the 21st budapest nephrology school 28, 2014 sadayoshi ito division of nephrology, endocrinology and...

41
August 28, 2014 Sadayoshi Ito Division of nephrology, Endocrinology and Vascular Medicine Tohoku University School of Medicine Semmelweis University The Kidney in Heart Failure The 21st Budapest Nephrology School

Upload: truongnga

Post on 25-Apr-2019

215 views

Category:

Documents


0 download

TRANSCRIPT

August 28, 2014

Sadayoshi Ito

Division of nephrology, Endocrinology and Vascular Medicine

Tohoku University School of Medicine

Semmelweis University

The Kidney in Heart Failure

The 21st Budapest Nephrology School

Site of acute renal injuries in heart failure

Necrosis

of mTALVasa recta

Lesions seen in the outer medulla

Gl

Vasa recta bundle

Medullary thick ascending limb

of superficial nephron (mTAL)

Gl

Vasa recta bundle

High Oxygen

Large blood supply

Cortex

Outer medulla

Inner medulla

Vasa recta

Superfcial Gl

Hard work under sever

conditions

Juxtameduulary GL

Large oxygen consumption

(mTAL、PST)

Low oxygen

Small blood supplyNo oxygen consumption

(Thin loop)

Outer medulla: susceptible to ischemic injuries

cortex

Medulla

Hyperglycemia

Acute kidney injury

VR

Kidney in Hear Failure

・Alterations in Na handling

・Chronic kidney disease has bad influences

on the prognosis of heart failure;even

microalbuminuria is a predictor of poor

outcomes

• Mechanisms of Na handling in normal and

alterations in heart failure

• Why is microalbuminuria a risk factor?

Responses to salt intake

• Acute and sub-acute responses

• Chronic responses(Adaptations)

-normal-

Repetitions

Medullary BF ↑

Renal response to salt loading (meal)

Sodium homeostasis

Neuro-hormonal changes

(RAS↓, NP↑, PG↑,etc)

GFR↑ Na reabsorption↓

Na excretion↑

Salt intake↑ (meal)

(Ito S, et al: Hypertension

Res 32; 115-121, 2009)

0-90min

Protein intake

90-180min

Pooling in vein,

lymph/tissue

RAS inhibition promotes natriuresis

(Singer DRJ, et al: Am J Physiol Renal Fluid Electrolyte Physiol 266; F89-F93, 1994)

Uri

nar

y So

do

im E

xcre

tio

n μ

mo

l/m

inPlacebo

600

500

400

300

200

100-120 -60 0 60 120 180 240 300

0.9%saline

2L

**

**

*

*P<0.05

**P<0.01

(min)

angiotensinII

Angiotensin II 0.6pmol/kg/min

Acute Na loading:

160

145

130

115

100

160

140

120

100

80

200

160

120

80

40

0

200

160

120

80

40

0

C1 C2 S1 S2 S3 P1 P2 P3

Na loading

Scramble

Decoy

MA

P (

mm

Hg)

%M

BF

U・

V(m

l/m

in/

g kw

t)U

Na・

V(μ

mo

l/m

in/

g kw

t)

A

B

C

D

(Li N, et al: Circ Res 102; 1101-1108, 2008)

**

** * *

*

**

*

*

*

*

C1 C2 S1 S2 S3 P1 P2 P3

Renal responses to acute sodium loading: medullary blood flow

-HIF1α(regulates NO and PG synthesis)-

Chronic responses to high Na intake

• RAS inhibition and increases in renal

cortical blood flow (superficial cortex)

• Increases in GFR in superficial cortex

• Decreased proximal tubular Na

reabsorption

Baseline parameters under different Na intake: high

Na increases cortical but not medullary blood flow

(Gross V, et al: AJP 274; R1317-23, 1998)

Cortical

Outer medullary

Inner medullary

(n=9)(n=5)(n=6)

1mEq/day

1.2±0.1V

1.5±0.3V

0.8±0.06V

7mEq/day

32%↑

No change

No change

13mEq/day

50%↑

No change

No change

An infusion of a small amount of AngII

abolishes these changes and increases BP

Medullary BF ↑

Renal response to salt loading:

Sodium homeostasis

Neuro-hormonal changes

(RAS↓, NP↑, PG↑,etc)

GFR↑ Na reabsorption↓

Na excretion↑

Salt intake↑ (meal)

(Ito S, et al: Hypertension

Res 32; 115-121, 2009)

0-90min

Protein intake

90-180min

Pooling in vein,

lymph/tissue

Low Na diet

GFR↑

Reserve of GFR and RBF (after amino acids infusion)

(RuILope LM, et al: Kidney Int 31:992-2, 1987)

ERPF: effective renal plasma flow、 AA: amino acid

Normal Na diet Low Na diet

160

140

120

100

80

GF

R [m

l/m

in]

700

600

500

400

300

ER

PF

[m

l/m

in]

basekline

*

*

baselineAA

180

200

900

800

AA

Medullary BF ↑

Renal response to salt loading (meal)

