testing fa q

66
CSTE Subjective Questions The following questions are gathered from different place (from Internet, Yahoo Groups, MSN groups, from o0……………………………………………………ther posts, etc). This is just for understanding to CSTE aspirants that how the subjective questions will come in CSTE. Q1) The top management was feeling that when there are any changes in the technology being used, development schedules etc, it is a waste of time to update the Test Plan also from time to time. Instead, they are emphasizing that you should put your time into testing than working on the test plan. Your Project Manager asked for your opinion. You have argued that Test Plan is very important and you need to update your test plan from time to time. It is not at all a waste of time and testing activities would be more effective when you have your plan clear. Explain with some metrics, how you would support your argument to have the test plan in place all the time. Q2) The QAI is starting a project to put the CSTE certification online. They will use an automated process for recording candidate information, scheduling candidates for exams, keeping track of results and sending out certificates. Write a brief test plan for this new project. Q3) It is being observed that in a project cost of testing is very high. After going in detail, it was found that the testers are testing the software that is not left with many defects. How will you make sure that this is correct? Any three ways? What are the disadvantages of Over Testing? (IMP question) Q4) What if the application has a functionality that was not mentioned in the requirements? Q5) You are given two scenarios to test. Scenario 1 has only one terminal for entry and processing whereas scenario 2 has several terminals where the data input can be made. Assuming that the processing work is the same, what would be the specific tests in Scenario 2 that you would do, which you would not carry on Scenario 1? (V. IMP question) Q6) Your customer does not have experience in writing Acceptance Test Plan. How will you do that in coordination with customer? What will be the contents of Acceptance Test Plan? (V. IMP question) Q7) How can it be known when to stop testing? Q8) What can be done if requirements are changing continuously? Q9) What is the need for Test Planning? Q10) What are the various status reports you will generate to Developers and Senior Management? Q11) Define and explain any three aspects of Code Review? (15 points) ? Q12) What is the need for Test Planning? Q13) Explain 5 risks in an e-Commerce project. Identify those personnel who must be involved in the risk analysis of a project and describe what they need to do. How will you prioritize the risks?

Upload: sujai-senthil

Post on 04-Sep-2015

243 views

Category:

Documents


0 download

DESCRIPTION

Testing Fa q

TRANSCRIPT

CSTE Subjective Questions

CSTE Subjective Questions

The following questions are gathered from different place (from Internet, Yahoo Groups, MSN groups, from o0ther posts, etc). This is just for understanding to CSTE aspirants that how the subjective questions will come in CSTE. Q1) The top management was feeling that when there are any changes in the technology being used, development schedules etc, it is a waste of time to update the Test Plan also from time to time. Instead, they are emphasizing that you should put your time into testing than working on the test plan. Your Project Manager asked for your opinion. You have argued that Test Plan is very important and you need to update your test plan from time to time. It is not at all a waste of time and testing activities would be more effective when you have your plan clear. Explain with some metrics, how you would support your argument to have the test plan in place all the time.Q2) The QAI is starting a project to put the CSTE certification online. They will use an automated process for recording candidate information, scheduling candidates for exams, keeping track of results and sending out certificates. Write a brief test plan for this new project.Q3) It is being observed that in a project cost of testing is very high. After going in detail, it was found that the testers are testing the software that is not left with many defects. How will you make sure that this is correct? Any three ways? What are the disadvantages of Over Testing? (IMP question)Q4) What if the application has a functionality that was not mentioned in the requirements?Q5) You are given two scenarios to test. Scenario 1 has only one terminal for entry and processing whereas scenario 2 has several terminals where the data input can be made. Assuming that the processing work is the same, what would be the specific tests in Scenario 2 that you would do, which you would not carry on Scenario 1? (V. IMP question)Q6) Your customer does not have experience in writing Acceptance Test Plan. How will you do that in coordination with customer? What will be the contents of Acceptance Test Plan? (V. IMP question)Q7) How can it be known when to stop testing?

Q8) What can be done if requirements are changing continuously?Q9) What is the need for Test Planning?

Q10) What are the various status reports you will generate to Developers and Senior Management?Q11) Define and explain any three aspects of Code Review? (15 points) ?Q12) What is the need for Test Planning?

Q13) Explain 5 risks in an e-Commerce project. Identify those personnel who must be involved in the risk analysis of a project and describe what they need to do. How will you prioritize the risks?Q14) What are the various status reports you will generate to Developers and Senior Management?Q15) Write 3 conditions that influence one to stop testing other than the Project Schedules?.

Q16) You have been asked to design a Defect Tracking system. Explain what all fields you would put in the defect tracking system?Q17) A credit limit has been fixed for $5,000, $10,000 and $15,000. Give the 3 lower boundary values and 3 upper boundary values for the credits?.Q18) Write a sample Test Policy?Q19) Explain the various types of testing after arranging them in a chronological order?Q20) Explain what test tools you will buy for Client Server testing and why?Q21) Explain what test tools you will buy for Web testing and why?Q22) Explain points in favor of testing by Development team themselves and testing by an Independent team?Q23) Differentiate Validation and Verification?Q24) Explain Stress, Load and Performance testing?Q25) Describe automated capture/playback tools and list the benefits of using them?Q26) How can software QA processes be implemented without stifling productivity?Q27) How is testing affected by object-oriented designs?Q28) What is extreme programming and what does it have to do with testing?Q29) Suppose you have written a project status report for expected defects vs. Actual defects, using testing metrics. If you PM ask, you to explain how to read this report, what recommendations would you give her?Q30) Write a Test transaction for a scenario where 6.2% of tax deduction for the first $62,000 of income has to be done?Q31) What would be the Test Objective for Unit Testing? What would be the quality measurements to assure that unit testing is complete? (15 points)Q32) Prepare a checklist for the developers on Unit Testing before the application comes to testing department?Q33) What fields would you include in creating a new defect tracking program (used by QA, developers, etc)? (25 points)Q34) Draw a pictorial diagram of a report you would create for developers to determine project status.Q35) Draw a pictorial diagram of a report you would create for users and management to show project status.Q36) What 3 tools would you purchase for your company for use in testing and justify why you would want them? (this question is in both essay parts, only rephrased. I think 10 points each time)Q37) Describe the difference between validation and verification. (5 points)Q38) Put the following testing types in order and give a brief description of each. System testing, acceptance testing, unit testing, integration testing, benefits realization testing. (10 points)Q39) List what you think are the two primary goals of testing. (5 or 10 points)Q40) If you company is going to conduct a review meeting, what position would u select in the review committee and why? Q41) Write any three attributes which will impact the Testing Process? Q42) What activity is done in Acceptance Testing, which is not done in System testing to ensure the Customer requirements?Q43) You are a tester for testing a large system. The system data model is very large with many attributes and there are a lot of interdependencies within the fields. What steps would you use to test the system and also what are the effects of the steps you have taken on the test plan?Q44) Explain give examples of the following black box techniques?Boundary Value testingEquivalence testingError GuessingQ45)What are the product standards for? Test PlanTest Script and Test ReportQ46) You are the test manager for about to the system testing. The development team says that due to change in requirements, they will be able to deliver the system to you for testing 5 working days after the due date. You cannot change the resources (Work hours, days, test tools). What steps will you take to be able to finish the testing in time?Q47) Your company is about to roll out an E-Commerce application. It is not possible to test the application on all types of browsers on all platforms and operating systems. What steps would you take in the testing environment to reduce the business risks and commercial risks?Q48) In your organization, testers are delivering code for system testing without performing unit testing. Give an example of test policy in this matter.Policy statementMethodologyMeasurementQ49) It has been observed that testers in your organization are performing tests on the deliverables even after significant defects have been found. This has resulted in unnecessary testing of little value because re-testing needs to be done after defects have been rectified. You as the test manager are going to update the test plan with recommendations on when to stop testing. List what recommendations you are going to make?Q50) How do you measure?Test EffectivenessTest EfficiencyQ51) You find that the senior testers are making more mistakes then junior testers; you need to communicate this aspect to the senior tester. Also, you don't want to loose this tester. How should one goabout the constructive criticism? Q52) You are assigned as the test lead for a new program that will automate takeoffs and landing at an airport. How would you write a est strategy for this new program?

software qa/testing faqs for test/verification engineer, tester, text resume

Software QA/Testing

Glossary and Technical FAQs

Q1. What is verification?

