tft fab. processcontents.kocw.net/kocw/document/2015/sungkyunkwa… ·  ·...

82
디스플레이공학 3(공정) TFT Fab. Process

Upload: vukien

Post on 26-Apr-2018

228 views

Category:

Documents


5 download

TRANSCRIPT

  • 3 () TFT Fab. Process

  • 2

    1)

    2)

    3) 4

    4)

    5) poly-Si

    6)

    7) CMOS

    8) TFT

  • 3

    LCs

    LCD Mode Demands to LCs

    IPS -High

    -Low 1-Good reliability (mura-free)

    FFS -High n

    -Low 1-Good reliability (mura-free)

    LCD Mode Demands to LCs

    VA

    (MVA, PVA, New-ASV)

    -Low 1-High for

    Low Vop & High Light Efficiency

    + -

    LC Materials for Monitor & TV

  • 4

    LCD Mode

    Intrinsic Issues Solutions

    IPS Vth 1/d, off 1 d2/K22

    Fast Response: d Vth 1 ; Limitation exists

    -CN LCs

    with High Reliability

    -New LCs for high

    and low 1

    VA on Molecular dynamics & 1 off 1 d

    2/K33 ; Advantage due to bend deformation

    1 > 100 mPa.s with relatively low

    -New LCs for high

    and low 1(Breakthrough ??)

    FFS Vth 1/d, off 1 d2/K22

    Fast Response: d Vth 1 ; Advantage exists

    -Focus on LCs for low 1with High Reliability

    Issues for LCD Modes and Development Status

  • 5

    Off On

    Substrate

    Light Light

    Light

    IPSIPS

    Off On

    Substrate

    Off On

    Substrate

    LightLight LightLight

    LightLight

    IPSIPS

    LC Molecule

    OFF ON

    Light

    FFS

    Light

    Light

    Glass

    Glass

    Electric

    Field

    Metal

    LC Molecule

    OFF ON

    Light

    FFS

    Light

    Light

    Glass

    Glass

    Electric

    Field

    Metal

    PVA

    Wide-Viewing-Angle Technologies used

    in Production by Korean companies

  • 6

    IPS

    CsBus Line

    Gate

    Bus Line

    Source Bus Line

    Cgd

    TFT

    Cs CLC

    Cs

    Glass

    Glass

    FFS

    Cs Bus Line

    Gate Bus Line

    Source Bus Line

    Cgd

    TFT

    CsCLCCf

    Cs

    Glass

    Glass

    Cf

    CpdCpd

    One Pixel Structure of FFS

    Ctotal =Cgd + Cs + CLC (IPS) Ctotal = Cgd + Cs + Cf + CLC (FFS)

    Cst in Light-Transmitted Area !!!

  • 7

    Corning 7059 & 1737 glass

    Thermal absorption ratio

    Relativity of Glass & temperature

    Characteristics of glass substrate for TFT-LCD

    Corning Corning 1737Corning Eagle

    2000

    Corning

    Annealed

    Glass (1737)

    NA 35

    (NH

    Techno

    glass)

    Density

    20oC2.54g/cm3 2.37g/cm3 2.55/cm3

    roughness

    ~ Thermal

    expansion

    37.8 10-7 / oC

    ( 0 ~ 300oC )

    31.8 10-7 / oC

    ( 0 ~ 300oC )

    38.4 10-7 / oC

    ( at 300oC )

    12 ~ 13 ppm

    ( at 400oC 2h )

    2 ~ 3 ppm

    ( at 600oC 2h )

  • 8

    Protection Sheet

    Vertical Prism Sheet

    Horizontal Prism Sheet

    Diffusion Sheet

    Light Guide Plate (LGP)

    Reflection Sheet

    Lamp&Lamp Cover

    Details of Side(Wedge) type

  • 9

    Lamp

    1. Principle & Structure of CCFL(Cold cathode Fluorescence Lamp)

    1. Normal glow discharge2. Rare gas & mercury (a few mg)3. Proccess

    - Glow discharge in low vapor pressured Mercury by added high electric field - UV ray (253.7nm) emitted these ultraviolet rays excite the phosphor.

    - Excited phosphor atoms return to low energy level, the visible light is emitted. (Its wave length is decided by the phosphor material.)

