test report #7 system drop-in tests of r134a … cupronickel condenser tubes, and alternative copper...

27
Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Low-GWP Alternative Refrigerants Evaluation Program (Low-GWP AREP) TEST REPORT #7 System Drop-In Tests of R134a Alternative Refrigerants (ARM-42a, N- 13a, N-13b, R-1234ze(E), and Opteon TM XP10) in a 230-RT Water-Cooled Water Chiller Ken Schultz Steve Kujak Trane / Ingersoll Rand 3600 Pammel Creek Rd La Crosse, WI 54601 January 25, 2013 This report has been made available to the public as part of the author company’s participation in the AHRI’s Low-GWP AREP.

Upload: danglien

Post on 04-Apr-2018

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Low-GWP Alternative Refrigerants Evaluation Program (Low-GWP AREP) TEST REPORT #7 System Drop-In Tests of R134a Alternative Refrigerants (ARM-42a, N-13a, N-13b, R-1234ze(E), and OpteonTM XP10) in a 230-RT Water-Cooled Water Chiller Ken Schultz Steve Kujak Trane / Ingersoll Rand 3600 Pammel Creek Rd La Crosse, WI 54601 January 25, 2013 This report has been made available to the public as part of the author company’s participation in the AHRI’s Low-GWP AREP.

Page 2: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

List of Tested Refrigerants’ Compositions (Mass%)

ARM-42a R-134a/R-152a/R-1234yf (7/11/82) N-13a R-134a/R-1234yf/R-1234ze(E) (42/18/40) N-13b R-134a/R-1234ze(E) (42/58) R-1234ze(E) R-1234ze(E) (100) OpteonTM XP10 R-134a/R-1234yf (44/56)

Page 3: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

LowGWPAREPR134aW/CScrewChillerTestSummary – FinalReportcreated:19November2012

lastedited:19November2012page2of16

TraneMP_Report#1_external_121119.docx Ken Schultz•ThermalSystemsGroup

INTRODUCTION

Thisreportdocumentstestsrunonanominal230‐tonwater‐cooledscrewcompressor‐basedwaterchillerinTrane’sLaCrosse,Wisconsin,laboratory.Therefrigerantstestedarelistedbelow:

name  supplier  order begin testing 

end testing 

number of runs 

R134a (#1)  (self)  1  16‐May‐2012  23‐May‐2012  38 

XP10  DuPont  2  29‐May‐2012  11‐Jun‐2012  24 

N‐13a  Honeywell  3  13‐Jun‐2012  20‐Jun‐2012  34 

N‐13b  Honeywell  4  25‐Jun‐2012  29‐Jun‐2012  33 

R1234ze(E)  Honeywell  5  06‐Jul‐2012  13‐Jul‐2012  40 

ARM‐42a  Arkema  6  20‐Aug‐2012  11‐Oct‐2012  67 

R134a (#2)  (self)  7  15‐Oct‐2012  16‐Oct‐2012  13 

R1234yf  Honeywell  8  Dec‐2012 ?     

D4Y  Daikin  Daikincouldnotsupplyenoughrefrigerantforthechiller.

TestswithR134awererepeatedattheendasacheck;performanceverycloselyduplicatedtheoriginalbaselinedataset.TestswithR1234yfwillbeconductedif/whenHoneywellcansupplythevolumeofrefrigerantneeded.DaikinwasunabletoprovidesufficientvolumeofD4Yforthetestchillerusedhere.

TESTSETUP

Thechillertestedhereisanominal230‐ton“RTWD”dual‐circuitwater‐cooledscrewcompressor‐basedwaterchiller.Thespecificunittestedisapre‐productionprototypebuiltfordesignverificationtestinginthelaboratory.Thechillerunderwentseveralmodificationsduringprevioustesting,includingachangetohighliftcompressors,cupronickelcondensertubes,andalternativecopperevaporatortubes.PhotosofthechillerareshowninFigure1.Thechillerconsistsoftwoindependentrefrigerantcircuits.Tominimizetheamountofrefrigerantneeded,testsherewererunwithonlyonecircuit.Thecircuitadjacenttothechilledandcoolingwaterconnectionswasused.Thesecondcircuitwaschargedwithnitrogenat5psigtominimizeheattransferbetweenthewaterpasses.Theevaporatorusesfallingfilmtechnologyinconjunctionwithafloodedpool.Thecondenserincorporatesaliquidrefrigerantsubcooler.Thecompressorrunsatfixedspeed(noAFD).Primaryinstrumentationincluded:

Chilledwaterloopo volumeflowrate(magneticflowmeter)o inletandoutlettemperatures(dualRTD’sateachlocation)o absolutepressurescollocatedwithtemperaturemeasurementso water‐sidepressuredrop

Coolingwaterloopo volumeflowrate(magneticflowmeter)o inletandoutlettemperature(dualRTD’sateachlocation)o absolutepressurescollocatedwithtemperaturemeasurementso water‐sidepressuredrop

CompressorpowerinputThecollocatedtemperatureandpressuremeasurementsareusedtocomputetheinletandoutletenthalpiesofthewater.Heattransferrateiscalculatedastheproductofthewatermassflowrateandthedifferencebetweentheinletandoutletenthalpies.Thecompressor‐basedEERiscalculatedastheratioofthechilledwaterheattransferratetothecompressorpowerinput.

Page 4: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

LowGWPAREPR134aW/CScrewChillerTestSummary – FinalReportcreated:19November2012

lastedited:19November2012page3of16

TraneMP_Report#1_external_121119.docx Ken Schultz•ThermalSystemsGroup

Secondaryinstrumentationincludesvarioustemperatureandpressuremeasurementsalongtherefrigerantflowpath.Keymeasurementsincludethetemperatureandpressureatthecompressorsuctionanddischargealongwiththecondenserliquidleavingtemperatureandpressure.AlistofinstrumentationisincludedasAppendixA.

