tensor network theory - nus · tensor network theory (tnt) is a powerful toolbox for dealing with...

45
Tensor Network Theory University of Oxford An introduction to DMRG and MPS methods Dieter Jaksch Quantum and Kinetic Problems: Modeling, Analysis, Numerics and Applications IMS Singapore Special thanks to: Stephen Clark, University of Bristol

Upload: others

Post on 24-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Tensor Network Theory

University of Oxford

An introduction to DMRG and MPS methods

Dieter Jaksch

Quantum and Kinetic Problems: Modeling, Analysis, Numerics and ApplicationsIMS Singapore

Special thanks to: Stephen Clark, University of Bristol

Page 2: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

• Lecture 1Introduction to strong correlations, many‐body problem, recap on essential linear algebra we will need later. 

• Lecture 2Tensors and contractions, product states and variational principle, matrix product states (MPS), and their entanglement properties.

• Lecture 3The “calculus” of MPS, algorithms for their variational optimisation, and algorithms for time‐evolution of MPS.

• Lecture 4Moving to finite temperatures, renormalisation approaches to tensor networks, extension to 2D with projected entangled pairs.

Outline of lecturesOutline of lectures

Page 3: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Lecture 1 Lecture 1 

Page 4: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

• U. Schollwock,The density‐matrix renormalization group in the age of matrix product states, Annals of Physics 326, 96 (2011).

• F. Verstraete, V. Murg and J.I. Cirac, Matrix product states, projected entangled pair states, and variationalrenormalization group methods for quantum spin systems, Advances in Physics 57, 143 (2008).

• J.I. Cirac and F. Verstraete,Renormalization and tensor product states in spin chains and lattices, J. Phys. A: Math. Theor. 42, 504004 (2009).

• G. Evenbly and G. Vidal,Quantum criticality with the multi‐scale entanglement renormalization ansatz, arxiv:1109.5334

• Roman Orus,A practical introduction to tensor networks: matrix product states and projected entangled pair states, arxiv:1306.2164

Key referencesKey references

Page 5: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

1: Strong correlations 1: Strong correlations 

Page 6: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

• Potential energy

• Kinetic energy

A particle gains energy by hopping between different states

Two particles in two boxesTwo particles in two boxes

2

11| 1

Hamiltonian counts number of particles in each state

h. c.

Page 7: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

• Interaction energy– particles in the same state

– Interactions between particles in different states

Each particle interacts with all particles inthe other state

Each particle interacts with n‐1 particles in the same state

Two particles in two boxesTwo particles in two boxes

2 1

Page 8: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

L R L RL R

|20⟩ |11⟩ |02⟩

Two particles in two boxesTwo particles in two boxes

Basis states

Page 9: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

• Matrix form

• Ground state

|20⟩|11⟩|02⟩

20| 11| 02|

Ψ ∝ 2 20 4 1 4 11 2|02

Hamiltonian and ground stateHamiltonian and ground state

|20⟩|11⟩|02⟩

|20 20| 02 02 2J |20 11| |02 11| h. c.

Page 10: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

• This is defined by

• For the ground state

0 5 10 15 20

UJ

0.2

0.4

0.6

0.8

1.012

Single particle density matrixSingle particle density matrix

Page 11: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

• How well defined is the particle number in each site?

• This is given by ∆

0 5 10 15 20

UJ

0.1

0.2

0.3

0.4

0.5n2∆

Particle number fluctuationsParticle number fluctuations

Page 12: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

• Assume that sites are not correlated

Ψ ⊗

Ψ | ⟩

• With this ansatz the Schrödinger equation (obtained from the principle of least action) becomes non‐linear in the remaining coefficients ( 0)

Ψ 11

• The resulting approximate ground state is not correlated and describes one particle moving in a mean background field created by the other particle

• Dimension of vectors increases linearly with size.

• Reduction of degrees of freedom is achieved byignoring correlations and introducing non‐linearity.