A: Verification ensures the product is designed to deliver all functionality to the customer; it typically involves reviews and meetings to evaluate documents, plans, code, requirements and specifications; this can be done with checklists, issues lists, walkthroughs and inspection meetings.

Q2. What is validation?

A: Validation ensures that functionality, as defined in requirements, is the intended behavior of the product; validation typically involves actual testing and takes place after verifications are completed.

Q3. What is a walk-through?

A: A walk-through is an informal meeting for evaluation or informational purposes.

Q4. What is an inspection?

A: An inspection is a formal meeting, more formalized than a walk-through and typically consists of 3-10 people including a moderator, reader (the author of whatever is being reviewed) and a recorder (to make notes in the document). The subject of the inspection is typically a document, such as a requirements document or a test plan. The purpose of an inspection is to find problems and see what is missing, not to fix anything. The result of the meeting should be documented in a written report. Attendees should prepare for this type of meeting by reading through the document, before the meeting starts; most problems are found during this preparation. Preparation for inspections is difficult, but is one of the most cost-effective methods of ensuring quality, since bug prevention is more cost effective than bug detection.

Q5. What is quality?

A: Quality software is software that is reasonably bug-free, delivered on time and within budget, meets requirements and expectations and is maintainable. However, quality is a subjective term. Quality depends on who the customer is and their overall influence in the scheme of things. Customers of a software development project include end-users, customer acceptance test engineers, testers, customer contract officers, customer management, the development organization's management, test engineers, testers, salespeople, software engineers, stockholders and accountants. Each type of customer will have his or her own slant on quality. The accounting department might define quality in terms of profits, while an end-user might define quality as user friendly and bug free.

Q6. What is good code?

A: A good code is code that works, is free of bugs and is readable and maintainable. Organizations usually have coding standards all developers should adhere to, but every programmer and software engineer has different ideas about what is best and what are too many or too few rules. We need to keep in mind that excessive use of rules can stifle both productivity and creativity. Peer reviews and code analysis tools can be used to check for problems and enforce standards.

Q7. What is good design?

A: Design could mean to many things, but often refers to functional design or internal design. Good functional design is indicated by software functionality can be traced back to customer and end-user requirements. Good internal design is indicated by software code whose overall structure is clear, understandable, easily modifiable and maintainable; is robust with sufficient error handling and status logging capability; and works correctly when implemented.

Q8. What is software life cycle?

A: Software life cycle begins when a software product is first conceived and ends when it is no longer in use. It includes phases like initial concept, requirements analysis, functional design, internal design, documentation planning, test planning, coding, document preparation, integration, testing, maintenance, updates, re-testing and phase-out.

Q9. Why are there so many software bugs?

A: Generally speaking, there are bugs in software because of unclear requirements, software complexity, programming errors, changes in requirements, errors made in bug tracking, time pressure, poorly documented code and/or bugs in tools used in software development.

There are unclear software requirements because there is miscommunication as to what the software should or shouldn't do.

Software complexity. All of the followings contribute to the exponential growth in software and system complexity: Windows interfaces, client-server and distributed applications, data communications, enormous relational databases and the sheer size of applications.

Programming errors occur because programmers and software engineers, like everyone else, can make mistakes.

As to changing requirements, in some fast-changing business environments, continuously modified requirements are a fact of life. Sometimes customers do not understand the effects of changes, or understand them but request them anyway. And the changes require redesign of the software, rescheduling of resources and some of the work already completed have to be redone or discarded and hardware requirements can be effected, too.

Bug tracking can result in errors because the complexity of keeping track of changes can result in errors, too.

Time pressures can cause problems, because scheduling of software projects is not easy and it often requires a lot of guesswork and when deadlines loom and the crunch comes, mistakes will be made.

Code documentation is tough to maintain and it is also tough to modify code that is poorly documented. The result is bugs. Sometimes there is no incentive for programmers and software engineers to document their code and write clearly documented, understandable code. Sometimes developers get kudos for quickly turning out code, or programmers and software engineers feel they have job security if everyone can understand the code they write, or they believe if the code was hard to write, it should be hard to read.

Software development tools , including visual tools, class libraries, compilers, scripting tools, can introduce their own bugs. Other times the tools are poorly documented, which can create additional bugs.

Q10. How do you introduce a new software QA process?

A: It depends on the size of the organization and the risks involved. For large organizations with high-risk projects, a serious management buy-in is required and a formalized QA process is necessary. For medium size organizations with lower risk projects, management and organizational buy-in and a slower, step-by-step process is required. Generally speaking, QA processes should be balanced with productivity, in order to keep any bureaucracy from getting out of hand. For smaller groups or projects, an ad-hoc process is more appropriate. A lot depends on team leads and managers, feedback to developers and good communication is essential among customers, managers, developers, test engineers and testers. Regardless the size of the company, the greatest value for effort is in managing requirement processes, where the goal is requirements that are clear, complete and testable.

Q11. Give me five common problems that occur during software development.

A: Poorly written requirements, unrealistic schedules, inadequate testing, adding new features after development is underway and poor communication.

Requirements are poorly written when requirements are unclear, incomplete, too general, or not testable; therefore there will be problems.

The schedule is unrealistic if too much work is crammed in too little time.

Software testing is inadequate if none knows whether or not the software is any good until customers complain or the system crashes.

It's extremely common that new features are added after development is underway.

Miscommunication either means the developers don't know what is needed, or customers have unrealistic expectations and therefore problems are guaranteed.

Q12. Give me five solutions to problems that occur during software development.

A: Solid requirements, realistic schedules, adequate testing, firm requirements and good communication.

Ensure the requirements are solid, clear, complete, detailed, cohesive, attainable and testable. All players should agree to requirements. Use prototypes to help nail down requirements.

Have schedules that are realistic. Allow adequate time for planning, design, testing, bug fixing, re-testing, changes and documentation. Personnel should be able to complete the project without burning out.

Do testing that is adequate. Start testing early on, re-test after fixes or changes, and plan for sufficient time for both testing and bug fixing.

Avoid new features. Stick to initial requirements as much as possible. Be prepared to defend design against changes and additions, once development has begun and be prepared to explain consequences. If changes are necessary, ensure they're adequately reflected in related schedule changes. Use prototypes early on so customers' expectations are clarified and customers can see what to expect; this will minimize changes later on.

Communicate. Require walk-throughs and inspections when appropriate; make extensive use of e-mail, networked bug-tracking tools, tools of change management. Ensure documentation is available and up-to-date. Use documentation that is electronic, not paper. Promote teamwork and cooperation.

Q13. Do automated testing tools make testing easier?

A: Yes and no. For larger projects, or ongoing long-term projects, they can be valuable. But for small projects, the time needed to learn and implement them is usually not worthwhile. A common type of automated tool is the record/playback type. For example, a test engineer clicks through all combinations of menu choices, dialog box choices, buttons, etc. in a GUI and has an automated testing tool record and log the results. The recording is typically in the form of text, based on a scripting language that the testing tool can interpret. If a change is made (e.g. new buttons are added, or some underlying code in the application is changed), the application is then re-tested by just playing back the recorded actions and compared to the logged results in order to check effects of the change. One problem with such tools is that if there are continual changes to the product being tested, the recordings have to be changed so often that it becomes a very time-consuming task to continuously update the scripts. Another problem with such tools is the interpretation of the results (screens, data, logs, etc.) that can be a time-consuming task.

Q14. What makes a good test engineer?

A: Rob Davis is a good test engineer because he

Has a "test to break" attitude,

Takes the point of view of the customer,

Has a strong desire for quality,

Has an attention to detail, He's also

Tactful and diplomatic and

Has good a communication skill, both oral and written. And he

Has previous software development experience, too.

Good test engineers have a "test to break" attitude, they take the point of view of the customer, have a strong desire for quality and an attention to detail. Tact and diplomacy are useful in maintaining a cooperative relationship with developers and an ability to communicate with both technical and non-technical people. Previous software development experience is also helpful as it provides a deeper understanding of the software development process, gives the test engineer an appreciation for the developers' point of view and reduces the learning curve in automated test tool programming.

Q15. What makes a good QA engineer?