METHODOFTEST

ThemethodoftestisconsistentwithAppendixCofAHRIStandard550/590‐2011withoperatingconditionsgenerallyheldwithintightertolerances.Performanceisreportedhereasmeasured;noadjustmentsaremadeforfoulingallowance.Thecoolingcapacitiesreportedarecalculatedfromthemeasuredchilledwaterflowrateandthedifferencebetweentheenteringandleavingchilledwaterenthalpies.Theenthalpiesarecomputedfromthemeasuredwatertemperaturesandpressures(collocated).Therefore,thecapacitiesreportedherecorrespondtothe“grossrefrigeratingcapacity”definedinAHRIStandard550/590‐2011.ThermodynamicpropertiesofwaterarecomputedusingTrane’sinternalcode,whichisconsistentwiththe550/590equationstowellwithinexperimentalaccuracies.Thetestmatrixconsistedofthefollowingsteps:

1. Refrigerantchargesweepatbaselineoperating(boundary)conditionsof:–leavingchilledwatertemperature=44°F0.1°Fd(2s)–chilledwaterflowrate=550gpm2gpm–enteringcoolingwatertemperature=85°F0.1°Fd–coolingwaterflowrate=700gpm2gpmThechargeforfurthertestingwasselectedatmaximumEER(5lbmresolution)withconsiderationgiventotherefrigerantlevelinthecondenser/subcooler.

2. Loadlineat100%,90%,80%,70%,60%,minwith“baseline”flowrates:–leavingchilledwatertemperature=44°F0.1°Fd(2s)–chilledwaterflowrate=550gpm2gpm–enteringcoolingwatertemperature=85°F0.1°Fd–coolingwaterflowrate=700gpm2gpm

3. Loadlineat100%,90%,80%,70%,60%,minwith“standard”flowrates:–leavingchilledwatertemperature=44°F0.1°Fd(2s)–chilledwaterflowrate=2.4gpm/ton×tons@100%×2–enteringcoolingwatertemperature=85°F0.1°Fd–coolingwaterflowrate=3.0gpm/ton×tons@100%×2

4. Variationincoolingwaterenteringtemperaturewith–leavingchilledwatertemperature=44°F0.1°Fd(2s)–chilledwaterflowrate=510gpm2gpm–enteringcoolingwatertemperature=85°F0.1°Fd–coolingwaterflowrate=635gpm2gpm

Notethatthewaterflowrateswerebasedonfullchillercapacity(ie,asifbothcircuitswereactive).Runningthewaterflowratesbasedonthesinglecircuitcapacitywouldresultinverylowwatervelocitiesinthetubesandpoorwater‐sideheattransfercoefficients.Inhindsight,itmighthavebeenmoreappropriatetoelevatetheenteringcoolingwatertemperatureby5°FdorsotobemoreconsistentwithAHRI550‐590standardratingconditions.Intheend,consistentconditionswereusedthatprovideafaircomparisonamongthedifferentalternativerefrigerantstested.Figure2showstheenergybalanceclosureerrorsforallofthetestpointsrun.Energybalanceerrorsweregenerallylessthan1%.Thisdemonstratesthestabilityandaccuracyoftheprimarytestmeasurements.

Page 5: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists
Page 6: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

LowGWPAREPR134aW/CScrewChillerTestSummary – FinalReportcreated:19November2012

lastedited:19November2012page5of16

TraneMP_Report#1_external_121119.docx Ken Schultz•ThermalSystemsGroup

alternativerefrigerantsarealllowerthanforR134a,exceptforthethirdARM‐42adataset.2TheXP10HTC’sarejustslightlylowerthanforR134a.Theshell‐sideHTC’sforR1234ze(E)wereroughly30%lowerthanforR134a.Thisappearscontrarytorecentlypublishedsingle‐tubepoolboilingdata.3TheUoEforR1234ze(E)isalsonegativelyimpactedbythereducedtubein‐sideHTCduetothereductioninchilledwaterflowratewhenoperatingwithreducedcapacityatthestandardflowrates.N‐13aandN‐13bhadverypoorevaporatorperformance.Thiscouldpossiblybeattributabletothe~1°Fdglideassociatedwiththesetwoblends.Visualobservationsindicatedthatthebundlewettingappearedtobesimilarforallrefrigerants;therewerenoobviousindicationsofunusualdry‐outorcarryoverforanyoftherefrigerants.Thereweresomevariationsinoilfoamingbehaviorinthepoolsection(eg,thebubblesizeswerelargerforR1234ze(E),indicativeofthehighervaporspecificvolume),buttheywereminoranddidnotappeartoimpactevaporatorperformance.ThebundleaverageheattransfercoefficientsforthecondenserrelativetoR134aareshowninFigure10.Relativelymildtomoderatereductionsincondensershell‐sideheatcoefficientswereobservedforR1234ze(E),XP10,N‐13a,andN13b.Curiously,theN‐13blends(with~1°Fdglide)appearedtohavesufferedagreaterdegradationinevaporatorperformancethancondenserperformance.AfterseeingverypoorcondenserheattransferperformanceduringtheinitialtestsetwithARM‐42a(#1),arefrigerantsamplewascollectedfromthechillercondenservaporspace,appearingtoindicateanon‐condensablesconcentrationof1.5%vol.4Therefrigerantchargewasreclaimedbackintotheoriginaltwocylindersandthecylindervaporspaceventeduntilthenon‐condensablesconcentrationswere0.96%voland0.78%vol.5ThechillerwasthenrechargedwithARM‐42aandthetestsetrepeated(#2).Condenserperformanceimprovedmarginally,butwasstillquitepoor.Thecondenservaporspacewasagainsampled,thistimewithanon‐condensablesconcentrationof0.9%vol.Therefrigerantwasagainreclaimedintothecylinders.Samplestakenfromcylindersshowedanon‐condensablesconcentrationof~1.5%vol.Thecylinderswereagainventeduntilthenon‐condensablesconcentrationswere0.5%voland0.7%vol.ThechillerwasthenrechargedwithARM‐42aandthetestsetrepeatedathirdtime(#3).Condenserperformanceagaindidnotchange.Arefrigerantsampleextractedfromthecondenservaporspaceshowedanon‐condensablesconcentrationofonly0.3%vol.Whenreclaimedbackintothecylinders,thenon‐condensablesconcentrationwasmeasuredtobeonly0.6%vol.Asnotedabove,curiouslyduringthethirdARM‐42atestset,theevaporatorheattransferperformanceincreasedsignificantly.Thereasonforthisisunknown.ArepeatofthebaselinewithR134a(Oct)followingtheARM‐42atestsproducedresultsveryconsistentwiththeinitialbaselinetestset(May).ThecomparisonsshownherearebasedontheoverallbetterperformanceofthethirdARM‐42adataset.Thesourceofthenon‐condensablesfoundintheARM‐42atestsisunknown.Weareconfidentinourlaboratoryprocedureswithrespecttochillerevacuationandcharging.AdditionalprecautionsweretakenduringpreparationandchargingforthethirdtestofARM‐42atoensurenointroductionofairduringtheprocess.Theisentropicefficiencyofthecompressorcanbedeterminedfromthemeasuredtemperaturesandpressuresatthecompressorsuctionanddischargealongwiththerefrigerantthermodynamicpropertiesdescriptionprovidedbytherefrigerantsuppliers.Theresultsobtainedhereforthefull‐loadcapacitypointsrunwithstandardwaterflowratesareshowninFigure11.Thecompressorperformedsimilarlyforallrefrigerants,mostrunningslightlybelowR134a(∆η~0..0.02).TheN‐13bpointinFigure11issomewhatofanoutlier;thepart‐loadpointsallfellatorbelowtherespectiveR134apoints.2Morebelow.ThefirsttwoARM‐42adatasetsproducedevaporatorHTC’sthatfellbetweenXP10andR1234ze.