• Often valid for sufficiently weak interactions

| ⟩ | ⟩

Compare: Mean‐field theoryCompare: Mean‐field theory

Page 13: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

0 5 10

0.5

1

/

Mean field approach

Exact solution

Compare: Mean‐field theoryCompare: Mean‐field theory

0 5 10 15 20

UJ

0.2

0.4

0.6

0.8

1.012

1

010                        20

Mean field approach

Exact solution

Coherences are not describable by mean field theory – they cannot be distance dependent

Particle number fluctuations are not captured by mean‐field theory, no squeezing, ….

Page 14: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Strong correlations?Strong correlations?Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlations exactly? 

“correlations” is a synonym for “interactions” 

weak interactions • can extrapolate en masse 

behaviour from one particle

strong interactions• particles do not move independently

Page 15: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Dramatic consequencesDramatic consequencesInterplay of microscopic interactions with external influences can lead to abrupt macroscopic changes …

+

-

0

1

1

++ +-

Simple “classical” Ising magnet:

Page 16: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Strong correlations Strong correlations Beyond physics strong correlations appear pervasive …

Page 17: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Add quantum mechanics … Add quantum mechanics … Major interest in quantummany‐body problems arises in lattice systems – trying to understand the remarkable properties of electrons in some materials …

• High‐temperature superconductivity

What is the pairing mechanism?  

• Quantum Hall effectWhat are the topological properties of fractional QH states?  

These are seminal strongly‐correlated phenomena. 

Page 18: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

2: The many‐body problem 2: The many‐body problem 

Page 19: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Strong correlationsStrong correlationsInteractions are dominant in materials like transition metal oxides, and the CuO2 planes in high‐Tc superconductors. The reason is:

+++

• “core‐like” d or f valence orbitals • small overlap = narrow bands 

• confinement = large repulsion 

Gives the Hubbard model:

Interactions significant – nosimple quasi‐particle picture.

Half‐filled strong‐coupling limit is a Heisenberg anti‐ferromagnet:

Page 20: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Quantum simulationsQuantum simulationsSuch model Hamiltonian are now accurately realisable with cold atoms:

Lasers

BEC

Optical Lattice

Time of flight imaging:

Superfluid : Mott-Insulator :

quantum phase transition

You will hear more about these AMO systems in other lectures. 

Bose Hubbard model

Page 21: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

What do we want to compute?What do we want to compute?Given a Hamiltonian        describing our strongly‐correlated system we typically want to compute: 

These reduce to linear algebra problems we’ll review shortly …

In both cases, we want to compute local observables and long‐ranged correlations and other properties.

(2) Solve

Dynamics of quenches, driving, …

Find ground state and low‐lying excitations (also thermal):

(1) Solvegapped or gapless?

Page 22: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Consider two level systems

arranged along a one dimensional chain labelled by index 

Pauli operators

| ⟩

| ⟩

|0⟩

|1⟩

|↓⟩

|↑⟩

Ψ |↑⟩ ⊗ |↑⟩ ⊗ |↓⟩ ⊗ |↑⟩ ⊗ |↓⟩ ⊗ |↓⟩ ⊗ |↑⟩ ⊗ |↓⟩

|↑⟩ |↓⟩|↓⟩ |↑⟩

|↑⟩ |↑⟩

|↓⟩ |↓⟩|↑⟩ |↓⟩|↓⟩ |↑⟩

This lecture: spin chains onlyThis lecture: spin chains only

Page 23: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Description (storage)Computational effort

Scale exponentially with size!

Curse of dimensionalityCurse of dimensionalityBut, classically simulating many‐body quantum systems seems to be very hard:

Can we solve 4 × 4 problem?

What about a 6 × 6 problem?

Brute‐force approach extremely limited. New methods needed …

# amplitudes = 82,358,080,713,306,090,000

# amplitudes = 165,636,900 ≈ 2.6GB RAM

Page 24: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

3: Recap on Linear Algebra 3: Recap on Linear Algebra 

Page 25: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

RepresentationsRepresentationsTo do numerical calculations we need an explicit representation mapping our description in one basis to      . To do this we write: 

Abstract

Explicit

Thus any state maps to a vector in  

Basis dependent

Page 26: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

We then encode these overlaps as a matrix  

i.e. a general non‐orthogonal basis.

