text optional: institutsname prof. dr. hans mustermann mitglied der leibniz-gemeinschaft scientific...

28
Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de Scientific Case for Ultra-intense Laser-Matter Interaction Physics in Solid-density Plasma

Upload: adam-saunders

Post on 26-Mar-2015

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Scientific Case for Ultra-intense Laser-Matter Interaction Physics in Solid-

density Plasma

Page 2: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 2Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

Helmholtz Beamline at European XFEL: Scientific Motivation• Unique science enabled by combining European XFEL with ultra-intense lasers

- strong field QED, e.g., vacuum birefringence

• Highest quality x-ray probing of laser-driven experiments - isochorically heated matter (laser-ions, self- & externally-magnetized targets, interface collisional heating, laser-ablation-driven shocks)- ion induced damage in materials- time-resolved spectroscopy of excited-state chemical pathways- extreme fields & currents in ultra-intense laser-matter interaction- high pressure phenomena in laser-driven shocks- multi-view tomography, multi-frame imaging spectroscopy

• Add laser-based multi-species probing to XFEL experiments - proton radiography, fs-electron diffraction, hard bremsstrahlung,…

• Spin-offs- e.g., high-field X-ray Magnetic Circular Dichroism with small pulsed magnets- single-shot implementation of conventional synchrotron techniques

Page 3: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 3Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

Helmholtz Beamline at European XFEL: Scientific Motivationns-pulse, kJ-class, ramped compression laser

create strongly-correlated matter at extreme pressure

Fundamental Goal: • precision & systematic study of P > 5 Mb cold matter

(advance beyond complex, expensive, single-shot laser expts)

Technique, requirements: • ramped-pulse isentropic compression solid-phase!!• laser-compression, XFEL probe• Rep-rate >0.1 Hz, with 10 Hz desired

Why Euro XFEL:• multi-user => “dedicated” HED beamline• not planned elsewhere (LCLS, SwissFEL, SCSS?)

Scientific Applications: • planetary science• fundamental solid-state• “new chemistry”

Page 4: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 4Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

Helmholtz Beamline at European XFEL: Scientific Motivationultra-intense short-pulse PW-class (>100 TW) laser

hot-dense matter, and WDM generation probing of XFEL-driven WDM initiate dynamic processes & non-equilibrium conditions

Fundamental Goal: • precision & systematic study of near-solid density hot matter • systematic probing directly inside solid-density plasma

(advance beyond complex, single-shot laser expts)

Technique, requirements: • Isochoric heating with laser + XFEL (& laser-) probing

• WDM: laser-ions (~1 ps)• WDM & HEDP: laser-electrons, self- & external-B, interfacial shocks

• Isochoric heating XFEL (<50 eV) + Laser- probing (complements XFEL split+delay)

• Laser-initiation of dynamic & non-equilibrium phenomena in solid plasma (filamentation, transport, heating relaxation, diffusion)

• Ultrafast creation & probing • Rep-rate >0.1 Hz, with 10 Hz desired (move beyond complex, single-shot laser

expts)

Why Euro XFEL:• XFEL pulse-train-based synchronization to ~10 fs • not planned elsewhere at 100+ TW level

Page 5: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 5Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

Helmholtz Beamline at European XFEL: Scientific Motivationultra-intense short-pulse PW-class (>100 TW) laser

hot-dense matter, and WDM generation probing of XFEL-driven WDM initiate dynamic processes & non-equilibrium conditions

Scientific Applications: • fundamental physics in P-T- regimes accessed by isochoric heating• WDM & HED plasmas in strong B fields• fundamental study of dynamic & non-equilibrium phenomena in solid

plasma (filamentation, e-transport, rad-transport, ionization, radiation, heating, relaxation, magnetic diffusion, anomalous & collisional resistivity)

Goal: Predictive understanding of ultra-intense laser-matter interaction

control & improvement of laser-ion acceleration, compact radiation sources for application in research, medicine & industry(e.g., better backlighters, ion sources, ultrafast probing…)

Page 6: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 6Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

Helmholtz Beamline at European XFEL: Scientific Motivationultra-intense short-pulse PW-class (>100 TW) laser (II)

initiate radiation-induced processes in materials, bio, chemical systems

Fundamental Goal: • access the dynamics of particle-induced damage in materials• study fundamental atomic-level “jump” processes in materials• systematic study of chemical & biophysical processes initiated by radation