3EvanRooyenandJRThome,“POOLBOILINGONENHANCEDBOILINGTUBESWITHR‐134a,R‐236faANDR‐1234ze”,ECI8thInternationalConferenceonBoilingandCondensationHeatTransfer,EcolePolytechniqueFédéraledeLausanne,3‐7June2012,Lausanne,Switzerland.

4Thenon‐condensablegaseselutedfromtheGCcolumnatthetimeindicativeofbeingair.

5Theconcentrationsarebelowthe1.5%volupperlimittypicalofmostrefrigerantslistedinAHRIStandard700.

Page 7: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists
Page 8: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

LowGWPAREPR134aW/CScrewChillerTestSummary – FinalReportcreated:19November2012

lastedited:19November2012page7of16

TraneMP_Report#1_external_121119.docx Ken Schultz•ThermalSystemsGroup

considerationwillneedtobegiventodesignofthecondensercoilforair‐cooledchillerproductsusingR1234ze(E).AllofthealternatefluidssufferedtosomeextentwithregardtoheattransferperformancerelativetoR134a.ThepoorperformanceofARM‐42ainthecondenserremainspuzzlingatthispoint.Furtherstudyofbothevaporation/boilingandcondensingbehavioroftheserefrigerantsonenhancedtubesiswarranted.Theconsistencybetweencalculatedsaturationandmeasuredtemperatures,alongwithgeneralagreementamongthecompressoradiabaticefficienciesandsuctionvolumeflowrates,indicatesthattherefrigerantpropertiesdescriptionsprovidedarereasonablyaccurate.

NOMENCLATURE

BL “baseline”operatingconditionsasdescribedinMethodofTestsection

CAP Capacity

Chrg refrigerantcharge

COP CoefficientofPerformance;seeEER

EB Energybalanceclosureerror

EER EnergyEfficiencyRatio=coolingcapacitydividedbyelectricalpowerinputtothecompressor[Btu/W·hr]

°Fd temperaturedifferenceinFahrenheit

FC,FC’s “foulingchecks”;essentiallyrepeatpointstakenataspecificoperatingcondition

HTC heattransfercoefficient

hoC’, , shell‐sideheattransfercoefficientinthecondenserbundle

hoE, , shell‐sideheattransfercoefficientintheevaporatorbundle

Pmsrd measuredpressure

q"C averageheatfluxinthecondenser

q"E averageheatfluxintheevaporator

QChW, heattransferratecomputedfrommeasurementsofthechilledwater

QClW, heattransferratecomputedfrommeasurementsofthecoolingwater

Std “standard”operatingconditionsasdescribedinMethodofTestsection(inparticular,standardevaporatorchilledwaterflowis2.4gpm/maxtonandstandardcondensercoolingwaterflowis3.0gpm/maxton)

∆TappC,dTappCapproachtemperatureinthecondenser(condensersaturationleavingcoolingwatertemperature)

∆TappE,dTappEapproachtemperatureintheevaporator(leavingchilledwaterevaporatorsaturationtemperature)

∆Tsc refrigerantsubcoolingleavingthecondenser/subcooler(refrigerantsaturationtemperatureactualtemperature)

Tmsrd measuredtemperature

Tsat saturationtemperature

UoC, , overallheattransfercoefficientinthecondenserbundle

UoE, , overallheattransfercoefficientintheevaporatorbundle

Wcmpr, compressorpowerconsumption

x refrigerantqualityinthetwo‐phaseregion

ηCmpr adiabaticefficiencyofthecompressor

Page 9: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

T&Pmeasurementstationsforcoolingandchilledwaterloops.

Page 10: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists
Page 11: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

nottested

nottested

Page 12: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

nottested

nottested

nottested

nottested

Page 13: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

nottested

nottested

nottested

nottested

Page 14: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

nottested

nottested

Page 15: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists
Page 16: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

