tereno networks - soil moisture active passive

19
TERENO NETWORKS CARSTEN MONTZKA, HEYE BOGENA, HARRY VEREECKEN Soil moisture monitoring in German observatories

Upload: others

Post on 28-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TERENO NETWORKS - Soil Moisture Active Passive

TERENO NETWORKS

CARSTEN MONTZKA, HEYE BOGENA, HARRY VEREECKEN

Soil moisture monitoring in German observatories

Page 2: TERENO NETWORKS - Soil Moisture Active Passive

CLIMATE CHANGE IN GERMANY

SEITE 2

Identified high risk regions

Source: R. Glaser 2008: Klimageschichte Mitteleuropas – 1200 Jahre Wetter,

Klima, Katastrophen mit Prognosen für das 21. Jahrhundert.

Network of TERENO Observatories

Budget: ~20 Mio. €

Start: 2008

Page 3: TERENO NETWORKS - Soil Moisture Active Passive

MULTI-SCALE AND MULTI-COMPARTMENT

MONITORING CONCEPT

SEITE 3

Page 4: TERENO NETWORKS - Soil Moisture Active Passive

TERENO DATA MANAGEMENT

Some soil moisture data also transferred to ISMN

Page 5: TERENO NETWORKS - Soil Moisture Active Passive

TERENO RUR

• 12 Cosmic ray soil moisture stations

including SMT100

• 2 High density soil moisture networks

• Grassland site Rollesbroich

• Forest site Wüstebach

Page 5

Rur catchment: 2400km2

Page 6: TERENO NETWORKS - Soil Moisture Active Passive

SOILNET

Advantages:

• Low visibility

• Protection against vandalism, animals etc.

• Protection against temperature changes

• No interference with agricultural practices (grassland)

Subsurface wireless sensor network

KG Rohr

mit DeckelEnd -

Device

Halteschraube

(Hutmutter)Sensoren

Page 7: TERENO NETWORKS - Soil Moisture Active Passive

SOILNET

Subsurface wireless sensor network

„Power“

Schalter

Anschluss

Service Unit

Anschluss

Antenne

Batteriehalter

Nut für O-Ring

90 x 2 mm

ON

OFF

Zigbee standard, a LoRa standard is under development

Page 8: TERENO NETWORKS - Soil Moisture Active Passive

SOILNET

Router and coordinator

Sensor network Rollesbroich

Coordinator with GSM modem

sector antennas

router

Page 9: TERENO NETWORKS - Soil Moisture Active Passive

Name Variable Interface Company

SMT100 Soil moisture, soil temperature SDI-12 truebner.de

MPS-6 Water potential SDI-12

decagon.com

GS3 Soil moisture, soil temperature, el. conductivity SDI-12

decagon.com

5TE Soil moisture, soil temperature, el. conductivity SDI-12

decagon.com

CTD-10 Water level, temperature, el. conductivity SDI-12

decagon.com

RT-1 Soil temperature SDI-12

decagon.com

EC-5 Soil moisture analogue decagon.com

RG2501 Precipitation pulse omega.com

SMT100 MPS-6 GS3 5TE CTD-10 RT-1 EC-5 RG2501

SOILNET Sensor examples

Page 10: TERENO NETWORKS - Soil Moisture Active Passive

M1: Air (έ=1)

M2: Dry sand (έ=3)

M3: (2-Isopropoxyethanol, έ ~ 18.1)

M4: (2-Isopropoxyethanol, έ ~ 26.3)

M5: (2-Isopropoxyethanol, έ ~ 34.8)

M2 M3

M4

M5 Washing

M1

SOILNET CALIBRATION Fist step: Relationship between sensor output and permittivity

Page 11: TERENO NETWORKS - Soil Moisture Active Passive

SOILNET CALIBRATION Fist step: Relationship between sensor output and permittivity

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

x 104

0

5

10

15

20

25

30

35

40

Counts, [-]

Ka,

[-]