A: The same qualities a good test engineer has are useful for a QA engineer. Additionally, Rob Davis understands the entire software development process and how it fits into the business approach and the goals of the organization. Rob Davis' communication skills and the ability to understand various sides of issues are important.

Good QA engineers understand the entire software development process and how it fits into the business approach and the goals of the organization. Communication skills and the ability to understand various sides of issues are important.

Q16. What makes a good resume?

A: On the subject of resumes, there seems to be an unending discussion of whether you should or shouldn't have a one-page resume. The followings are some of the comments I have personally heard: "Well, Joe Blow (car salesman) said I should have a one-page resume." "Well, I read a book and it said you should have a one page resume." "I can't really go into what I really did because if I did, it'd take more than one page on my resume." "Gosh, I wish I could put my job at IBM on my resume but if I did it'd make my resume more than one page, and I was told to never make the resume more than one page long." "I'm confused, should my resume be more than one page? I feel like it should, but I don't want to break the rules." Or, here's another comment, "People just don't read resumes that are longer than one page." I have heard some more, but we can start with these. So what's the answer? There is no scientific answer about whether a one-page resume is right or wrong. It all depends on who you are and how much experience you have. The first thing to look at here is the purpose of a resume. The purpose of a resume is to get you an interview. If the resume is getting you interviews, then it is considered to be a good resume. If the resume isn't getting you interviews, then you should change it. The biggest mistake you can make on your resume is to make it hard to read. Why? Because, for one, scanners don't like odd resumes. Small fonts can make your resume harder to read. Some candidates use a 7-point font so they can get the resume onto one page. Big mistake. Two, resume readers do not like eye strain either. If the resume is mechanically challenging, they just throw it aside for one that is easier on the eyes. Three, there are lots of resumes out there these days, and that is also part of the problem. Four, in light of the current scanning scenario, more than one page is not a deterrent because many will scan your resume into their database. Once the resume is in there and searchable, you have accomplished one of the goals of resume distribution. Five, resume readers don't like to guess and most won't call you to clarify what is on your resume. Generally speaking, your resume should tell your story. If you're a college graduate looking for your first job, a one-page resume is just fine. If you have a longer story, the resume needs to be longer. Please put your experience on the resume so resume readers can tell when and for whom you did what. Short resumes -- for people long on experience -- are not appropriate. The real audience for these short resumes is people with short attention spans and low IQs. I assure you that when your resume gets into the right hands, it will be read thoroughly.

Q17. What makes a good QA/Test Manager?

A: QA/Test Managers are familiar with the software development process; able to maintain enthusiasm of their team and promote a positive atmosphere; able to promote teamwork to increase productivity; able to promote cooperation between Software and Test/QA Engineers, have the people skills needed to promote improvements in QA processes, have the ability to withstand pressures and say *no* to other managers when quality is insufficient or QA processes are not being adhered to; able to communicate with technical and non-technical people; as well as able to run meetings and keep them focused.

Q18. What is the role of documentation in QA?

A: Documentation plays a critical role in QA. QA practices should be documented, so that they are repeatable. Specifications, designs, business rules, inspection reports, configurations, code changes, test plans, test cases, bug reports, user manuals should all be documented. Ideally, there should be a system for easily finding and obtaining of documents and determining what document will have a particular piece of information. Use documentation change management, if possible.

Q19. What about requirements?

A: Requirement specifications are important and one of the most reliable methods of insuring problems in a complex software project is to have poorly documented requirement specifications. Requirements are the details describing an application's externally perceived functionality and properties. Requirements should be clear, complete, reasonably detailed, cohesive, attainable and testable. A non-testable requirement would be, for example, "user-friendly", which is too subjective. A testable requirement would be something such as, "the product shall allow the user to enter their previously-assigned password to access the application". Care should be taken to involve all of a project's significant customers in the requirements process. Customers could be in-house or external and could include end-users, customer acceptance test engineers, testers, customer contract officers, customer management, future software maintenance engineers, salespeople and anyone who could later derail the project. If his/her expectations aren't met, they should be included as a customer, if possible. In some organizations, requirements may end up in high-level project plans, functional specification documents, design documents, or other documents at various levels of detail. No matter what they are called, some type of documentation with detailed requirements will be needed by test engineers in order to properly plan and execute tests. Without such documentation there will be no clear-cut way to determine if a software application is performing correctly.

Q20. What is a test plan?

A: A software project test plan is a document that describes the objectives, scope, approach and focus of a software testing effort. The process of preparing a test plan is a useful way to think through the efforts needed to validate the acceptability of a software product. The completed document will help people outside the test group understand the why and how of product validation. It should be thorough enough to be useful, but not so thorough that none outside the test group will be able to read it.

Q21. What is a test case?

A: A test case is a document that describes an input, action, or event and its expected result, in order to determine if a feature of an application is working correctly. A test case should contain particulars such as a...

Test case identifier;

Test case name;

Objective;

Test conditions/setup;

Input data requirements/steps, and

Expected results.

Please note, the process of developing test cases can help find problems in the requirements or design of an application, since it requires you to completely think through the operation of the application. For this reason, it is useful to prepare test cases early in the development cycle, if possible.

Q22. What should be done after a bug is found?

A: When a bug is found, it needs to be communicated and assigned to developers that can fix it. After the problem is resolved, fixes should be re-tested. Additionally, determinations should be made regarding requirements, software, hardware, safety impact, etc., for regression testing to check the fixes didn't create other problems elsewhere. If a problem-tracking system is in place, it should encapsulate these determinations. A variety of commercial, problem-tracking/management software tools are available. These tools, with the detailed input of software test engineers, will give the team complete information so developers can understand the bug, get an idea of its severity, reproduce it and fix it.

Q23. What is configuration management?

A: Configuration management (CM) covers the tools and processes used to control, coordinate and track code, requirements, documentation, problems, change requests, designs, tools, compilers, libraries, patches, changes made to them and who makes the changes. Rob Davis has had experience with a full range of CM tools and concepts. Rob Davis can easily adapt to your software tool and process needs.

Q24. What if the software is so buggy it can't be tested at all?

A: In this situation the best bet is to have test engineers go through the process of reporting whatever bugs or problems initially show up, with the focus being on critical bugs. Since this type of problem can severely affect schedules and indicates deeper problems in the software development process, such as insufficient unit testing, insufficient integration testing, poor design, improper build or release procedures, managers should be notified and provided with some documentation as evidence of the problem.

Q25. How do you know when to stop testing?

A: This can be difficult to determine. Many modern software applications are so complex and run in such an interdependent environment, that complete testing can never be done. Common factors in deciding when to stop are...

Deadlines, e.g. release deadlines, testing deadlines;

Test cases completed with certain percentage passed;

Test budget has been depleted;

Coverage of code, functionality, or requirements reaches a specified point;

Bug rate falls below a certain level; or

Beta or alpha testing period ends.

Q26. What if there isn't enough time for thorough testing?

A: Since it's rarely possible to test every possible aspect of an application, every possible combination of events, every dependency, or everything that could go wrong, risk analysis is appropriate to most software development projects. Use risk analysis to determine where testing should be focused. This requires judgment skills, common sense and experience. The checklist should include answers to the following questions:

Which functionality is most important to the project's intended purpose?

Which functionality is most visible to the user?

Which functionality has the largest safety impact?

Which functionality has the largest financial impact on users?

Which aspects of the application are most important to the customer?

Which aspects of the application can be tested early in the development cycle?

Which parts of the code are most complex and thus most subject to errors?

Which parts of the application were developed in rush or panic mode?

Which aspects of similar/related previous projects caused problems?

Which aspects of similar/related previous projects had large maintenance expenses?

Which parts of the requirements and design are unclear or poorly thought out?

What do the developers think are the highest-risk aspects of the application?

What kinds of problems would cause the worst publicity?

What kinds of problems would cause the most customer service complaints?

What kinds of tests could easily cover multiple functionalities?

Which tests will have the best high-risk-coverage to time-required ratio?

Q27. What if the project isn't big enough to justify extensive testing?

A: Consider the impact of project errors, not the size of the project. However, if extensive testing is still not justified, risk analysis is again needed and the considerations listed under "What if there isn't enough time for thorough testing?" do apply. The test engineer then should do "ad hoc" testing, or write up a limited test plan based on the risk analysis.