• Technique, requirements: • Sample irradiation with laser-generated ions, electrons, x-rays, -rays,

neutrons…(NB: optical pumping does not require TW-PW class)

• Probe with XFEL, complementary laser-generated probes (?)• Ultrafast creation & probing • (Rep-rate >0.1 Hz, with 10 Hz desired )?• Key challenge to identify best probing techniques (XANES, EXAFS, diffraction,

XCPS?…)

Why Euro XFEL:• 100+ TW for secondary particle & radiation production, not planned elsewhere

GOAL: Predictive understanding of fundamental materials processes at atomic- and nano-scale

Page 7: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 7Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

Helmholtz Beamline at European XFEL: Scientific Motivationultra-intense short-pulse PW-class (>100 TW) laser (III)

Strong-field physics nuclear physics???

Fundamental Goal: • directly measure polarization of QED vacuum• …

• Technique, requirements: • Vacuum birefrigence measured with XFEL x-rays• ….

Why Euro XFEL:• 100+ TW for strong optical fields, not planned elsewhere• …

Page 8: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 8Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

Laser Isochoric Heating

Self-generated magnetic confinementRassuchine et al., PRE 79, 036408 (2009)

Pulsed external ~MG magnetic transport inhibition

Bakeman et al., Megagauss XI (2007) http://conferences.theiet.org/mg-xi/mgxi-final-v7.0.pdf

Interface shock heating in heterogenous solid targetsSentoku et al., Phys. Plasmas 14, 122701 (2007)

Isochoric heating with laser-accelerated protonsPatel et al., Phys. Rev. Lett. 91, 125004 (2003)

Electrostatic hot electron confinement using reduced-mass targets

Perez et al., Phys. Rev. Lett. 104, 085001 (2010)

Page 9: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 9Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

Short-pulse laser heating can access extreme states of matter

Confinement to increase Tion, ne+; and to probe EOS- inertial (e.g., large target heated with ion beam)- electrostatic (e.g, sheath fields)- magnetic (external, or self-generated)

Relativistic positron-electron

"plasma"

Hot coronal plasma (collisionless)

Isochoric heating (at depth)- resistive return current- electron cascade (hot warm ions)- electrostatic ion shock- secondary beam

Page 10: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 10Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

H. Yoneda, 2008 WDM Winter School

Page 11: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 11Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

1013 A/cm2, > 1000 T, 1013 V/m, ~keV solid density

Extreme Ex

Electron transport & strong fields in laser-driven targets

Extreme current densities, magnetized current filaments, and strong quasi-static magnetic fields in ultra-intense laser-matter interactions

Current filamentation

Quasistatic 5000 T fields in shaped targets, electron transport inhibition, enhanced heating

J. Rassuchine et al, PRE 79, 036408 (2009)

Important for:

Laser-ion accelerationIsochoric heatingFast Ignitor physicsLaser-plasma x-ray sourcesMagnetized HEDP

Page 12: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 12Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

Extreme Ex5000 Tesla quasi-static field x-ray Faraday rotation imaging

dzBnK ze 2with K= 2.629×10-13 M.K.S. units.

LCLS-Matter in Extreme Conditions (HEDP) concept paper (04.2009):

“Relativistic electron transport, isochoric heating, and multi-MG magnetization

in solid density plasma” T.E. Cowan, M.S. Wei et al., (HZDR, UCSD, LANL, LLNL)

Concept – image B-fields by x-ray Faraday rotation

Channel-cut Si cyrstals: I. Uschmann et al, HI-Jena

Page 13: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 13Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

Channel cut Si 400 crystal

Realization – use channel-cut Bragg crystal polarimeter

I. Uschmann et al, “Determination of high purity polarization state of x-rays,” ESRF expt. (2010)

(5 x 10-10 polarization)

Page 14: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 14Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

Page 15: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Prof. Dr. Thomas Cowan Institut für Strahlenphysik www.fzd.de 29. September 2010

Open questions & future directions

• Begin with proof-of-principal (ride-along desirable)

• Imaging through channel-cut crystals appears feasible (in progress)

• Collimation requirements (diverging, or collimated with post-magnification)

• Feasibility of post-magnification (convex Bragg mirror)?