Appendix A – Instrumentation List

ID # ** Description Units Type Measurement Accuracy

1 EVAP WATER FLOW GPM  SI: m³/h Rosemount Magnetic ± 0.5% of Rdg

2 EVAP Unit water delta Press psid  SI: kPa∙diff Rosemount 1151 ± 0.054 PSID

3 Evap unit water press ‐ ent psia  SI: kPa∙abs Sensotec DS – 250 psia ± 0.125 PSIA

4 Evap unit water press ‐ lvg psia  SI: kPa∙abs Sensotec DS – 250 psia ± 0.125 PSIA

5 COND WATER FLOW GPM  SI: m³/h Rosemount Magnetic ± 0.5% of Rdg

6 Cond Unit Water Delta Press psid  SI: kPa∙diff Rosemount 1151 ± 0.054 PSID

7 Cond Unit Water Press ‐ ent psia  SI: kPa∙abs Sensotec DS – 250 psia ± 0.125 PSIA

8 Cond Unit Water Press ‐ lvg psia  SI: kPa∙abs Sensotec DS – 250 psia ± 0.125 PSIA

100 Evap Shell Press (1) ‐ Ckt #1 psia  SI: kPa∙abs Sensotec DS – 250 psia ± 0.125 PSIA

105 Evap Shell Press (2) ‐ Ckt #1 psia  SI: kPa∙abs Sensotec DS – 250 psia ± 0.125 PSIA

110 Comp Suct Refrig Press ‐ Ckt #1 psia  SI: kPa∙abs Sensotec DS – 250 psia ± 0.125 PSIA

115 Comp Disch Refrig Press ‐ Ckt #1 psia  SI: kPa∙abs Sensotec DS – 500 psia ± 0.25 PSIA

125 Cond Top Shell Press Loc 1 ‐  Ckt # 1 psia  SI: kPa∙abs Sensotec DS – 500 psia ± 0.25 PSIA

126 Cond Top Shell Press Loc 2 ‐  Ckt # 1 psia  SI: kPa∙abs Sensotec DS – 500 psia ± 0.25 PSIA

130 Lvg Subcooler Refrig Press ‐ Ckt 1 psia  SI: kPa∙abs Sensotec DS – 500 psia ± 0.25 PSIA

137 Ent Evap Refrig Press Ckt #1 psia  SI: kPa∙abs Sensotec DS – 250 psia ± 0.25 PSIA

215 Comp Disch Temp ‐ Ckt #1 °F  SI: °C Type T TC ± 1.0 F

240 Ent Evap Refrig Temp Ckt #1 °F  SI: °C Type T TC ± 1.0 F

250 Comp Suct Refrig Temp Ckt #1 °F  SI: °C Type T TC ± 1.0 F

251 Line Lvg Oil Separator T Ckt #1 °F  SI: °C Type T TC ± 1.0 F

330 Evap RI probe Temp ‐ Loc 1 ‐ Ckt 1 °F  SI: °C Type T TC ± 1.0 F

331 Evap RI probe Temp ‐ Loc 2 ‐ Ckt 1 °F  SI: °C Type T TC ± 1.0 F

332 Evap RI probe Temp ‐ Loc 3 ‐ Ckt 1 °F  SI: °C Type T TC ± 1.0 F

400 ENT EVAP WATER TEMP  LOC 1 °F  SI: °C 100 Ω RTD ± 0.1 F

401 ENT EVAP WATER TEMP  LOC 2 °F  SI: °C 100 Ω RTD ± 0.1 F

402 LVG EVAP WATER TEMP  LOC 1 °F  SI: °C 100 Ω RTD ± 0.1 F

403 LVG EVAP WATER TEMP  LOC 2 °F  SI: °C 100 Ω RTD ± 0.1 F

405 ENT COND WATER TEMP  LOC 1 °F  SI: °C 100 Ω RTD ± 0.1 F

406 ENT COND WATER TEMP  LOC 2 °F  SI: °C 100 Ω RTD ± 0.1 F

407 LVG COND WATER TEMP  LOC 1 °F  SI: °C 100 Ω RTD ± 0.1 F

408 LVG COND WATER TEMP  LOC 2 °F  SI: °C 100 Ω RTD ± 0.1 F

410 Evap Sat RTD ‐ Ckt #1 °F  SI: °C 100 Ω RTD ± 0.1 F

417 Lvg subcooler refrigerant RTD ‐ Ckt #1 °F  SI: °C 100 Ω RTD ± 0.1 F

420 Compressor VOLTAGE AB ‐ Ckt # 1 V  SI: V

421 Compressor VOLTAGE AC ‐ Ckt # 1 V  SI: V

422 Compressor VOLTAGE CB ‐ Ckt # 1 V  SI: V

423 Compressor CURRENT A ‐ Ckt # 1 A  SI: A ~0.5% of Rdg w/ CTs

424 Compressor CURRENT B ‐ Ckt # 1 A  SI: A ~0.5% of Rdg w/ CTs

425 Compressor CURRENT C ‐ Ckt # 1 A  SI: A ~0.5% of Rdg w/ CTs

426 Compressor Power ‐ Ckt # 1 W  SI: W ~0.5% of Rdg w/ CTs

427 Compressor Power ‐ Frequency ‐ Ckt # 1 Hz  SI: Hz

428 Compressor Power ‐ Power Factor ‐ Ckt # 1 None  SI: NONE

480 Evap RI probe ‐ loc 1 ‐ ckt 1 %  SI: %

481 Evap RI probe ‐ loc 2 ‐ ckt 1 %  SI: %

482 Evap RI probe ‐ loc 3 ‐ ckt 1 %  SI: %

496 Leaving Oil Separator RI Probe ‐ ckt 1 %  SI: %

500 BAROMETRIC PRESS FROM METROLOGY psia  SI: kPa∙abs ± 0.0157 PSIA

600 Chiller : Liquid Level Setpoint in  SI: mm N/A

601 Circuit 1 : Refrigerant Liquid Level in  SI: mm N/A

602 Circuit 2 : Refrigerant Liquid Level in  SI: mm N/A

Page 17: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

LowGWPAREPR134aW/CScrewChillerTestSummary – FinalReportcreated:19November2012

lastedited:19November2012page16of16

TraneMP_Report#1_external_121119.docx Ken Schultz•ThermalSystemsGroup

AppendixB

DataPointsCollectedatFull‐LoadCapacityWhenRunningattheStandardOperatingConditions

(InsertthepagesfromTraneMP_Report#1_DataForms.pdffollowingthispageinthePDF.)