Q28. What can be done if requirements are changing continuously?

A: Work with management early on to understand how requirements might change, so that alternate test plans and strategies can be worked out in advance. It is helpful if the application's initial design allows for some adaptability, so that later changes do not require redoing the application from scratch. Additionally, try to...

Ensure the code is well commented and well documented; this makes changes easier for the developers.

Use rapid prototyping whenever possible; this will help customers feel sure of their requirements and minimize changes.

In the project's initial schedule, allow for some extra time to commensurate with probable changes.

Move new requirements to a 'Phase 2' version of an application and use the original requirements for the 'Phase 1' version.

Negotiate to allow only easily implemented new requirements into the project; move more difficult, new requirements into future versions of the application.

Ensure customers and management understand scheduling impacts, inherent risks and costs of significant requirements changes. Then let management or the customers decide if the changes are warranted; after all, that's their job.

Balance the effort put into setting up automated testing with the expected effort required to redo them to deal with changes.

Design some flexibility into automated test scripts;

Focus initial automated testing on application aspects that are most likely to remain unchanged;

Devote appropriate effort to risk analysis of changes, in order to minimize regression-testing needs;

Design some flexibility into test cases; this is not easily done; the best bet is to minimize the detail in the test cases, or set up only higher-level generic-type test plans;

Focus less on detailed test plans and test cases and more on ad-hoc testing with an understanding of the added risk this entails. Q29. What if the application has functionality that wasn't in the requirements?

A: It may take serious effort to determine if an application has significant unexpected or hidden functionality, which it would indicate deeper problems in the software development process. If the functionality isn't necessary to the purpose of the application, it should be removed, as it may have unknown impacts or dependencies that were not taken into account by the designer or the customer.

If not removed, design information will be needed to determine added testing needs or regression testing needs. Management should be made aware of any significant added risks as a result of the unexpected functionality. If the functionality only affects areas, such as minor improvements in the user interface, it may not be a significant risk.

Q30. How can software QA processes be implemented without stifling productivity?

A: Implement QA processes slowly over time. Use consensus to reach agreement on processes and adjust and experiment as an organization grows and matures. Productivity will be improved instead of stifled. Problem prevention will lessen the need for problem detection. Panics and burnout will decrease and there will be improved focus and less wasted effort. At the same time, attempts should be made to keep processes simple and efficient, minimize paperwork, promote computer-based processes and automated tracking and reporting, minimize time required in meetings and promote training as part of the QA process. However, no one, especially talented technical types, like bureaucracy and in the short run things may slow down a bit. A typical scenario would be that more days of planning and development will be needed, but less time will be required for late-night bug fixing and calming of irate customers.

Q31. What if organization is growing so fast that fixed QA processes are impossible?

A: This is a common problem in the software industry, especially in new technology areas. There is no easy solution in this situation, other than...

Hire good people (i.e. hire Rob Davis)

Ruthlessly prioritize quality issues and maintain focus on the customer;

Everyone in the organization should be clear on what quality means to the customer.

Q32. How is testing affected by object-oriented designs?

A: A well-engineered object-oriented design can make it easier to trace from code to internal design to functional design to requirements. While there will be little affect on black box testing (where an understanding of the internal design of the application is unnecessary), white-box testing can be oriented to the application's objects. If the application was well designed this can simplify test design.

Q33. Why do you recommended that we test during the design phase?

A: Because testing during the design phase can prevent defects later on. We recommend verifying three things...

Verify the design is good, efficient, compact, testable and maintainable.

Verify the design meets the requirements and is complete (specifies all relationships between modules, how to pass data, what happens in exceptional circumstances, starting state of each module and how to guarantee the state of each module).

Verify the design incorporates enough memory, I/O devices and quick enough runtime for the final product.

Q34. What is software quality assurance?

A: Software Quality Assurance (SWQA) when Rob Davis does it is oriented to *prevention*. It involves the entire software development process. Prevention is monitoring and improving the process, making sure any agreed-upon standards and procedures are followed and ensuring problems are found and dealt with. Software Testing, when performed by Rob Davis, is also oriented to *detection*. Testing involves the operation of a system or application under controlled conditions and evaluating the results. Organizations vary considerably in how they assign responsibility for QA and testing. Sometimes they are the combined responsibility of one group or individual. Also common are project teams, which include a mix of test engineers, testers and developers who work closely together, with overall QA processes monitored by project managers. It depends on what best fits your organization's size and business structure. Rob Davis can provide QA and/or SWQA. This document details some aspects of how he can provide software testing/QA service. For more information, e-mail [email protected]

Q35. What is quality assurance?

A: Quality Assurance ensures all parties concerned with the project adhere to the process and procedures, standards and templates and test readiness reviews.

Rob Davis' QA service depends on the customers and projects. A lot will depend on team leads or managers, feedback to developers and communications among customers, managers, developers' test engineers and testers.

Q36. Process and procedures - why follow them?

A: Detailed and well-written processes and procedures ensure the correct steps are being executed to facilitate a successful completion of a task. They also ensure a process is repeatable. Once Rob Davis has learned and reviewed customer's business processes and procedures, he will follow them. He will also recommend improvements and/or additions.

Q37. Standards and templates - what is supposed to be in a document?

A: All documents should be written to a certain standard and template. Standards and templates maintain document uniformity. It also helps in learning where information is located, making it easier for a user to find what they want. Lastly, with standards and templates, information will not be accidentally omitted from a document. Once Rob Davis has learned and reviewed your standards and templates, he will use them. He will also recommend improvements and/or additions.

Q38. What are the different levels of testing?

A: Rob Davis has expertise in testing at all testing levels listed below. At each test level, he documents the results. Each level of testing is either considered black or white box testing.

Q39. What is black box testing?

A: Black box testing is functional testing, not based on any knowledge of internal software design or code. Black box testing are based on requirements and functionality.

Q40. What is white box testing?

A: White box testing is based on knowledge of the internal logic of an application's code. Tests are based on coverage of code statements, branches, paths and conditions.

Q41. What is unit testing?

A: Unit testing is the first level of dynamic testing and is first the responsibility of developers and then that of the test engineers. Unit testing is performed after the expected test results are met or differences are explainable/acceptable.

Q42. What is parallel/audit testing?

A: Parallel/audit testing is testing where the user reconciles the output of the new system to the output of the current system to verify the new system performs the operations correctly.

Q43. What is functional testing?

A: Functional testing is black-box type of testing geared to functional requirements of an application. Test engineers *should* perform functional testing.

Q44. What is usability testing?

A: Usability testing is testing for 'user-friendliness'. Clearly this is subjective and depends on the targeted end-user or customer. User interviews, surveys, video recording of user sessions and other techniques can be used. Programmers and developers are usually not appropriate as usability testers.

Q45. What is incremental integration testing?

A: Incremental integration testing is continuous testing of an application as new functionality is recommended. This may require that various aspects of an application's functionality are independent enough to work separately, before all parts of the program are completed, or that test drivers are developed as needed. This type of testing may be performed by programmers, software engineers, or test engineers.

Q46. What is integration testing?

A: Upon completion of unit testing, integration testing begins. Integration testing is black box testing. The purpose of integration testing is to ensure distinct components of the application still work in accordance to customer requirements. Test cases are developed with the express purpose of exercising the interfaces between the components. This activity is carried out by the test team.

Integration testing is considered complete, when actual results and expected results are either in line or differences are explainable/acceptable based on client input.

Q47. What is system testing?

A: System testing is black box testing, performed by the Test Team, and at the start of the system testing the complete system is configured in a controlled environment. The purpose of system testing is to validate an application's accuracy and completeness in performing the functions as designed. System testing simulates real life scenarios that occur in a "simulated real life" test environment and test all functions of the system that are required in real life. System testing is deemed complete when actual results and expected results are either in line or differences are explainable or acceptable, based on client input.

Upon completion of integration testing, system testing is started. Before system testing, all unit and integration test results are reviewed by SWQA to ensure all problems have been resolved. For a higher level of testing it is important to understand unresolved problems that originate at unit and integration test levels.

Q48. What is end-to-end testing?

A: Similar to system testing, the *macro* end of the test scale is testing a complete application in a situation that mimics real world use, such as interacting with a database, using network communication, or interacting with other hardware, application, or system.