Sodium homeostasis

Neuro-hormonal changes

(RAS↓, NP↑, PG↑,etc)

GFR↑ Na reabsorption↓

Na excretion↑

Salt intake↑ (meal)

(Ito S, et al: Hypertension

Res 32; 115-121, 2009)

0-90min

Protein intake

90-180min

Pooling in vein,

lymph/tissue BP

211

Renal perfusion pressure (mmHg)

RBF, GFR and pressure natriuresis

GFR

RBF

0 40 80 120 160 200 240 280

natriuresis

Pressure natriuresis and renal hemodynamics

(Cowley AW Jr.: Physiol. Rev 72(1); 231-300, 1992)

140

100

60

50 75 100 125 150 50 75 100 125 150

50

30

10

12

8

4

50 75 100 125 150

AP

140

100

60

50 75 100 125 150 50 75 100 125 150

20

12

4

50 75 100 125 150

12

8

4

50

30

10

0 2 4 6 8

cortex

medulla

AP

RENAL BLOOD FLOW

(%control)

RENAL BLOOD FLOW

(% control)VASA RECTA PRESSURE

(mmHg)

INTERSTITIAL PRESSURE

(mmHg) ∆INGERSTITIAL PRESSURE

(mmHg)

∆UNaV

(μEq/min/gkwt)

INTERSTITSAL PRESSURE

(mmHg)

PTC PRESSURE

(mmHg)

AP AP

AP AP AP

Medullary BF ↑

Renal response to salt loading (meal)

Sodium homeostasis

Neuro-hormonal changes

(RAS↓, NP↑, PG↑,etc)

GFR↑ Na reabsorption↓

Na excretion↑

Salt intake↑ (meal)

(Ito S, et al: Hypertension

Res 32; 115-121, 2009)

0-90min

Protein intake

90-180min

Pooling in vein,

lymph/tissue BP

Pressure natriuresis as

a goalkeeper of Na

homeostasis

Medullary BF ↑

Renal response to salt loading:

Sodium homeostasis

Neuro-hormonal changes

(RAS↓, NP↑, PG↑,etc)

GFR↑ Na reabsorption↓

Na excretion↑

Salt intake↑ (meal)

(Ito S, et al: Hypertension

Res 32; 115-121, 2009)

0-90min

Protein intake

90-180min

Pooling in vein,

lymph/tissue

Heart failure

GFR↑

Responses to AA infusion of GFR and renal plasma flow

(Magri P, et al: Circulation 98; 2849-2854, 1998)

Normal Mild heart failur160

140

120

100

80G

FR

[ml/m

in]

700

600

500

400

300

0.2

0.15

0.1

0.05

0

ER

PF

[ml/m

in]

RV

R[m

mH

g/m

l・m

in-1

]

Baseline AA

*

*

*

Baseline AA

ERPF: Effective renal plasma flow, RVR: renal vascular resistance, AA: amino acid infusion

Cumulative Na balance during sodium loading

(Volpe M et al.Hypertension 30: 168-76, 1997)

Sodiu

m

Inta

ke(m

mol)

Base day0

100

200

300

1 2 3 4 5 6 7 8

Normal(n=10)

Mild heart failure, untreated(n=10)

Mild heart failure, ACEI(n=6)

0

100

200

300

400

Effects of Na loading on GFR and tubular function

(Volpe M et al: Hypertension 30: 168-76, 1997)

Normal Mild heart failure

GFR(m

l/m

in)

250100250100

150

130

110

90

GFR

FE

K(%

)

4

12

8

100 250 200 250

(mmol/day)

Reflects proximal tubular reabsorption

(under maximal water diuresis)

Heart failure・not simple impairment of

sodium excretion

・some Na-retaining mechanism

is activated by sodium load

Salt toxicity

Superficial nephron

Midcortical nephron

Juxtamedullary nephron

Outer stripe

Inner stripe

CHF

cortex

Outer

medulla

Inner medulla

Whole GFR

15% decrease

35% decrease

Increase in GFR

Reabsorption by mTAL

(O2 consumption)

Measurement of NO/ROS in

microperfused mTAL

tip

High Na Low Na

Laser beam

fluorescence

Exchange

Increased Na reabsorption enhances

O2-, but reduces NO activity in mTAL

(Abe M, et al: Am J Physiol Renal Physiol 291; F350-357, 2006)

O2- NO

Measurement of NO/ROS in tissue strip

kidney

.

500 mm

OMDVR

GlmCX

OM

500mm

V Recta

GlCX

OM

.