  • 10

    Lamp

    2. Characteristic color x, y coordinates - White region- x=0.2980.01, y=0.2950.01

    (in case of 14 Lamp)- Color control mixing R G B Phosphor materials

    3. Lamp & Lamp Cover - Lamp cover absorbed >60% of light- Only ~30% light entered LGP- Need New design and new materials

    for Wedge

    for Direct

  • 11

    Light Guide Plate (LGP)

    1. Flat LGP / Shaped LGP by Mold injection

    2. Polymer materials = PMMA

    3. General Characteristics of PMMA as a Light Guiding

    General Usage LGP Application Remarks

    ColorTransparentHalf-Trans

    TransparentDepend on process

    & Materials

    Specific Weight 1.19 1.19 -

    Reflect Index 1.49 ~ 1.62 1.49 -

    OpticalEnergy Gap

    3.8 ~ 4.4 eV 3.8 eV -

    OpticalTransmittance

    88 ~ 93(0.1, 350~850nm)

    93Below the 380nm,Absorption region

    Yellowish of LGPOlefin resin

  • 12

    3. Lens Film- Structure (Vertical, Horizontal)

    - Function : To enhance bright & Light exit angle

    - Brightness Enhanced Film (BEF), DBEF, MBEF, etc

    - 3M, Exclusive Patent

    LGP

    Diffusion film

    =~70o

  • 13

    Further Research for Flat Lamp

    1. E (External Fluorescence Lamp)

    - http://www.harison.co.jp- EE (external electrode free lamp)- AFL (arrayed fluorescence lamp)- Possible to form Array & Mosaic with 1 inverter

    - Sustain voltage is higher than that of CCFL(1000~1400) (~800 or lower)

    GndHot

    Inverter

    http://www.harison.co.jp/

  • 14

    Further Research for Flat Lamp

    2. Osram Flat Lamp1. Specification

    - 15, 7000cd/m2, 48Watt

    2. Results- 5700cd/m2, Uniformity of ~70%

    3. Electrode structure- Parallel electrode with dendritic tip

    4. Drawbacks- Heat/Weight/Inverter size

    Inverter Electrode structure

    15 Flat Lamp

    spacer

  • 15

  • 16

    (Transfer) (output)

  • 17

    Glass substrate

    a-Si:H

    Source DrainGate

    Gate Insulator

    Glass substrate

    DrainSource

    Gate

    Gate Insulator

    a-Si:H

    Glass substrate

    a-Si:H

    Gate Insulator

    Gate

    DrainSource

    Glass substrate

    a-Si:H

    Gate Insulator

    Gate

    DrainSource

    Etch stopper

    1) Coplanar type 2) Stagger type

    3) Inverted Stagger type4) Inverted Stagger - ISI type

    TFT

  • 18

    TFT

  • 19

    (SID SHORT COURSE, 2001)

    TFT (1)

  • 20

    (SID SHORT COURSE, 2001)

    TFT (1)

  • 21

    TFT

  • 22

    LTPS TFT-LCD AMOLED (1)

  • 23

    LTPS TFT-LCD AMOLED (2)

  • 24

    ( , TFT Array , 2002)

    LTPS TFT-LCD AMOLED (2)

  • 25

    (SID SHORT COURSE, 2001)

    I-V Characteristics of a-Si TFT(1)

  • 26

    (SID SHORT COURSE, 2001)

    I-V Characteristics of a-Si TFT(2)

  • 27

  • 28

    ( , TFT Array , 2002)

    AMOLED

  • 29

    OLED

  • 30

    OLED

  • 31

    OLED

  • 32

    HPD-CVD

  • 33

    ( , TFT Array , 2002)

  • 34

  • 35

    2.2

    . Sputter

    . CVD

    . Photolithography

    . Dry etching

    . Wet etching

    .