Q49. What is regression testing?

A: The objective of regression testing is to ensure the software remains intact. A baseline set of data and scripts is maintained and executed to verify changes introduced during the release have not "undone" any previous code. Expected results from the baseline are compared to results of the software under test. All discrepancies are highlighted and accounted for, before testing proceeds to the next level.

Q50. What is sanity testing?

A: Sanity testing is performed whenever cursory testing is sufficient to prove the application is functioning according to specifications. This level of testing is a subset of regression testing. It normally includes a set of core tests of basic GUI functionality to demonstrate connectivity to the database, application servers, printers, etc.

Q51. What is performance testing?

A: Although performance testing is described as a part of system testing, it can be regarded as a distinct level of testing. Performance testing verifies loads, volumes and response times, as defined by requirements.

Q52. What is load testing?

A: Load testing is testing an application under heavy loads, such as the testing of a web site under a range of loads to determine at what point the system response time will degrade or fail. Q53. What is installation testing?

A: Installation testing is testing full, partial, upgrade, or install/un-install processes. The installation test for a release is conducted with the objective of demonstrating production readiness. This test includes the inventory of configuration items, performed by the application's System Administration, the evaluation of data readiness, and dynamic tests focused on basic system functionality. When necessary, a sanity test is performed, following installation testing.

Q54. What is security/penetration testing?

A: Security/penetration testing is testing how well the system is protected against unauthorized internal or external access, or willful damage. This type of testing usually requires sophisticated testing techniques.

Q55. What is recovery/error testing?

A: Recovery/error testing is testing how well a system recovers from crashes, hardware failures, or other catastrophic problems.

Q56. What is compatibility testing?

A: Compatibility testing is testing how well software performs in a particular hardware, software, operating system, or network environment.

Q57. What is comparison testing?

A: Comparison testing is testing that compares software weaknesses and strengths to those of competitors' products.

Q58. What is acceptance testing?

A: Acceptance testing is black box testing that gives the client/customer/project manager the opportunity to verify the system functionality and usability prior to the system being released to production. The acceptance test is the responsibility of the client/customer or project manager, however, it is conducted with the full support of the project team. The test team also works with the client/customer/project manager to develop the acceptance criteria.

Q59. What is alpha testing?

A: Alpha testing is testing of an application when development is nearing completion. Minor design changes can still be made as a result of alpha testing. Alpha testing is typically performed by end-users or others, not programmers, software engineers, or test engineers.

Q60. What is beta testing?

A: Beta testing is testing an application when development and testing are essentially completed and final bugs and problems need to be found before the final release. Beta testing is typically performed by end-users or others, not programmers, software engineers, or test engineers.

Q61. What testing roles are standard on most testing projects?

A: Depending on the organization, the following roles are more or less standard on most testing projects: Testers, Test Engineers, Test/QA Team Lead, Test/QA Manager, System Administrator, Database Administrator, Technical Analyst, Test Build Manager and Test Configuration Manager. Depending on the project, one person may wear more than one hat. For instance, Test Engineers may also wear the hat of Technical Analyst, Test Build Manager and Test Configuration Manager.

Q62. What is a Test/QA Team Lead?

A: The Test/QA Team Lead coordinates the testing activity, communicates testing status to management and manages the test team.

Q63. What is a Test Engineer?

A: Test Engineers are engineers who specialize in testing. They create test cases, procedures, scripts and generate data. They execute test procedures and scripts, analyze standards of measurements, evaluate results of system/integration/regression testing. They also...

Speed up the work of your development staff;

Reduce your risk of legal liability;

Give you the evidence that your software is correct and operates properly;

Improve problem tracking and reporting;

Maximize the value of your software;

Maximize the value of the devices that use it;

Assure the successful launch of your product by discovering bugs and design flaws, before users get discouraged, before shareholders loose their cool and before employees get bogged down;

Help the work of your development staff, so the development team can devote its time to build up your product;

Promote continual improvement;

Provide documentation required by FDA, FAA, other regulatory agencies and your customers;

Save money by discovering defects 'early' in the design process, before failures occur in production, or in the field;

Save the reputation of your company by discovering bugs and design flaws; before bugs and design flaws damage the reputation of your company.

Q64. What is a Test Build Manager?

A: Test Build Managers deliver current software versions to the test environment, install the application's software and apply software patches, to both the application and the operating system, set-up, maintain and back up test environment hardware. Depending on the project, one person may wear more than one hat. For instance, a Test Engineer may also wear the hat of a Test Build Manager.

Q65. What is a System Administrator?

A: Test Build Managers, System Administrators, Database Administrators deliver current software versions to the test environment, install the application's software and apply software patches, to both the application and the operating system, set-up, maintain and back up test environment hardware. Depending on the project, one person may wear more than one hat. For instance, a Test Engineer may also wear the hat of a System Administrator.

Q66. What is a Database Administrator?

A: Test Build Managers, System Administrators and Database Administrators deliver current software versions to the test environment, install the application's software and apply software patches, to both the application and the operating system, set-up, maintain and back up test environment hardware. Depending on the project, one person may wear more than one hat. For instance, a Test Engineer may also wear the hat of a Database Administrator.

Q67. What is a Technical Analyst?

A: Technical Analysts perform test assessments and validate system/functional test requirements. Depending on the project, one person may wear more than one hat. For instance, Test Engineers may also wear the hat of a Technical Analyst.

Q68. What is a Test Configuration Manager?

A: Test Configuration Managers maintain test environments, scripts, software and test data. Depending on the project, one person may wear more than one hat. For instance, Test Engineers may also wear the hat of a Test Configuration Manager.

Q69. What is a test schedule?

A: The test schedule is a schedule that identifies all tasks required for a successful testing effort, a schedule of all test activities and resource requirements.

Q70. What is software testing methodology?

A: One software testing methodology is the use a three step process of...

Creating a test strategy;

Creating a test plan/design; and

Executing tests.

This methodology can be used and molded to your organization's needs. Rob Davis believes that using this methodology is important in the development and in ongoing maintenance of his customers' applications.

Q71. What is the general testing process?

A: The general testing process is the creation of a test strategy (which sometimes includes the creation of test cases), creation of a test plan/design (which usually includes test cases and test procedures) and the execution of tests.

Q72. How do you create a test strategy?

A: The test strategy is a formal description of how a software product will be tested. A test strategy is developed for all levels of testing, as required. The test team analyzes the requirements, writes the test strategy and reviews the plan with the project team. The test plan may include test cases, conditions, the test environment, a list of related tasks, pass/fail criteria and risk assessment.

Inputs for this process:

A description of the required hardware and software components, including test tools. This information comes from the test environment, including test tool data.

A description of roles and responsibilities of the resources required for the test and schedule constraints. This information comes from man-hours and schedules.

Testing methodology. This is based on known standards.

Functional and technical requirements of the application. This information comes from requirements, change request, technical and functional design documents.

Requirements that the system can not provide, e.g. system limitations.

Outputs for this process:

An approved and signed off test strategy document, test plan, including test cases.

Testing issues requiring resolution. Usually this requires additional negotiation at the project management level.

Q73. How do you create a test plan/design?

A: Test scenarios and/or cases are prepared by reviewing functional requirements of the release and preparing logical groups of functions that can be further broken into test procedures. Test procedures define test conditions, data to be used for testing and expected results, including database updates, file outputs, report results. Generally speaking...

Test cases and scenarios are designed to represent both typical and unusual situations that may occur in the application.

Test engineers define unit test requirements and unit test cases. Test engineers also execute unit test cases.

It is the test team who, with assistance of developers and clients, develops test cases and scenarios for integration and system testing.

Test scenarios are executed through the use of test procedures or scripts.

Test procedures or scripts define a series of steps necessary to perform one or more test scenarios.

Test procedures or scripts include the specific data that will be used for testing the process or transaction.

Test procedures or scripts may cover multiple test scenarios.

Test scripts are mapped back to the requirements and traceability matrices are used to ensure each test is within scope.

Test data is captured and base lined, prior to testing. This data serves as the foundation for unit and system testing and used to exercise system functionality in a controlled environment.

Some output data is also base-lined for future comparison. Base-lined data is used to support future application maintenance via regression testing.