Universal model

0 10 20 30 400

5

10

15

20

25

30

35

40

45

50Corresponding SWC by Topp

Ka, [-]

SW

C, [

Vol

. %]

Counts=150

STD=47

Counts=259

STD=42

Counts=226

STD=56

Counts=129

STD=58

Counts =154, STD=42

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

x 104

0

5

10

15

20

25

30

35

40

Counts, [-]

Ka,

[-]

Sensor specific calibration

0 10 20 30 400

5

10

15

20

25

30

35

40

45

50Ka derived by sensor specific calibration

Sensor specific calibration Ka, [-]

corre

spon

ding

SW

C b

y To

pp, [

Vol

. %]

SWC=1.33, STD=0.39

SWC=1.28

STD=0.36

SWC=1.57

STD=0.40

SWC=1.58

STD=0.41

SWC=0.44

STD=0.11

Page 12: TERENO NETWORKS - Soil Moisture Active Passive

SOILNET CALIBRATION Second step: Relationship between SWC and permittivity

Empirical models (e.g. Topp et al., 1980) -> not universal

Physically based models:

- Three component model CRIM (Roth et al., 1990)

2 2 2 4 3 6

v c c c5.3 10 K 2.92 10 K 5.5 10 K 4.3 10

Ka: Apparent permittivity

Ks, Kw, Kair: Relative permittivities of the solid, water,

and air phases

: Porosity

ß: Shape factor

v: Volumetric soil water content

Kc: Measured apparent soil permittivity

airw

airsa

KTK

KKK

)(

)1(100

Page 13: TERENO NETWORKS - Soil Moisture Active Passive

SOILNET CALIBRATION Soil-specific calibration

airw

airsa

KTK

KKK

)(

)1(

RMSE=2.9 Vol.%

Rosenbaum et al. (2012)

CRIM Modell:

Page 14: TERENO NETWORKS - Soil Moisture Active Passive

5 cm 20 cm

Bogena et al. (2010)

150 Sensor units

18 Router units

900 Soil moisture sensors

300 Temperature sensors

455 days: ~10 Mio. hourly measurements!

Test site Wüstebach

THE WÜSTEBACH NETWORK Forest hydrology research (27ha)

Page 15: TERENO NETWORKS - Soil Moisture Active Passive

THE WÜSTEBACH NETWORK

Spatial variability vs. mean soil moisture

• Highest soil moisture

variability as well as

scatter is observed in 5

cm.

• SD peaks in the

intermediate soil

moisture range.

Page 16: TERENO NETWORKS - Soil Moisture Active Passive

Clear-cut

SM

Reference

area

Clear-cut area

Before 39.5 (7.6) 43.6 (7.2)

After 38.6 (6.9) 51.2 (4.9)

Wiekenkamp et al., 2016

THE WÜSTEBACH NETWORK A clear-cut experiment

Page 17: TERENO NETWORKS - Soil Moisture Active Passive

200 Sensor units

18 Router units

1200 Soil moisture sensors

300 Temperature sensors

THE ROLLESBROICH NETWORK Grassland hydrology (40ha)

Long-term L-band radiometer measurements

Page 18: TERENO NETWORKS - Soil Moisture Active Passive

AIRBORNE CAMPAIGNS

Page 18

L-band SAR (DLR F-SAR) and radiometer measurements (PLMR2)

Page 19: TERENO NETWORKS - Soil Moisture Active Passive

CONCLUSIONS AND OUTLOOK

• To get closest to real spatiotemporal variability of soil moisture with in situ sensors, wireless sensor

networks have some advantages

• SoilNet applications since 9 years mainly for soil water dynamics research

• SoilNet is restricted to small catchments

• SoilNetLoRa makes monitoring of larger catchments possible (e.g. 100 km²)

• 2 step SM sensor calibration is TERENO standard

• TERENO Rur observatory (ag site Selhausen) will be location of a test campaign for the ESA

Copernicus L-band SAR candidate mission