    . line

  • 36

  • 37

  • 38

    TFT Panel Process

  • 39

  • 40

  • 41

  • 42

    Gate & S / D Bus Line Pixel Electrode

    Capacitor Electrode PAD

    Align Key Black Matrix Mask

    Static Charge Protect

    - Resistance : Signal Delay

    - Etching : Taper, CD Uniformity, Etch Rate

    - Thermal Characteristic : Heat Expansion, Hillock

    - : Etchant, , Developer, Stripper

    - : Metal Galvanic Cell

    - : PAD Corrosion

    - Contact : Metal Contact, S/D Contact

    - Other : LC

    Metal for TFT-LCD Process

    TFT-LCD Metal

    Required

  • 43

    Metal deposition

    Metal deposition

    PVD CVD

    Sputtering Evaporation PECVD

    Inert gas

    Reactive gas (reactive gas plasma)

    Advantage

    Multi-sputtering with good controls

    In-situ surface cleaning

    Disadvantage

    Impurity in the sputter gas

    Radiation or ion damage

    Target material dependence

    DC, RF(AC) Sputtering

    E-gun or crucible source

    Advantage

    High purity deposition

    High deposition rate

    No trapped gases

    No radiation damage

    Disadvantage

    Poor control on deposition rate

    Not suitable for compound

    Poor Step coverage

    Advantage

    Excellent step coverage

    High throughput

    Selective deposition possible

    High deposition rate

    Disadvantage

    Limited to available precursors

    Not suitable for compound

    Particle generation

    Rougher surfaces

    Gas entrapment

    Toxic hazardous gas

    Decomposition procducts

    Required

    - Step coverage ( CVD >> Sputtering >> Evaporation )

    - No damage during deposition (Evaporation >> CVD >> Sputtering)

    - No stress, Good adhesion

    - Smooth films

    - Crystalline films

  • 44

    -Sputtering Plasma energy Target Target .

    -Sputter Issue Gate S/D .

    () ()

    Ag 2.0 (1.6) 961 FCC

    Cu 2.3 (1.7) 1083 FCC

    Al 3.1 (2.7) 660 FCC

    Mo 11.5 (5.4) 2610 FCC

    Cr 21.0 (12.9) 1875 BCC

    Ni 50 (7.8) 1453 BCC

    ITO 180~200 - Cubic Bixbyite

    . Sputter

  • 45

    DC diode discharge

  • 46

    0.1

    1

    10

    100

    1000

    10 15 20 25 30 35 40

    Diagonal Size (inch)

    Require

    d R

    esis

    tivity

    (

    cm

    )

    Gate VGA(GV) Gate XGA(GX) Gate HDTV(GH) Data VGA(DV)

    Data XGA(DX) Data HDTV(DH) Al-Nd Mo

    Cr -Ta MoTa

    Panel Gate, S/D

  • 47

    0.0

    5.0

    10.0

    15.0

    20.0

    50 100 150

    Depo

    Resistivity (

    cm)

    Al-Nd alloy PECVD Anneal

    -2.0E+09

    -1.0E+09

    0.0E+00

    1.0E+09

    2.0E+09

    3.0E+09

    4.0E+09

    0 100 200 300 400 500

    Temperature ( )Stress

    (dyn

    e/

    )

    Al-Nd pure Al Stress Thermal Hysteresis

    Al-Nd

  • 48

    15

    20

    25

    30

    35

    0.3 0.6 0.9

    Pressure (Pa)

    Resistivity ()

    100

    150

    200

    (2.2mTorr)

    0

    0.4

    0.8

    1.2

    1.6

    2

    0.1 0.4 0.9

    Pressure (Pa)

    Stress (E+10 dyne/

    )

    100

    200

    300

    Cr Resistivity () Stress ()

    Cr

  • 49

    200

    240

    280

    320

    360

    400

    100 120 140 160 180 200 220

    Heater Setting ( )

    Resistivity (

    )

    Heater Setting ITO Film

    200

    250

    300

    350

    400

    0.6 0.8 1 1.2 1.4 1.6 1.8 2

    O2 (sccm)

    Resistivity (

    )

    O2

  • 50

    (O2 : 0.4sccm) (O2 : 1.2sccm) (O2 : 2.0sccm)

    O2 ITO Film SEM (60,000)

    O2 ITO Film

  • 51

    100 ITO, IZO Anneal Rs ( 1200)

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0.6sccm 1.4sccm 2.2sccm 3.0sccmO

    Rs

    (/

    )

    ITO (as depo Rs) ITO (anneal Rs)