A pre-test meeting is held to assess the readiness of the application and the environment and data to be tested. A test readiness document is created to indicate the status of the entrance criteria of the release.

Inputs for this process:

Approved Test Strategy Document.

Test tools, or automated test tools, if applicable.

Previously developed scripts, if applicable.

Test documentation problems uncovered as a result of testing.

A good understanding of software complexity and module path coverage, derived from general and detailed design documents, e.g. software design document, source code and software complexity data.

Outputs for this process:

Approved documents of test scenarios, test cases, test conditions and test data.

Reports of software design issues, given to software developers for correction.

Q74. How do you execute tests?

A: Execution of tests is completed by following the test documents in a methodical manner. As each test procedure is performed, an entry is recorded in a test execution log to note the execution of the procedure and whether or not the test procedure uncovered any defects. Checkpoint meetings are held throughout the execution phase. Checkpoint meetings are held daily, if required, to address and discuss testing issues, status and activities.

The output from the execution of test procedures is known as test results. Test results are evaluated by test engineers to determine whether the expected results have been obtained. All discrepancies/anomalies are logged and discussed with the software team lead, hardware test lead, programmers, software engineers and documented for further investigation and resolution. Every company has a different process for logging and reporting bugs/defects uncovered during testing.

A pass/fail criteria is used to determine the severity of a problem, and results are recorded in a test summary report. The severity of a problem, found during system testing, is defined in accordance to the customer's risk assessment and recorded in their selected tracking tool.

Proposed fixes are delivered to the testing environment, based on the severity of the problem. Fixes are regression tested and flawless fixes are migrated to a new baseline. Following completion of the test, members of the test team prepare a summary report. The summary report is reviewed by the Project Manager, Software QA (SWQA) Manager and/or Test Team Lead.

After a particular level of testing has been certified, it is the responsibility of the Configuration Manager to coordinate the migration of the release software components to the next test level, as documented in the Configuration Management Plan. The software is only migrated to the production environment after the Project Manager's formal acceptance.

The test team reviews test document problems identified during testing, and update documents where appropriate.

Inputs for this process:

Approved test documents, e.g. Test Plan, Test Cases, Test Procedures.

Test tools, including automated test tools, if applicable.

Developed scripts.

Changes to the design, i.e. Change Request Documents.

Test data.

Availability of the test team and project team.

General and Detailed Design Documents, i.e. Requirements Document, Software Design Document.

A software that has been migrated to the test environment, i.e. unit tested code, via the Configuration/Build Manager.

Test Readiness Document.

Document Updates.

Outputs for this process:

Log and summary of the test results. Usually this is part of the Test Report. This needs to be approved and signed-off with revised testing deliverables.

Changes to the code, also known as test fixes.

Test document problems uncovered as a result of testing. Examples are Requirements document and Design Document problems.

Reports on software design issues, given to software developers for correction. Examples are bug reports on code issues.

Formal record of test incidents, usually part of problem tracking.

Base-lined package, also known as tested source and object code, ready for migration to the next level.

______________________________________________________

http://www.softwaretestengineer.com

http://www.robdavispe.comDifference between Quality Assurance, Quality Control, and Testing?

Many people and organizations are confused about the difference between quality assurance (QA), quality control (QC), and testing. They are closely related, but they are different concepts.

But all these three are useful to manage risks of developing and managing software.

Quality Assurance: A set of activities designed to ensure that the development and/or maintenance process is adequate to ensure a system will meet its objectives.

Quality Control: A set of activities designed to evaluate a developed work product.

Testing: The process of executing a system with the intent of finding defects. (Note that the "process of executing a system" includes test planning prior to the execution of the test cases.)

QA activities ensure that the process is defined and appropriate. Methodology and standards development are examples of QA activities. A QA review would focus on the process elements of a project - e.g., are requirements being defined at the proper level of detail.

QC activities focus on finding defects in specific deliverables - e.g., are the defined requirements the right requirements

Testing is one example of a QC activity, but there are others such as inspections

The difference is that QA is process oriented and QC is product oriented.

Testing therefore is product oriented and thus is in the QC domain. Testing for quality isn't assuring quality, it's controlling it.

Quality Assurance makes sure you are doing the right things, the right way.

Quality Control makes sure the results of what you've done are what you expected.

What Is The Difference Between Quality Assurance, Quality Control, And Testing? Many people and organizations are confused about the difference between quality assurance (QA), quality control (QC), and testing. They are closely related, but they are different concepts. Since all three are necessary to effectively manage the risks of developing and maintaining software, it is important for software managers to understand the differences. They are defined below:

Quality Assurance: A set of activities designed to ensure that the development and/or maintenance process is adequate to ensure a system will meet its objectives.

Quality Control: A set of activities designed to evaluate a developed work product.

Testing: The process of executing a system with the intent of finding defects. (Note that the "process of executing a system" includes test planning prior to the execution of the test cases.)

QA activities ensure that the process is defined and appropriate. Methodology and standards development are examples of QA activities. A QA review would focus on the process elements of a project - e.g., are requirements being defined at the proper level of detail. In contrast, QC activities focus on finding defects in specific deliverables - e.g., are the defined requirements the right requirements. Testing is one example of a QC activity, but there are others such as inspections. Both QA and QC activities are generally required for successful software development.

Controversy can arise around who should be responsible for QA and QC activities -- i.e., whether a group external to the project management structure should have responsibility for either QA or QC. The correct answer will vary depending on the situation, but Mosaic's experience suggests that:

While line management should have the primary responsibility for implementing the appropriate QA, QC and testing activities on a project, an external QA function can provide valuable expertise and perspective.

The amount of external QA/QC should be a function of the project risk and the process maturity of an organization. As organizations mature, management and staff will implement the proper QA and QC approaches as a matter of habit. When this happens only minimal external guidance and review are needed.

Introduction

The world has started to rely increasingly on software that is becoming more and more complex. Today software is everywhere - part of every system or machine that we use in daily life. Software Quality and Reliability have become an important concern of the software industry. While improved and formal software development processes help avoid more and more defects, a large number of defects are still left in software. In one of history's well-known bugs, the entire long distance of AT&T was down for nine hours. The melt down was finally traced to a single line of code that could have been best detected by some effective unit testing. Beizer argues that the number of bugs left behind after a software engineer "delivers" his code to others is still too high for comfort. While improved design techniques try to avoid defects, effective testing continues to play an important role in removing defects left behind and is the cornerstone of the Software Quality Assurance activity.

Testing takes significant effort

Testing accounts for significant part of the software development lifecycle. According to Boris Beizer "Testing and debugging costs range from 50% to 80% of the cost of producing the first working version of a software package. If the lifecycle of software is considered from inception to retirement, then test and quality assurance related costs are an even larger part of the total cost." [1]

Unit Testing plays a major role in the total testing efforts. Studies by Barry Boehm reveal that coding and unit test takes 36 to 42% of the total resources consumed in software projects of various sizes [2]. In projects that demand high quality and reliability, unit testing is a key phase of testing.

Why Unit Testing ?

Units are the smallest building blocks of software. In a language like C, individual functions make up the units. Unit testing is the process of validating such small building blocks of a complex system much before testing an integrated large module or the system as a whole. Some of the major benefits are:

Be able to test parts of a project with out waiting for the other parts to be available

Achieve parallelism in testing by being able to test and fix problems simultaneously by many engineers

Be able to detect and remove defects at a much less cost compared to other later stages of testing

Be able to take advantage of a number of formal testing techniques available for unit testing

Simplify debugging by limiting to a small unit the possible code areas in which to search for bugs

Be able to test internal conditions that are not easily reached by external inputs in the larger integrated systems (for example, exception conditions not easily reached in normal operation)

Be able to achieve a high level of structural coverage of the code

Avoid lengthy compile-build-debug cycles when debugging difficult problems

Studies have shown that Unit testing is more cost effective compared to the other stages of testing. The following chart by Capers Jones shows the relative costs of defects found in different testing stages

fig 1: Relative Cost per defect for different Testing stages

The cost includes the effort taken for preparing the test cases, executing the test cases, analysing the results, and fixing the defects [3] This data proves the value of Early phase testing - Unit and Integration testing. This leads to the conclusion that better testing at the early phases is a smarter way to detect and fix defects.