• What is short-pulse laser intensity, pulse energy available at LCLS?MEC: 35fs/150mJ/800nm; 2-20ns/2x25J/527nm

• Interesting directions: - fields in pre-formed plasma during hole boring- radial propagating near-surface fields- filament propagation in solid (ionization, heating, Weibel)- quasi-stationary fields from current filaments- magnetic diffusion (relaxation, >6 ps)- quasi-static resistive fields- material dependence

Page 16: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Prof. Dr. Thomas Cowan Institut für Strahlenphysik www.fzd.de 29. September 2010

Example: material dependence

• Filamentation in 6×1019 W/cm2, 300 fs, 20 J irradiation of Al, Cu, Au

• Resistive B-field evolution:

η - collisional resistivity

• in Al, dominant. B 5 MG Individual filaments.

• in Au, dominant. B 100 MG Confines net electron flow.

• in Cu, both important.

(-1)ne B┴ Zavg

theo: Y. Sentoku, A. Kemp; exp: J. Fuchs, T.E. Cowan et al

Al

Cu

Au

± 5 MG

±100 MG

±100 MG

Page 17: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Prof. Dr. Thomas Cowan Institut für Strahlenphysik www.fzd.de 29. September 2010

FLASH experiment

• Larger Faraday rotation with longer wavelength FLASH?

• RAP Bragg crystal (2d = 26.2 Å). n= 2d sin(45°) = 1.85 nm (670 eV)

• RAP “channel cut” in development at HI-Jena (I. Uschmann)

• 3rd harmonic operation, 1.85 nm, 670 eV (flux?)

• 10 m Al sample possible (FLYCHK)

for 10 eV Al, OD = 5 > 60 eV Al, OD < 1

• Expected signal?

Te

10 eV

60 eV

110 eV

….

410 eV

.

670 eV

Page 18: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Prof. Dr. Thomas Cowan Institut für Strahlenphysik www.fzd.de 29. September 2010

MG

150

100

50

0

-50

-100

-150

4

2

0

-2

-4/n

αe d

z (µ

rad

/nc µ

m)

Magnetic field Bz

laser

Rotation/(density x thickness)

y

x

z

2 µm

2 µm

laser

Maximum rotation at 250 nc, 1 µm thickness would be ≈ 1 mrad

Simulation: 2D3V PIC (picls), 10 nc, 1 µm foil thicknes, 1020 W/cm2. Output taken at 10 fs before pulse maximum

FLASH experiment -- cont’d

Simulation (T. Kluge, 1 m thick foil -- transient fields)

Page 19: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Prof. Dr. Thomas Cowan Institut für Strahlenphysik www.fzd.de 29. September 2010

FLASH experiment - cont’d.

• Expected signal

dzBnK ze 2with K= 2.629×10-13 M.K.S. units.

= 1.86 nmne = 6x1023 cm-3 = 6x1029 m-3 (solid density hot Al)Bz = 100 T / MG

= 54.6 mrad * ( B[MG] * z[m] )

for 5 MG & 10 m, = 2.7 mrad(or 50 MG & 1 m)

Al foil

CPA beam

FLASH 3rd harmonic

FR image

transmissionimage (Te)

RAP analyzer

(x,y) ≈ FR image ÷ transmission image

Page 20: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 20Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

2D space-resolved x-ray absorption spectroscopy

Self emission spectroscopy t ~ 5-10 ps

Bulk electron temperature Tbulk ( x, y, t )

Space-averaged spectrum

with D. Thorn, T. Stoehlker (HI-Jena, GSI), M. Harmond, S. Toleikis (DESY)

Electron transport & ionization dynamics

Page 21: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 21Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

Streaked optical emission

7400 7600 7800 8000 82000

200

400

600

800

1000

1200

B-like

Mg-like

F-like

Be-like

In

ten

sity (

a.u

.)

