eq. 10 .

Ž .Now, we consider the stationary version of 9 , i.e.,

1 p 1w y yw y b w q w 0 s 0, in R . 10Ž . Ž .y y y2

Ž . Ž . Ž . pŽ .Let w y s w y y p y 1 w 0 , then1

1w y yw y b w s 0.1 y y 1 y 12

Let

'y s 2 z ,

then

w y zw y b w s 0. 11Ž .1 z z 1 z 1

THE ASYMPTOTIC BEHAVIOR OF BLOWUP SOLUTION 319

Ž .The Eq. 11 is a Weber equation. Therefore, we obtain the solutions ofŽ .the equ. 10

w y s p y 1 w p 0Ž . Ž . Ž .2 n

` 'b b q 2 ??? b q 2n y 2 2Ž . Ž .q c 1 q yÝ1 ž /ž /2n ! 2Ž .ns1

2 nq1`' '2 bq1 bq3 ??? bq2ny1 2Ž . Ž . Ž .

q c yq y ,Ý2 ž /ž /2 2n q 1 ! 2Ž .ns1

12Ž .

where c and c are two arbitrary constants.1 2

Ž . Ž .THEOREM 3.2. If w y is a solution of Eq. 10 , then

w y ' b b.Ž .

Ž . Ž .Proof. By Theorems 2.1 and 3.1, w y is bounded, then c , c in 121 2must be zero, we get

w y s p y 1 w p 0 .Ž . Ž . Ž .

Let y s 0, then

w 0 s b b ,Ž .

therefore the theorem is true.

Ž . Ž . Ž . Ž .COROLLARY 3.3. If u x, t sol es 1 , 2 , 3 , then

b blim u 0, t T y t s b ,Ž . Ž .tªT

This is a direct result of Theorems 3.1 and 3.2.

IV. BOUNDARY-LAYER

Ž .For any a g yl, l , we define the function

bz y , s s T y t u x , tŽ . Ž . Ž .a

with

1r2 � 4x y a s T y t y , T y t s exp ys ,Ž .

WANG AND CHEN320

Ž .then z y, s solves

1 pz y , s y z y , s q yz y , s q b z y , s y w 0, s s 0,Ž . Ž . Ž . Ž . Ž .a , s a , y y a , y2

Ž . Ž .where w 0, s is defined in 8 .Ž .By Theorem 3.1 and Theorem 2.1, we know that z y, s has a limit,

independent of any choice of subsequences, as s ª `, and the limitsatisfies

1 pbz y yz y b z q b s 0. 13Ž .y y y2

Therefore, we conclude

Ž . Ž .COROLLARY 4.1. If z y is a solution of Eq. 13 , then

z y ' b b.Ž .

Ž .We omit the proof refer to the proof of Theorem 3.2 .

Ž . Ž . Ž . Ž .THEOREM 4.2. If u x, t is a solution of Eqs. 1 , 2 , 3 , then

b blim u a, t T y t s b .Ž . Ž .tªT

This is a direct result of Theorem 3.1 and Corollary 4.1.Ž . Ž . Ž .Because a is any point in yl, l , we can easily see that u x, t ru 0, t

has boundary-layer phenomena as t tends T from Theorem 3.2 andTheorem 4.2.

Ž .To obtain the estimate of u x, t , we consider the problem

ybU U bu x , t y u x , t s b T y t , x , t g yl , l = 0, T , 14Ž . Ž . Ž . Ž . Ž . Ž . Ž .t x x

² :u* l , t s u* yl , t s 0, t ) 0, 15Ž . Ž . Ž .u* x , 0 s u x , 16Ž . Ž . Ž .0

U Ž . U Ž .FIG. 1. u s 1r4 cos pr2, y s u x, t ru 0, t .0 n n

THE ASYMPTOTIC BEHAVIOR OF BLOWUP SOLUTION 321

Ž . Ž . Ž . Ž .If u* x, t is a solution of 14 , 15 , 16 , then u* approximately showsŽ .the behaviors of u x, t .

In fact, for any e ) 0, there exists t ) 0 such that0

1 y e u* x , t F u x , t F 1 q e u* x , t , t g t , T .Ž . Ž . Ž . Ž . Ž . Ž .0

Ž . Ž . Ž .For 14 , 15 , 16 , by separating variables, we have

Ž . Ž . Ž .THEOREM 4.3. If u* sol es 14 , 15 , 16 , then2` kp kp kp

u* x , t s C cos x q C sin x exp y tŽ . Ý 1, k 2, k ½ 5ž /2 l 2 l 2 lks1

2` kp kptq B t cos x exp y t y t dt ,Ž . Ž .ÝH k ½ 5ž /2 l 2 l0 ks1

where1 kpl

C s u j cos j dj ,Ž .H1, k 0l 2 lyl

1 kplC s u j sin j dj ,Ž .H2, k 0l 2 lyl

4¡ ybbb T y t , for k s 4n q 1Ž .kp

0, for k s 4n q 2~B sk 4 ybby b T y t , for k s 4n q 3Ž .kp¢ 0, for k s 4n.

REFERENCES

1. K. Bimpong-Bota, P. Ortoleva, and J. Ross, Far-from-equilibrium phenomena at local sitesŽ .of reaction, J. Chem. Phys. 60 1974 , 3124.

2. J. M. Chadam, A. Pierce, and H. M. Yin, The blow-up property of solution to someŽ .differential equations with locolized nonlinear reaction, J. Math. Anal. Appl. 169 1992 ,

313]328.3. Y. Giga and R. V. Kohn, Asymptotic self-similar blowup of semilinear heat equations,

Ž .Comm. Pure Appl. Math. 38 1985 , 297]319.4. Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Uni .

Ž .Math. J. 36 1987 , 1]44.5. Y. Giga and R. V. Kohn, Nondegeneracy of blowup points for semilinear heat equations,

Ž .Comm. Pure Appl. Math. 42 1989 , 845]884.6. P. Ortoleva and J. Ross, Local structures in chemical reaction with heterogeneous

Ž .catalysis, J. Chem. Phys. 56 1972 , 4397.