Page 18: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

Appendix B

Data Points Collected at Standard Operating Conditions

Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 1

Manufacturer: Trane

Basic Information

Alternative Refrigerant XP10 DuPont

Alternative Lubricant Type and ISO Viscosity POE – 68

Baseline Refrigerant R134a

Baseline Lubricant Type and ISO Viscosity POE – 68

Make and Model of System RTWD water‐cooled chiller (running first of two refrigerant circuits

Nominal Capacity and Type of System 230 nominal tons (preproduction prototype for lab verification)

Comparison Data Base Alt. SI Units Base Alt. IP Units Ratio

Mode (heating/cooling) cooling

Compressor Type screw compressor (high lift version)

Compressor Displacement m³/hr cfm

Nominal Motor Size kW hp

Motor Speed (60 Hz) Hz

Expansion Device Type electronic expansion valve

Lubricant Charge L gal

Refrigerant Charge 81.6 81.6 kg 180 180 lbm 1.000

Composition (at Cmpr Suct)

6.7 6.7 °C 43.98 44.00 °F 0.02

1928 1927 L/min 509.3 509.2 gpm 1.000

Flow rate (tons × 2) 5.2 5.2 L/min∙kW 2.41 2.41 gpm/ton 1.002

29.5 29.5 °C 85.0 85.1 °F 0.0

2409 2409 L/min 636 636 gpm 1.000

Flow rate (tons × 2) 6.5 6.5 L/min∙kW 3.01 3.01 gpm/ton 1.002

Capacity 371.9 371.2 kW 105.7 105.5 tons 0.998

Power to Compressor 86.0 89.6 kW 86.0 89.6 kW 1.043

COP or EER (compressor only) 4.33 4.14 [] 14.76 14.13 Btu/W∙hr 0.957

Refrigerant Mass Flow Rate 8,596 9,961 kg/hr 18,950 21,960 lbm/hr 1.159

Refrig Flow @ Cmpr Suction 518.2 514.3 m³/hr 305.0 302.7 cfm 0.992

Other System Changes

The unit tested has non‐standard evaporator tubes (alternate high performance design).

The unit tested has non‐standard condenser tubes (90/10 cupronickel).

Only one of two refrigerant circuits was run due to limited availability of some refrigerants.

System Data Base Alt. Ratio

Degradation Coefficient

Seasonal Energy Efficiency Ration – SEER

Heating Seasonal Performance Factor – HSPF

12 3.1

Chilled 

Water

Leaving Temp

Flow rate

Cooling 

Water

Entering Temp

Flow rate

08‐Nov‐2012

Page 19: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

Appendix B

Data Points Collected at Standard Operating Conditions

Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 2

Type of System: RTWD wc Water Chiller Alternate Refrigerant:   XP10

Water Side Data Base Alt. SI Units Base Alt. IP Units Ratio | Diff

Evaporator (shell & tube)

fluid

flow rate 1928.0 1927.4 L/hr 509 509 gpm 1.000

T entering 9.4 9.4 °C 48.9 48.9 °F 0.0°F

T leaving 6.7 6.7 °C 44.0 44.0 °F 0.0°F

pressure drop 121 114 kPa 17.5 16.5 psid 0.945

Condenser (shell & tube)

fluid

flow rate 2408.9 2408.5 L/hr 636 636 gpm 1.000

T entering 29.5 29.5 °C 85.0 85.1 °F 0.0°F

T leaving 32.2 32.3 °C 90.0 90.1 °F 0.1°F

pressure drop 140 136 kPa 20.3 19.7 psid 0.969

Refrigerant Side 

T (°C) P (kPa) T (°C) P (kPa) T (°F) P (psia) T (°F) P (psia)

Compressor (screw)

suction 3.9 338 3.7 367 39.0 49.0 38.7 53.2

discharge 51.2 943 47.5 1007 124.2 136.8 117.4 146.0

dchrg SH | Pratio 14.0 9.5 25.2 2.79 17.15 2.75

Condenser (shell & tube w/integral subcooler)

inlet/shell 51.2 943 47.5 1,007 124.2 136.8 117.4 146.0

shell dewpoint 36.4 37.0 97.6 98.6

shell bubblept 36.4 37.0 97.6 98.6

subcooler outlet 32.5 911 32.5 964 90.5 132.1 90.5 139.8

subcooling (local) 3.5 3.8 6.2 6.8

Expansion Device (EXV)

inlet 32.5 911 32.5 964 90.5 132.1 90.5 139.8

Evaporator (shell & tube)

inlet/shell 4.3 341 4.2 370 39.7 49.5 39.5 53.7

outlet/shell 4.3 341 4.2 370 39.7 49.5 39.5 53.7

Refrigerant Side Base Alt. SI Units Base Alt. IP Units Ratio

suction line pressure drop 3.2 3.7 kPa 0.46 0.53 psid 1.16

discharge line pressure drop 20 25 kPa 2.90 3.59 psid 1.24

08‐Nov‐2012

water

water

Base Alt. Base Alt.

Page 20: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

Appendix B

Data Points Collected at Standard Operating Conditions

Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 1

Manufacturer: Trane

Basic Information

Alternative Refrigerant N‐13a Honeywell

Alternative Lubricant Type and ISO Viscosity POE – 68

Baseline Refrigerant R134a

Baseline Lubricant Type and ISO Viscosity POE – 68

Make and Model of System RTWD water‐cooled chiller (running first of two refrigerant circuits

Nominal Capacity and Type of System 230 nominal tons (preproduction prototype for lab verification)

Comparison Data Base Alt. SI Units Base Alt. IP Units Ratio

Mode (heating/cooling) cooling

Compressor Type screw compressor (high lift version)

Compressor Displacement m³/hr cfm

Nominal Motor Size kW hp

Motor Speed (60 Hz) Hz

Expansion Device Type electronic expansion valve

Lubricant Charge L gal

Refrigerant Charge 81.6 79.4 kg 180 175 lbm 0.972

Composition (at Cmpr Suct)

6.7 6.6 °C 43.98 43.93 °F ‐0.06

1928 1708 L/min 509.3 451.3 gpm 0.886

Flow rate (tons × 2) 5.2 5.2 L/min∙kW 2.41 2.41 gpm/ton 1.001

29.5 29.5 °C 85.0 85.0 °F 0.0

2409 2138 L/min 636 565 gpm 0.887

Flow rate (tons × 2) 6.5 6.5 L/min∙kW 3.01 3.02 gpm/ton 1.003

Capacity 371.9 329.1 kW 105.7 93.6 tons 0.885

Power to Compressor 86.0 79.0 kW 86.0 79.0 kW 0.919

COP or EER (compressor only) 4.33 4.17 [] 14.76 14.21 Btu/W∙hr 0.963

Refrigerant Mass Flow Rate 8,596 8,405 kg/hr 18,950 18,530 lbm/hr 0.978

Refrig Flow @ Cmpr Suction 518.2 518.2 m³/hr 305.0 305.0 cfm 1.000

Other System Changes

The unit tested has non‐standard evaporator tubes (alternate high performance design).