Unit testing can detect and remove a significant portion of the defects. A study by Thayer and Lipow shows that comprehensive path and parameter testing can remove 72.9% of the defects.

Unit Testing - some typical problems

Testing is monotonous, boring and repetitive: Unlike "debugging" which is like solving a puzzle, testing is an activity that does not have a predictable end. A Test case may or may not reveal a defect. Testing gets repeated many times. There is no other activity in the software engineering life cycle, which is as repetitive as testing. Each time a change is made on any software, as an enhancement or for fixing a problem it is desirable that all the test cases are repeated. In the absence of any reasonable automation, this is an activity no one enjoys and hence never is done sufficiently well. Testing, unlike other software development activities, suffers from a very poor degree of automation. Surprisingly, while software engineers have gone about automating practically the whole world around them, they have ignored all along one of the most manual and disliked activity in their own backyard. Automation of as many of the routine activities as possible will help a long way in reducing the monotony of testing. Defining concrete completeness criteria for the testing activity also brings some predictability to testing in the sense that now there is a concrete goal to be achieved. Simply exhorting the engineers to do better and more complete testing without giving them good tools to reduce the monotony will continue to fail to produce results.

Poor Documentation of Test cases: According to G.J.Myers, "throw away" the test cases only if it is a "throw away" program [4]. Test cases are as valuable an asset as the program itself. Test cases are modified and rerun many times in the future. So, documenting the test cases is very essential for effective future usage. In practice, test cases are not documented adequately. When the code gets changed, the affected test cases may have to be modified and the documentation must be updated. Testing often includes on-the-fly test cases that are invented while executing a pre defined set of test cases. Such test cases are very rarely documented. It is very useful to ensure that test case documentation gets automated as part of the testing process. This way while testing gets done the documentation continues to get generated.Coding Drivers and Stubs: Unit Testing involves writing code for drivers and stubs which together often add up much more code than the unit under test. Testers feel reluctant to write such code that do not go into the final system. The drivers and stubs may have bugs themselves that result in a lot of additional debugging effort. Automation of code generation for drivers and stubs can result in an useful saving of effort for the tester. It also will ensure that there are no defects in the stubs or drivers that results in avoidable loss of time.Informal testing process: While the early part of the software development life-cycle like Analysis and are well defined and widely practiced, the testing process is defined much less formally. Well known and effective testing techniques are often not practiced. While testing accounts for 50% of the total software development efforts, the software engineers get very little formal training on testing. In computer science courses, testing is hardly dealt as an independent discipline. As a result, testing continues to be an informal and ill-understood process. Combining Functional (Black box testing based on the Specifications), Structural (White box testing based on the structure of the code) and Heuristic (based on human intuition) testing techniques provide much better results than simply using an intuitive approach to testing. Many software engineers run a few intuitive test cases - just enough to unearth some defects, then they go into "debugging" these defects. Testing must be mostly systematic and partly intuitive instead of the general practice of mostly intuitive and partly systematic approach to testing.

Poor Regression Testing: Testing is a very repetitive activity that needs to be repeated whenever an enhancement or change is made to an existing code. For example, if the Test case No. 15 in a large test suite fails, the problem gets analysed, fixed and the failed test case alone is rerun to validate the fix. Then the tester moves on to run Test case no. 16. During the maintenance and upgradation phase, it is extremely desirable to rerun all the test cases that were successfully run earlier on the program being modified. However, for every fix it is safer to rerun all the affected test cases (better still, all test cases) which have already been successfully run. Testing today is an essentially manual process and regression testing is not normally practiced to the desired degree. It is very useful to build a capability of retaining automated test cases as a useful resource along with the code. Automation is the only solution to regression testing.

Lack of Complete Testing tools: While a large number of CASE tools have emerged over the last decade that address the early phases of software development lifecycle, Testing has not been so fortunate. Given that Unit testing takes significant portion of the total effort, very few tools are available to help in unit testing. Only coverage analysis tools are available but they address a part of the whole unit testing activity. Computer Aided Software Testing (CAST) Tools are a fast growing discipline. Good unit test automation tools are beginning to become available. Evolution of such tools achieving a more comprehensive automation of Unit testing activities are likely to help in a big way in solving many of the problems currently faced in Unit testing.

Unit Testing Techniques

A number of effective testing techniques are usable in unit testing stage. The testing techniques may be broadly divided into three types:

Functional Testing

Structural Testing

Heuristic or Intuitive Testing

The defects in software can in general be classified as Omissions, Surprises and Wrong Implementations. Omissions are requirements that are missed in the implementation, Surprises are implementation that are not found in the requirements and wrong implementation is incorrect implementation of a requirement.

fig 2: Testing Techniques and Types of Defects

Fig 2 shows the major categories of testing techniques and what types of defects they are effective against. While Functional Testing techniques help catch omissions and wrong implementations, Structural Testing techniques help catch surprises and wrong implementations. Heuristic or intuitive testing techniques help catch all types of defects. But Intuitive testing is effective only when complementing the systematic types of Functional and Structural testing techniques.

Functional testing Techniques (Some examples)

Boundary Value Analysis: Testing the edge conditions of boundaries

Equivalence Partitioning: Grouping test cases into classes in which executing one test cases is equivalent to executing any other test cases in the same group

Cause Effect Graphing: When the behaviour of the unit under test is specified as cause and effect. Design test cases that validate this relationship.

Structural test Cases Techniques (Some examples)

Statement Coverage: Identify Test cases such that every line of code is executed in one test case or other.

Branch Coverage: Identify Test cases such that every branch of code is executed in one test case or other. 100% Branch Coverage automatically assures 100% Statement Coverage.

Condition Coverage: Identify Test cases such that condition in each predicate expression is evaluated in all possible ways.

Modified Condition-Decision Coverage: Identify Test cases such that each Boolean operand can independently affect the outcome of a decision.

Tools for Unit Testing

In the recent times there is an increasing awareness of Test automation. While many test automation tools are available for system testing at the GUI level, few complete tools are available at the Unit and Integration testing stages. The tools available are mainly coverage analysis tools or script based test case specification tools.

Fig 3: Stages in Unit Testing

Conclusion

Unit Testing is the earliest stage of testing and is most cost effective testing stage in removing defects. In later stages of testing, detecting and fixing defects is more difficult involving increased effort and time. Unit testing takes significant time and effort. Unit testing must employ Functional, Structural and Heuristic testing techniques to be effective against the different types of defects. Though effective tools have not supported testing so far, promising test automation tools are beginning to be available. Unit testing can be very effective and affordable. It will result in reduction of total efforts while simultaneously increasing the quality of the product significantly also reducing in the long-term maintenance cost and the total life cycle cost. CAST Tools are becoming the key to solve the major problems faced by Unit testers.

References:

[1] Boris Beizer, System Testing and Software Quality Assurance, Boris Beizer, International Thomson Computer Press, 1996 [2] Barry W. Boehm, Software Engineering Economics, Prentice Hall, Inc, 1991[3] Capers Jones, Applied Software Measurements, McGraw Hill, 1991[4] G.J.Myers, The Art of Software Testing, John Wiley & Sons, 1979

Manual or Automated?

Summary:Automated test tools are powerful aids to improving the return on the testing investment when used wisely. Some tests inherently require an automated approach to be effective, but others must be manual. In addition, automated testing projects that fail are expensive and politically dangerous. How can we recognize whether to automate a test or run it manually, and how much money should we spend on a test?

When Test Automation Makes SenseLets start with the tests that ideally are automated. These include:

Regression and confirmation. Rerunning a test against a new release to ensure that behavior remains unbrokenor to confirm that a bug fix did indeed fix the underlying problemis a perfect fit for automated testing. The business case for test automation outlined in Software Test Automation by Mark Fewster and Dorothy Graham is built around this kind of testing.

Monkey (or random). Tests that fire large amounts or long sequences of data, transactions, or other inputs at a system in a random search for errors are easily and profitably automated

Load, volume, and capacity. Sometimes, systems must support tremendous loads. On one project, we had to test how the system would respond to 50,000 simultaneous users, which ruled out manual testing! Two Linux systems running custom load-generating programs filled the bill.

Performance and reliability. With the rise of Web-based systems, more and more automated testing is aimed at looking for slow or flaky behavior on Web systems.