    IZO (as depo Rs) IZO (anneal Rs)

    200 ITO, IZO Anneal Rs ( 1200)

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0.6sccm 1.4sccm 2.2sccm 3.0sccmO

    Rs

    (/

    )

    ITO (as depo Rs) ITO (anneal Rs)

    IZO (as depo Rs) IZO (anneal Rs)

    O2 Anneal IZO, ITO Rs

  • 52

    Item Ag Cu Al AlNd

    Resistivity

    (cm)2.1 2.3 3.1 ~ 4.5

    Hillock X O X O

    Anti-Corrosion X X

    Adhesion to Glass or a-Si

    X X O O

    Dry Etching X O

    Reflectance O X O O

    n+a-Si Contact

    O O X X

    ITO Contact O O X X

    Target CoastO

    recycleO O X

    (O Good, Not So Good, X Bad)

    Low resistive metals for the bus lines of TFT-LCD

  • 53

    High-Aperture-Ratio TFT-LCD Using a Low Dielectric Material

    Gate Data lineSiNx

    Organic

    insulator

    Pixel Electrode

    (ITO)

    Drain/Source

    a-

    Si:H

    n+

  • 54

    TFT on Color Filter Structure

    A) Color Filter patterning

    B) BCB TFT fabrication

    C) BM Patterning

    Common Electrode

    Top Glass Substrate

    ITO (Pixel electrode)

    Ni Silicide Passivation

  • 55

    -CVD (, , rf power, DC)

    .

    (1)APCVD(Atmospheric Pressure Chemical Vapor Deposition)

    - , gas flow .

    (2)LPCVD(Low Pressure Chemical Vapor Deposition)

    - .

    (3)PECVD(Plasma Enhanced Chemical Vapor Deposition)

    - glow , .

    . CVD

  • 56

    P-5000 PECVD Chamber

  • 57

    (1)Electron-Impact Dissociation reaction

    dissociation reactive radical . reactiveradical . Plasma surface reaction radical .

    e + O2 O + O + e

    (2) Electron-Impact Ionization reaction

    Electron dissociation .

    e + O2 O2+ + 2e ( Ionization )

    e + O2 O+ + O + 2e ( Ionization + Dissociation )

    e + SF6 SF6- SF5- + F ( Electron Attachment )

    (3) Electron-Impact Excitation reaction

    Electron radical radical vibration rotational excitation .

    e + F F* + e ( Excitation )

    PECVD

  • 58

    Film GH GL

    DEPO RATE (/min) 1800 850

    Uniformity (STD, Edge 15mm) 63

    Refractive Index 1.889

    Stress (dyne/cm2) 1.0E+8 -1.25E+10

    WER (/min,500:1HF) 60

    N-H Bond (E22/cm3) 1.19 2.77

    Si-H Bond (E22/cm3) 0.44 0.05

    N-H/Si-H RATIO 2.70 58.7

    TOTAL H (E22/cm3) 1.63 2.82

    Dielectric Constant 7.3

    Gate SiNx

  • 59

    Film

    DEPO RATE (/ MIN) 960

    Uniformity (STD, Edge 15mm) 31

    Refractive Index 4.02

    Stress (dyne/cm2) -3.50E+9

    Si-H/Si-H2 Ratio 2.6

    H Concentration (Area) 5.7

    Resistivity(cm) 33.5

    a-Si

  • 60

    Film AL AH AL AH

    DEPO RATE (/ MIN) 580 1200 580 1320

    Uniformity (STD, Edge 15mm) 79 84

    Refractive Index 4.20 4.35

    Stress (dyne/cm2) -3.9E+9 -4.7E+9 -2.0E+9 -4.0E+9

    Si-H/Si-H2 Ratio 10.5 12.3 13.9 8.3

    H Concentration (Area) 3.8 4.2 3.3 4.1

    Conductivity(DARK, ATM) 8.30E-9 3.60E-8 9.75E-9 4.24E-9

    n+ a-Si

  • 61

    Film

    DEPO RATE (/ MIN) 2070

    Uniformity (STD, Edge 15mm) 51

    Refractive Index 1.830

    Stress (dyne/cm2) -5.0e+9

    WER(/MIN, 500:1HF) 140

    N-H Bond (E22/cm3) 2.16

    Si-H Bond (E22/cm3) 0.52

    N-H/Si-H Ratio 4.15

    Total H (E22/cm3) 2.69

    Dielectric Constant 6.8

    Passivation SiNx

  • 62

    -

    . Photolithography

  • 63

  • 64

  • 65

    Slit & Spin

    PR

  • 66

    Stepper

  • 67

    Aligner

  • 68

    Schematic View

    Scanning Projection Exposure

  • 69

    - Gas Ionize Electron Ion , PLASMA Etch Plasma Etch Dry Etch .