The unit tested has non‐standard condenser tubes (90/10 cupronickel).

Only one of two refrigerant circuits was run due to limited availability of some refrigerants.

System Data Base Alt. Ratio

Degradation Coefficient

Seasonal Energy Efficiency Ration – SEER

Heating Seasonal Performance Factor – HSPF

12 3.1

Chilled 

Water

Leaving Temp

Flow rate

Cooling 

Water

Entering Temp

Flow rate

08‐Nov‐2012

Page 21: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

Appendix B

Data Points Collected at Standard Operating Conditions

Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 2

Type of System: RTWD wc Water Chiller Alternate Refrigerant:   N‐13a

Water Side Data Base Alt. SI Units Base Alt. IP Units Ratio | Diff

Evaporator (shell & tube)

fluid

flow rate 1928.0 1708.3 L/hr 509 451 gpm 0.886

T entering 9.4 9.4 °C 48.9 48.8 °F ‐0.1°F

T leaving 6.7 6.6 °C 44.0 43.9 °F ‐0.1°F

pressure drop 121 96 kPa 17.5 14.0 psid 0.799

Condenser (shell & tube)

fluid

flow rate 2408.9 2137.7 L/hr 636 565 gpm 0.887

T entering 29.5 29.5 °C 85.0 85.0 °F 0.0°F

T leaving 32.2 32.2 °C 90.0 90.0 °F 0.0°F

pressure drop 140 112 kPa 20.3 16.3 psid 0.802

Refrigerant Side 

T (°C) P (kPa) T (°C) P (kPa) T (°F) P (psia) T (°F) P (psia)

Compressor (screw)

suction 3.9 338 3.3 311 39.0 49.0 38.0 45.1

discharge 51.2 943 48.2 893 124.2 136.8 118.7 129.5

dchrg SH | Pratio 14.0 10.7 25.2 2.79 19.18 2.87

Condenser (shell & tube w/integral subcooler)

inlet/shell 51.2 943 48.2 893 124.2 136.8 118.7 129.5

shell dewpoint 36.4 36.7 97.6 98.1

shell bubblept 36.4 36.1 97.6 97.0

subcooler outlet 32.5 911 32.6 861 90.5 132.1 90.8 124.9

subcooling (local) 3.5 2.9 6.2 5.3

Expansion Device (EXV)

inlet 32.5 911 32.6 861 90.5 132.1 90.8 124.9

Evaporator (shell & tube)

inlet/shell 4.3 341 2.9 314 39.7 49.5 37.2 45.5

outlet/shell 4.3 341 3.5 314 39.7 49.5 38.2 45.5

Refrigerant Side Base Alt. SI Units Base Alt. IP Units Ratio

suction line pressure drop 3.2 3.0 kPa 0.46 0.44 psid 0.96

discharge line pressure drop 20 19 kPa 2.90 2.82 psid 0.97

08‐Nov‐2012

water

water

Base Alt. Base Alt.

Page 22: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

Appendix B

Data Points Collected at Standard Operating Conditions

Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 1

Manufacturer: Trane

Basic Information

Alternative Refrigerant N‐13b Honeywell

Alternative Lubricant Type and ISO Viscosity POE – 68

Baseline Refrigerant R134a

Baseline Lubricant Type and ISO Viscosity POE – 68

Make and Model of System RTWD water‐cooled chiller (running first of two refrigerant circuits

Nominal Capacity and Type of System 230 nominal tons (preproduction prototype for lab verification)

Comparison Data Base Alt. SI Units Base Alt. IP Units Ratio

Mode (heating/cooling) cooling

Compressor Type screw compressor (high lift version)

Compressor Displacement m³/hr cfm

Nominal Motor Size kW hp

Motor Speed (60 Hz) Hz

Expansion Device Type electronic expansion valve

Lubricant Charge L gal

Refrigerant Charge 81.6 79.4 kg 180 175 lbm 0.972

Composition (at Cmpr Suct)

6.7 6.7 °C 43.98 43.98 °F 0.00

1928 1636 L/min 509.3 432.3 gpm 0.849

Flow rate (tons × 2) 5.2 5.2 L/min∙kW 2.41 2.40 gpm/ton 0.995

29.5 29.5 °C 85.0 85.1 °F 0.1

2409 2047 L/min 636 541 gpm 0.850

Flow rate (tons × 2) 6.5 6.5 L/min∙kW 3.01 3.00 gpm/ton 0.996

Capacity 371.9 317.2 kW 105.7 90.2 tons 0.853

Power to Compressor 86.0 74.4 kW 86.0 74.4 kW 0.865

COP or EER (compressor only) 4.33 4.26 [] 14.76 14.55 Btu/W∙hr 0.986

Refrigerant Mass Flow Rate 8,596 7,784 kg/hr 18,950 17,160 lbm/hr 0.906

Refrig Flow @ Cmpr Suction 518.2 519.0 m³/hr 305.0 305.5 cfm 1.002

Other System Changes

The unit tested has non‐standard evaporator tubes (alternate high performance design).

The unit tested has non‐standard condenser tubes (90/10 cupronickel).

Only one of two refrigerant circuits was run due to limited availability of some refrigerants.