Structural, especially API-based unit, component, and integration. Most structural testing involves harnesses of some sort, which brings you most of the way into automation. Again, the article I wrote with Greg Kubaczkowski, "Mission Made Possible" (STQE magazine, July/Aug. 2002), provides an example.

Other tests that are well-suited for automation exist, such as the static testing of complexity and code standards compliance that I mentioned in the previous article. In general, automated tests have higher upfront coststools, test development, environments, and so forthand lower costs to repeat the test.

When to Focus on Manual Testing High per-test or maintenance costs are one indicator that a test should be done manually. Another is the need for human judgment to assess the correctness of the result or extensive, ongoing human intervention to keep the test running. For these reasons, the following tests are a good fit for manual testing:

Installation, setup, operations, and maintenance. In many cases, these tests involve loading CD-ROMs and tapes, changing hardware, and other ongoing hand-holding by the tester.

Configuration and compatibility. Like operations and maintenance testing, these tests require reconfiguring systems and networks, installing software and hardware, and so forth, all requiring human intervention.

Error handling and recovery. Again, the need to force errorsby powering off a server, for examplemeans that people must stay engaged during test execution.

Localization. Only a human tester with appropriate skills can decide whether a translation makes no sense, is culturally offensive, or is otherwise inappropriate. (Currency, date, and time testing can be automated, but the need to rerun these tests for regression is limited.)

Usability. As with localization, human judgment is needed to check for problems with the facility, simplicity, and elegance of the user interface and workflows.

Documentation and help. Like usability and localization, checking documentation requires human judgment.

WildcardsIn some cases, tests can be done manually, be automated, or both.

Functional. Functionality testing can often be automated, and automated functional testing is often part of an effort to create a regression test suite or smoke test. However, it makes sense to get the testing process under control manually before trying to automate functional testing. In addition, youll want to keep some of the testing manual.

Use cases (user scenarios). By stringing together functional tests into workflows, you can create realistic user scenarios, whether manual or automated. The trick here is to avoid automation if many workflows involve human intervention.

User interface. Basic testing of the user interface can be automated, but beware of frequent or extensive changes to the user interface that can incur high maintenance costs for your automated suite.

Date and time handling. If the test system can reset the computers clocks automatically, then you can automate these tests.

Higher per-test costs and needs for human skills, judgment, and interaction push towards manual testing. A need to repeat tests many times or reduce the cycle time for test execution pushes towards automated testing.

Reasons to Be Careful with AutomationAutomated testing is a huge investment, one of the biggest that organizations make in testing. Tool licenses can easily hit six or seven figures. Neophytes cant use most of these toolsregardless of what any glossy test tool brochure saysso training, consulting, and expert contractors can cost more than the tools themselves. Then theres maintenance of the test scripts, which generally is more difficult and time consuming than maintaining manual test cases.

Acceptance Test Plan

[Download Sample Chapters]What is it?An The Acceptance Test Plan verifies that the final product meets the clients business requirements. This template outlines the steps required to prepare an Acceptance Test Plan. It also ensures that all components of the system are tested. An Acceptance Test Plan describes the acceptance testing process, such as the features to be tested, pass/fail criteria, approach to testing, roles and responsibilities, resource requirements and schedules. It also defines the functionality to be tested, the requirements verified by the test, test preconditions, test steps and test post-conditions.

Who uses it?Test Manager, QA Manager, Project Manager, Development Manager, QA Engineer, Documentation Manager, IT Manager, System Administrator.

When is it used?An Acceptance Test Plan is required during the software testing process to ensure that all features and functionality are correctly tested and that the system meets the technical requirements.

Table of Contents1 Project Information1.1 Objectives1.2 Document Overview1.3 System Description1.4 Key Stakeholders1.5 Relationship to Other Plans1.6 Points of Contact1.7 References1.8 Methodology, Tools, and Techniques1.9 Policies, Directives and Procedures2 Acceptance Test Plan2.1 Scope2.2 Business Processes Testing2.3 Testing Approach2.4 Test Schedule2.5 Problem Reporting2.6 Resource Requirements2.7 Test Environment2.8 Test Identification2.9 Acceptance Test Report2.10 Corrective Action2.11 Summary of Results2.12 Conclusion3 Project Management3.1 Test Deliverables3.2 Testing Tasks3.3 Schedule3.4 Risk Assessment3.5 Constraints3.6 Issues3.7 Assumptions3.8 Dependencies3.9 Sign-Off Criteria4 Project Team4.1 Roles4.2 Resources4.3 Software Tools4.4 Training5 Appendix A5.1 Glossary of Terms5.2 Acronyms and Abbreviations6 Appendix B Sample Test CaseIndex of Tables

Table 1 Summary of ResultsTable 2 ScheduleTable 3 RisksTable 4 ConstraintsTable 5 IssuesTable 6 AssumptionsTable 7 DependenciesTable 8 Sign-off CriteriaTable 9 Roles and ResponsibilitiesTable 10 Glossary of TermsTable 11 Acronyms and AbbreviationsCode Review ChecklistTable of Contents

General Code Smoke TestComments and Coding ConventionsError HandlingResource LeaksControl StructuresPerformanceFunctionsBug FixesMath

A word from our sponsor:Visual Studio .NET users can dramatically simplify code reviews with our CodeReview Add-In for Visual Studio. With CodeReview you can attach comments, and even code suggestions, to any source code file supported in Visual Studio. Download a free 30-day trial

General Code Smoke TestDoes the code build correctly?No errors should occur when building the source code. No warnings should be introduced by changes made to the code.Does the code execute as expected?When executed, the code does what it is supposed to.Do you understand the code you are reviewing?As a reviewer, you should understand the code. If you don't, the review may not be complete, or the code may not be well commented.Has the developer tested the code?Insure the developer has unit tested the code before sending it for review. All the limit cases should have been tested.Comments and Coding ConventionsDoes the code respect the project coding conventions?Check that the coding conventions have been followed. Variable naming, indentation, and bracket style should be used. Does the source file start with an appropriate header and copyright information?Each source file should start with an appropriate header and copyright information. All source files should have a comment block describing the functionality provided by the file.

Are variable declarations properly commented?Comments are required for aspects of variables that the name doesn't describe. Each global variable should indicate its purpose and why it needs to be global.Are units of numeric data clearly stated?Comment the units of numeric data. For example, if a number represents length, indicate if it is in feet or meters.Are all functions, methods and classes documented?Describe each routine, method, and class in one or two sentences at the top of its definition. If you can't describe it in a short sentence or two, you may need to reassess its purpose. It might be a sign that the design needs to be improved.Are function parameters used for input or output clearly identified as such?Make it clear which parameters are used for input and output.Are complex algorithms and code optimizations adequately commented?Complex areas, algorithms, and code optimizations should be sufficiently commented, so other developers can understand the code and walk through it.Does code that has been commented out have an explanation?There should be an explanation for any code that is commented out. "Dead Code" should be removed. If it is a temporary hack, it should be identified as such.Are comments used to identify missing functionality or unresolved issues in the code?A comment is required for all code not completely implemented. The comment should describe what's left to do or is missing. You should also use a distinctive marker that you can search for later (For example: "TODO:francis").

Error HandlingAre assertions used everywhere data is expected to have a valid value or range?Assertions make it easier to identify potential problems. For example, test if pointers or references are valid.Are errors properly handled each time a function returns?An error should be detected and handled if it affects the execution of the rest of a routine. For example, if a resource allocation fails, this affects the rest of the routine if it uses that resource. This should be detected and proper action taken. In some cases, the "proper action" may simply be to log the error.Are resources and memory released in all error paths?Make sure all resources and memory allocated are released in the error paths.Are all thrown exceptions handled properly?If the source code uses a routine that throws an exception, there should be a function in the call stack that catches it and handles it properly.Is the function caller notified when an error is detected?Consider notifying your caller when an error is detected. If the error might affect your caller, the caller should be notified. For example, the "Open" methods of a file class should return error conditions. Even if the class stays in a valid state and other calls to the class will be handled properly, the caller might be interested in doing some error handling of its own.Has error handling code been tested?Don't forget that error handling code that can be defective. It is important to write test cases that exercise it.Resource LeaksIs allocated memory (non-garbage collected) freed?All allocated memory needs to be freed when no longer needed. Make sure memory