    (1)

    - .

    - .

    - .

    (2)

    - .

    - , .

    - .

    - .(Cu, Pt)

    . Dry etching

  • 70

    PE(Plasma Etch) MODE

  • 71

    RIE(Reactive Ion Etch) MODE

  • 72

    ( )

    1.GLASS DAMAGE .

    2.SINx/SI/Ta/MO/ITO/AL/Cr ETCH

    3.LOW PRESSURE(100mTorr)

    4.HIGH DENSITY THROUGHT

    PUT .

    :MODEL - LAM

    LAM ETCHER

    > COOLING: He COOLING

    > CLAMPING: ESC (Electrostatic

    Chucking )

    TCP(Transformer Coupled Plasma)MODE

  • 73

    Material Gas plasma

    Si CF4, CF4 + O2, CCl2F2

    POLY Si CF4, CF4 + O2, CF4N2

    Amorphous Si CF4, CF4 + O2,

    SiO2 CF4, CF4 + O2, HF

    SiN CF4, CF4 + O2, HF

    Mo CF4, CF4 + O2

    W CF4, CF4 + O2

    Au C2Cl2F4

    Pt CF4 + O2, C2Cl2F4 + O2

    Ti CF4

    Al CCl4, CCl4 + Ar, BCl3, Cl2

    Cr Cl2, CCl4, CCl4 + Ar, O2

    Dry etching etching gas

  • 74

    TFT (DRY & WET ETCH )

    DRY ETCH WET ETCH

    1. . 1. .

    2. .

    ( Gas )

    2. .

    (Chemical )

    3. Clean Process ( ) 3. .

    4. 4.

    5. Control 5. Control

    6. Pattern 6. Pattern

    7. Process Parameter

    8. Wet Etch .

    9. Etching Damage.

  • 75

    PE RIE SPUTTER ETCH

    ETCH

    MECHANISM

    PRESSURE > 0.1Torr < 0.1Torr < 0.1Torr

    WAFER

    LOCATION

    GROUNDED

    ELECTRODE

    POWERED

    ELECTRODE

    POWERED

    ELECTRODE

    ETCH

    SPECIESFREE RADICAL

    RADICAL

    REACTION CHEMICALCHEMICAL

    PHYSICALPHYSICAL

    R PRODUCT R Ion PRODUCT+

    Ion PRODUCT+

    LOW HIGH HIGH LOW LOW PHYSICAL SPUTTERREACT ION ETCH

    PRESSURE POWER ANISOTROPIC ISOTROPIC SELECT IVITY RIEETCH

    HIGH LOW LOW HIGH HIGH CHEMICAL PLASMAREACT ION ETCH

    Etch Mode Etch

  • 76

    Bar Space

    Pitch

    Pattern Bias

    CD Bar

    High over etch

    PR

    PR

    Overetch

    PR

    Etched film

    Lateral Etch

    dry etching

  • 77

    Etching

    PR

    N+ a-Si

    a-Si

    G-SiNx

    Glass

    Active Etch Profile

    Active Etch

  • 78

    Etching

    S/D Cr

    N+ a-Si

    a-Si

    G-SiNx

    Gate Metal

    Channel

    Channel

    n+ Channel ETCH

  • 79

    Etching Etching

    PR PR

    Passivation Passivation

    Cr G-SiNx

    Gate Matel

    Contact Hole & Data Pad Etch Gate Pad Etch

    Contact Hole Gate Pad

  • 80

    Etching

  • 81

    Taper Etching Mechanism

  • 82

    Photoresist Lifting Taper Etching Mechanism

    Al/Mo Taper Etching Mechanism