System Data Base Alt. Ratio

Degradation Coefficient

Seasonal Energy Efficiency Ration – SEER

Heating Seasonal Performance Factor – HSPF

12 3.1

Chilled 

Water

Leaving Temp

Flow rate

Cooling 

Water

Entering Temp

Flow rate

08‐Nov‐2012

Page 23: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

Appendix B

Data Points Collected at Standard Operating Conditions

Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 2

Type of System: RTWD wc Water Chiller Alternate Refrigerant:   N‐13b

Water Side Data Base Alt. SI Units Base Alt. IP Units Ratio | Diff

Evaporator (shell & tube)

fluid

flow rate 1928.0 1636.2 L/hr 509 432 gpm 0.849

T entering 9.4 9.4 °C 48.9 48.9 °F 0.0°F

T leaving 6.7 6.7 °C 44.0 44.0 °F 0.0°F

pressure drop 121 92 kPa 17.5 13.4 psid 0.766

Condenser (shell & tube)

fluid

flow rate 2408.9 2046.9 L/hr 636 541 gpm 0.850

T entering 29.5 29.5 °C 85.0 85.1 °F 0.1°F

T leaving 32.2 32.3 °C 90.0 90.1 °F 0.1°F

pressure drop 140 108 kPa 20.3 15.7 psid 0.774

Refrigerant Side 

T (°C) P (kPa) T (°C) P (kPa) T (°F) P (psia) T (°F) P (psia)

Compressor (screw)

suction 3.9 338 3.6 290 39.0 49.0 38.5 42.0

discharge 51.2 943 48.0 836 124.2 136.8 118.4 121.2

dchrg SH | Pratio 14.0 10.4 25.2 2.79 18.75 2.89

Condenser (shell & tube w/integral subcooler)

inlet/shell 51.2 943 48.0 836 124.2 136.8 118.4 121.2

shell dewpoint 36.4 36.7 97.6 98.1

shell bubblept 36.4 36.1 97.6 96.9

subcooler outlet 32.5 911 32.1 806 90.5 132.1 89.7 116.9

subcooling (local) 3.5 3.5 6.2 6.3

Expansion Device (EXV)

inlet 32.5 911 32.1 806 90.5 132.1 89.7 116.9

Evaporator (shell & tube)

inlet/shell 4.3 341 3.3 292 39.7 49.5 37.9 42.4

outlet/shell 4.3 341 3.8 292 39.7 49.5 38.8 42.4

Refrigerant Side Base Alt. SI Units Base Alt. IP Units Ratio

suction line pressure drop 3.2 2.9 kPa 0.46 0.42 psid 0.92

discharge line pressure drop 20 20 kPa 2.90 2.84 psid 0.98

08‐Nov‐2012

water

water

Base Alt. Base Alt.

Page 24: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

Appendix B

Data Points Collected at Standard Operating Conditions

Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 1

Manufacturer: Trane

Basic Information

Alternative Refrigerant R1234ze Honeywell

Alternative Lubricant Type and ISO Viscosity POE – 68

Baseline Refrigerant R134a

Baseline Lubricant Type and ISO Viscosity POE – 68

Make and Model of System RTWD water‐cooled chiller (running first of two refrigerant circuits

Nominal Capacity and Type of System 230 nominal tons (preproduction prototype for lab verification)

Comparison Data Base Alt. SI Units Base Alt. IP Units Ratio

Mode (heating/cooling) cooling

Compressor Type screw compressor (high lift version)

Compressor Displacement m³/hr cfm

Nominal Motor Size kW hp

Motor Speed (60 Hz) Hz

Expansion Device Type electronic expansion valve

Lubricant Charge L gal

Refrigerant Charge 81.6 79.4 kg 180 175 lbm 0.972

Composition (at Cmpr Suct)

6.7 6.6 °C 43.98 43.96 °F ‐0.02

1928 1417 L/min 509.3 374.2 gpm 0.735

Flow rate (tons × 2) 5.2 5.1 L/min∙kW 2.41 2.37 gpm/ton 0.985

29.5 29.5 °C 85.0 85.0 °F 0.0

2409 1774 L/min 636 469 gpm 0.736

Flow rate (tons × 2) 6.5 6.4 L/min∙kW 3.01 2.97 gpm/ton 0.987

Capacity 371.9 277.4 kW 105.7 78.9 tons 0.746

Power to Compressor 86.0 63.0 kW 86.0 63.0 kW 0.733

COP or EER (compressor only) 4.33 4.40 [] 14.76 15.02 Btu/W∙hr 1.017

Refrigerant Mass Flow Rate 8,596 6,981 kg/hr 18,950 15,390 lbm/hr 0.812

Refrig Flow @ Cmpr Suction 518.2 517.7 m³/hr 305.0 304.7 cfm 0.999

Other System Changes

The unit tested has non‐standard evaporator tubes (alternate high performance design).

The unit tested has non‐standard condenser tubes (90/10 cupronickel).

Only one of two refrigerant circuits was run due to limited availability of some refrigerants.

System Data Base Alt. Ratio

Degradation Coefficient

Seasonal Energy Efficiency Ration – SEER

Heating Seasonal Performance Factor – HSPF

12 3.1

Chilled 

Water

Leaving Temp

Flow rate

Cooling 

Water

Entering Temp

Flow rate

08‐Nov‐2012

Page 25: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

Appendix B

Data Points Collected at Standard Operating Conditions

Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 2

Type of System: RTWD wc Water Chiller Alternate Refrigerant:   R1234ze

Water Side Data Base Alt. SI Units Base Alt. IP Units Ratio | Diff

Evaporator (shell & tube)

fluid

flow rate 1928.0 1416.6 L/hr 509 374 gpm 0.735

T entering 9.4 9.4 °C 48.9 49.0 °F 0.1°F

T leaving 6.7 6.6 °C 44.0 44.0 °F 0.0°F

pressure drop 121 71 kPa 17.5 10.2 psid 0.585

Condenser (shell & tube)

fluid

flow rate 2408.9 1773.7 L/hr 636 469 gpm 0.736

T entering 29.5 29.5 °C 85.0 85.0 °F 0.0°F

T leaving 32.2 32.3 °C 90.0 90.1 °F 0.0°F

pressure drop 140 81 kPa 20.3 11.7 psid 0.578

Refrigerant Side 

T (°C) P (kPa) T (°C) P (kPa) T (°F) P (psia) T (°F) P (psia)