OMDVR

mTAL

100 mm

V Recta

mTAL

100mm

mTAL

50mmV Recta

(Mori T et al. Hypertension 2002

Dickhout JG, Mori T et al. Circ Research 2002

Mori T et al. Hypertension 2003

Cowley AW,Jr, Mori T et al. Am J Physiol. 2003

Mori T et al. Hypertension 2004)

A single layer of

mTAL and vasa recta

Tubulo-Vascular Crosstalk

Descending

Vasa recta Ang II

Ang II

Ang II

Ang II

Ang II Ang II

mTAL

[NO]i

NOS

X

[O2-]i

NAD(P)H

X[NO]i

(Dickhout JG et al. Circ Research 2002

Mori T et al. Hypertension 2003)

NOS

[NO]i

[O2-]i

NAD(P)H

[O2-]i

X

NaCl

S Ml

10

20

30

40

Cotex

Myocardial infarctSham‐operated

Outer medulla

NKCC2 in mTAL increases in heart failure

mRNA Immunoblots

(Nogae S et al: Kidney Int. 57; 2055-2063, 2000)

130kD

BS

C1 m

RN

A,

am

ol/μ

g R

NA

ACEi no effect

• Attenuated pressure natriuresis and Na

retention

• In heart failure, medullary blood flow does

not increases by acute sodium loading

• α-hANP increases medullary blood flow in

addition to other effects

Importance of Medullary Blood

flow in heart failure

4

3

2

1

0

Fra

ction o

f S

ham

Sham CHF

1.5

1.0

0.5

0.0

Fra

ction o

f C

HF

CHF DNX-CHF

*

#

SHAM CHF CHF DNX-CHF1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

(Torp M, et al: Acta Physiol 204; 451-459, 2012)

Values are mean ± SE. n = 6 in all groups.*P < 0.05 (vs. SHAM). #P < 0.05 (vs. CHF).

Renal denervation inhibits NKCC2 overexpression in CHF

8

6

4

2

060 100 140 180

8

6

4

2

060 100 140 180

% H

2O

Excre

tion

% N

a E

xcre

tion

RPP mmHg RPP mmHg

*

* P<.05

Denervated, N=7

Innervated, N=6

*

*

Pressure natriuresis and renal SNS

(Roman RJ, et al: Am J Physiol Renal Physiol 248; F190-F198, 1985)

Decreased cardiac out put

Ang II

Water and Na retention

ADH

SFN-GFR JMN-GFR

NKCC2 (mTAL)

PT reabsorptionMBF

DT, CD reabsorption

SNS RAAS RBF

(TVC)

Renal functional alterations in heart failure

ROS

aldosterone

SFN, superficial

JMN, jutamedullarury

TVC, tubulo-vascular crosstalk

Kidney in Hear Failure

・Alterations in Na handling

・Chronic kidney disease has bad influences

on the prognosis of heart failure;even

microalbuminuria is a predictor of poor

outcomes

• Mechanisms of Na handling in normal and

alterations in heart failure

• Why is microalbuminuria a risk factor?

Kralik PM. Am J Pathol 175:500-5009, 2009

Albuminuria originates only from a small fraction of nephrons

Albumin immunohistochemistry

Perforating arties

Arteriolar damages

Albumin leakage

Strain vessels

・High pressure

・Pulsatile pressure

・High vascular tone

Arcuate artery

albumin(-)

Microalbuminuria

JMN

50 mmHg

Albumin leakage

Albuminuria: impaired medullary circulation

Glomerular HT

Vasa recta controlling

medullary blood flow

Pressure natriuresis

Na retention

Albuminuria

• Impaired medullary circulation, and

pressure natriuresis: Na retention

• Worse outcomes in heart failure:

Perspectives

• Na restriction

• Improve cardiac function

• Renal artery stenosis

• RAAS inhibition: starting low dose, watch BP

• Inhibition of proximal tubular reabsorption:αhANP, increase RBF, NEP inhibitor, adenosine A1 antagonist

• Improve medullary circulation:αhANP, some Ca antagonists (?), NEP inhibition, etc

• Improvement of anemia: Hb 10-11(12)g/dl

急性圧利尿曲線

2.0

腎灌流圧

1.0

0.5

0

コントロール

Na排泄量

尿中

(伊藤貞嘉: Hypertension Frontier 7, 2004)

単離灌流腎In vitro

慢性的食塩摂取量と血圧の関係(慢性圧利尿曲線)

300

200

100

Na排泄量(摂取量)

尿中

50 100 150 200

健常者食塩非感受性高血圧

食塩感受性高血圧

平均血圧(mmHg)

(mmol/日)

急性圧利尿曲線とそれに及ぼすRASとNP系の影響

2.0

血圧

1.0

0.5

0

NP(+)

コントロール

AⅡ(+)

AⅡ(++)

Na排泄量

尿中

(伊藤貞嘉: Hypertension Frontier 7, 2004)

糸球体濾過開始

尿細管による再吸収抑制

急性圧利尿曲線から慢性圧利尿曲線(食塩摂取と血圧)

2.0

血圧

1.0

0.5

0

C´C

NP(+)

コントロール

AⅡ(+)

AⅡ(++)

Na排泄量

尿中

(伊藤貞嘉: Hypertension Frontier 7, 2004)

食塩感受性が大なほど揺れ幅が大きい