Energy in 5th Order Diffraction (eV)

L-Shell (1st order), K

ß (6th order)

O-like

Laser pulse

Electron Beam X-ray pulse

Laser-driven electron transport & ionization dynamics

1013 A/cm2 , 1013 V/m, >1000 T, ~keV solid density

Page 22: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Z=6ni=4•1022 1/cm3

ne=Z•ni

Ti(0) = 0Th(0)= 30keVTc(0)= 1keV/Z

I=2•1017W/cm2

Pulse length = 700fsTarget = 10mnh=10•1021 1/cm3

Collisions, electron diffusion by scattering, and radiative energy loss have now been included in simulation.

Ion temperatures of several 100 eV, at solid density (Z=6) for up to a few ps, may be possible with the “Tomcat”-Zebra coupling.

(Experiments at UNR begun in December 2005.)

(Y. Sentoku, A. Kemp, M. Bakeman et al.)

Page 23: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 23Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

NEEC/NEET with Short Pulse LaserNuclear Excitation by Electron Capture with ultra-intense short-pulse lasers:

• 169Tm NEEC at Draco 150 TW laser @ HZDR (Jupiter @ LLNL?)• Isochoric heating to keV temperatures (Sentoku et al, PoP 14, 122701, 2007) • Streaked spectroscopy for 4 ns, 8.4 keV

A. Kritcher et al.,JINA Workshop, London

March 13, 2011

150 TWfew Hz

X-ray Streak

t

conicalHOPG

Au / 169Tm / Au target

atomic nuclear

ML

Page 24: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 24Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

“Isochoric heating in heterogenous solid targets with ultrashort laser pulses,” Sentoku, Kemp, Presura, Bakeman and Cowan, Phys. Plasmas 14, 122701 (2007)

Au layers

169Tm layer

4 J, 25 fs< 10 Hz

• few keV• 10 g/cc• few ps

NEEC/NEET with Short Pulse Laser

Page 25: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 25Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

NEEC/NEET with Short Pulse Laser

• Potential for 1st observation of NEEC• Short-pulse separates excitation from decay• Repetition rate for signal averaging & systematics• Resolve unknowns, e.g., Lifetime vs. Plasma Temperature

• High-rep-rate 150 TW laser “Draco” at HZDR• tamped targets – short-pulse isochoric heating• large collection Bragg spectrometer• Fast X-ray streak, few ps (R. Shepherd)• Slow X-ray streak, few 100 ps (R. Shepherd)

A Kritcher et al., JINA Workshop,

March 13, 2011, London

• kT ~ keV, ~ few ps, n ~ solid density, 10 m3

• Rate ~107 /s, Int. Conv. =263.5

N ~ (1012 nuclei)(107 s-1)(10-12 s)(1/~ 104 per shot

Signal: (~ few / shot) × (few shot / s)

150 TWfew Hz

X-ray Streak

t

conicalcrystal

Au / 169Tm / Au target

Page 26: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 26Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

Detailed simulations of “shock” heating in CD2/Al/CD2: Lingen Huang, T. Kluge, M. Bussmann, et al.and planning for Callisto (LLNL) experiment: B. Ramakrishna, R. Shepherd et al.

NEEC/NEET with Short Pulse Laser

Longitudinal Electric Field Deuteron Density

1020 W/cm2 150 fs

Page 27: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 27Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

Nuclear physics and Anti-matter creation with ultra-intense lasers

APS News 8, No. 3, March 1999

APS Centennial Meeting HighlightsAtlanta, March 1999

Relativistic laser-matter interactions open new vistas…

At I = 1021 W/cm2 :

• Eo ~ I1/2 = 1014 V/m

• Bo = Eo/c = 300.000 Tesla

Atoms are ionized and electrons

accelerated to >20 MeV in half-cycle

3 J / 20 fs1020 W/cm2 e-

B > 1000 Tesla

sc ~ 10 MV

Rückstrom

Pre-formed plasma

Page 28: Text optional: Institutsname Prof. Dr. Hans Mustermann  Mitglied der Leibniz-Gemeinschaft Scientific Case for Ultra-intense Laser-Matter Interaction

Seite 28Prof. Dr. Thomas Cowan | Institut für Strahlenphysik | http://www.hzdr.de

Workshop on PW-Lasers at XFEL, 5-9.09.11, Dresden

plasma wavelength < pulse length

e-

(a0=5)

We shall consider gaseous and solid density targets