Compressor (screw)

suction 3.9 338 4.4 251 39.0 49.0 39.9 36.4

discharge 51.2 943 44.8 694 124.2 136.8 112.7 100.6

dchrg SH | Pratio 14.0 8.5 25.2 2.79 15.24 2.77

Condenser (shell & tube w/integral subcooler)

inlet/shell 51.2 943 44.8 694 124.2 136.8 112.7 100.6

shell dewpoint 36.4 35.6 97.6 96.1

shell bubblept 36.4 35.6 97.6 96.1

subcooler outlet 32.5 911 32.4 671 90.5 132.1 90.3 97.3

subcooling (local) 3.5 2.8 6.2 5.0

Expansion Device (EXV)

inlet 32.5 911 32.4 671 90.5 132.1 90.3 97.3

Evaporator (shell & tube)

inlet/shell 4.3 341 4.4 254 39.7 49.5 39.9 36.8

outlet/shell 4.3 341 4.4 254 39.7 49.5 39.9 36.8

Refrigerant Side Base Alt. SI Units Base Alt. IP Units Ratio

suction line pressure drop 3.2 2.6 kPa 0.46 0.38 psid 0.83

discharge line pressure drop 20 15 kPa 2.90 2.14 psid 0.74

08‐Nov‐2012

water

water

Base Alt. Base Alt.

Page 26: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

Appendix B

Data Points Collected at Standard Operating Conditions

Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 1

Manufacturer: Trane

Basic Information

Alternative Refrigerant ARM‐42a Arkema

Alternative Lubricant Type and ISO Viscosity POE – 68

Baseline Refrigerant R134a

Baseline Lubricant Type and ISO Viscosity POE – 68

Make and Model of System RTWD water‐cooled chiller (running first of two refrigerant circuits

Nominal Capacity and Type of System 230 nominal tons (preproduction prototype for lab verification)

Comparison Data Base Alt. SI Units Base Alt. IP Units Ratio

Mode (heating/cooling) cooling

Compressor Type screw compressor (high lift version)

Compressor Displacement m³/hr cfm

Nominal Motor Size kW hp

Motor Speed (60 Hz) Hz

Expansion Device Type electronic expansion valve

Lubricant Charge L gal

Refrigerant Charge 81.6 79.4 kg 180 175 lbm 0.972

Composition (at Cmpr Suct)

6.7 6.7 °C 43.98 43.99 °F 0.01

1928 1856 L/min 509.3 490.4 gpm 0.963

Flow rate (tons × 2) 5.2 5.0 L/min∙kW 2.41 2.34 gpm/ton 0.973

29.5 29.5 °C 85.0 85.0 °F 0.0

2409 2319 L/min 636 613 gpm 0.963

Flow rate (tons × 2) 6.5 6.3 L/min∙kW 3.01 2.93 gpm/ton 0.973

Capacity 371.9 367.9 kW 105.7 104.6 tons 0.989

Power to Compressor 86.0 88.1 kW 86.0 88.1 kW 1.024

COP or EER (compressor only) 4.33 4.18 [] 14.76 14.25 Btu/W∙hr 0.966

Refrigerant Mass Flow Rate 8,596 9,825 kg/hr 18,950 21,660 lbm/hr 1.143

Refrig Flow @ Cmpr Suction 518.2 526.1 m³/hr 305.0 309.7 cfm 1.015

Other System Changes

The unit tested has non‐standard evaporator tubes (alternate high performance design).

The unit tested has non‐standard condenser tubes (90/10 cupronickel).

Only one of two refrigerant circuits was run due to limited availability of some refrigerants.

System Data Base Alt. Ratio

Degradation Coefficient

Seasonal Energy Efficiency Ration – SEER

Heating Seasonal Performance Factor – HSPF

12 3.1

Chilled 

Water

Leaving Temp

Flow rate

Cooling 

Water

Entering Temp

Flow rate

08‐Nov‐2012

Page 27: TEST REPORT #7 System Drop-In Tests of R134a … cupronickel condenser tubes, and alternative copper evaporator tubes. Photos of the chiller are shown in Figure 1. The chiller consists

Appendix B

Data Points Collected at Standard Operating Conditions

Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 2

Type of System: RTWD wc Water Chiller Alternate Refrigerant:   ARM‐42a

Water Side Data Base Alt. SI Units Base Alt. IP Units Ratio | Diff

Evaporator (shell & tube)

fluid

flow rate 1928.0 1856.3 L/hr 509 490 gpm 0.963

T entering 9.4 9.5 °C 48.9 49.0 °F 0.1°F

T leaving 6.7 6.7 °C 44.0 44.0 °F 0.0°F

pressure drop 121 111 kPa 17.5 16.1 psid 0.919

Condenser (shell & tube)

fluid

flow rate 2408.9 2318.9 L/hr 636 613 gpm 0.963

T entering 29.5 29.5 °C 85.0 85.0 °F 0.0°F

T leaving 32.2 32.3 °C 90.0 90.2 °F 0.2°F

pressure drop 140 130 kPa 20.3 18.9 psid 0.932

Refrigerant Side 

T (°C) P (kPa) T (°C) P (kPa) T (°F) P (psia) T (°F) P (psia)

Compressor (screw)

suction 3.9 338 4.1 368 39.0 49.0 39.4 53.4

discharge 51.2 943 46.5 989 124.2 136.8 115.7 143.4

dchrg SH | Pratio 14.0 7.7 25.2 2.79 13.92 2.69

Condenser (shell & tube w/integral subcooler)

inlet/shell 51.2 943 46.5 989 124.2 136.8 115.7 143.4

shell dewpoint 36.4 37.9 97.6 100.2

shell bubblept 36.4 37.8 97.6 100.1

subcooler outlet 32.5 911 32.5 948 90.5 132.1 90.4 137.5

subcooling (local) 3.5 4.6 6.2 8.3

Expansion Device (EXV)

inlet 32.5 911 32.5 948 90.5 132.1 90.4 137.5

Evaporator (shell & tube)

inlet/shell 4.3 341 4.5 372 39.7 49.5 40.1 53.9

outlet/shell 4.3 341 4.5 372 39.7 49.5 40.2 53.9

Refrigerant Side Base Alt. SI Units Base Alt. IP Units Ratio

suction line pressure drop 3.2 3.6 kPa 0.46 0.53 psid 1.16

discharge line pressure drop 20 22 kPa 2.90 3.24 psid 1.12

08‐Nov‐2012

water

water

Base Alt. Base Alt.