How our actual inner‐product              appears in        depends on our choice of basis. Suppose:

RepresentationsRepresentationsThe “native” inner‐product in          is simply: 

since                         as the standard basis is natively orthonormal. 

So given                                                and

We get

Page 27: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

RepresentationsRepresentationsSo the actual inner‐product becomes a “weighted” inner‐product in

. For now we will choose an orthonormal basis

so such distinctions disappear. However non‐orthogonal bases will raise their head later so beware (!)

Given an operator         on       which maps one state to another as:

compute matrix elements as

Then we represent it as a matrix

For an orthogonal basis the operator acts as                           in          . 

Page 28: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Some basic linear algebraSome basic linear algebra

It’s the number of linearly independent columns ofRank of matrix

Full rank means that   

Unitary matricesIt is a square matrix                                     obeying 

which implies 

or in other words its row or column vectors               are orthonormal.  

Unitaries preserve inner‐products 

Page 29: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Some basic linear algebraSome basic linear algebraVector and matrix norms

The 2‐norm defined from our inner‐product will often be sufficient. 

The notion of size or distance will be crucial for us. Generally one can define a p‐norm as:  

For matrices we can define a direct generalisation called the  Frobenius norm:

Page 30: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Matrix decompositionsMatrix decompositionsLater we will repeatedly exploit ways of breaking matrices up into parts with special properties. Let’s review these here:  

Eigenvalue decompositionObviously central to QM. More formally        is an eigenvector and         

is its eigenvalue for a square matrix if:

Non‐trivial solutions are the roots of 

A square matrix                          has  eigenvalues.   

Have to solve linear system of equations 

Page 31: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Matrix decompositionsMatrix decompositions(algebraic multiplicity) = # of times eigenvalue      appears(geometric multiplicity) = # linearly independent eigenvectors

Since        is non‐singular we have the eigenvalue decomposition:  

If (algebraic multiplicity) = (geometric multiplicity)  

Then it’s a non‐defective matrix

diagonal matrix of eigenvalues  matrix of eigenvectors  

Page 32: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Matrix decompositionsMatrix decompositionsThe matrix         is said to be diagonalisable with         containing its right eigenvectors. The left eigenvectors follow similarly:

If                                       then it’s normal and                         is unitary       

Since                                                     left ‐ right eigenvectors coincide and form an orthonormal basis set.

unitarily diagonalisable

Hermitian matrices are manifestly normal and have real eigenvalues. 

If eigenvalues are non‐negative then its positive semi‐definitematrix.

Page 33: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Matrix decompositionsMatrix decompositionsNow consider a different perspective. Take a hermitian operator      and suppose we want to find the state        which minimises:

Formulate as a constrained minimisation with Lagrange multiplier

Stationarity occurs for eigenvectors of         with a value equal to the eigenvalue. Compute the smallest eigenvalue to minimise.     

Rayleigh quotient

Page 34: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Matrix decompositionsMatrix decompositionsWhat happens if we didn’t use an orthonormal basis             ? 

Here        is still the matrix made from       and so is still hermitian.

The overlap matrix     is by its definition hermitian and positive semi‐definite matrix. 

When we map to          we get instead:

Page 35: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Matrix decompositionsMatrix decompositions

Since        is invertible (it’s a similarity transform) we can formally convert it back to a normal eigenvalue problem as

This is a generalised eigenvalue problem. It will appear frequently ...

Solution to this optimisation problem becomes: 

Note that                still has real eigenvalues, but not orthonormal eigenvectors according to the native inner‐product of       . Rather

so the eigenvectors are orthonormal in the actual inner‐product, as they must be since the original problem was hermitian.

Page 36: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Matrix decompositionsMatrix decompositions

The SVD is a slightly less well known decomposition. Its motivated from the following geometrical fact: 

“The image of the unit sphere under any matrix is a hyperellipse” 

Singular value decomposition

This picture illustrates the point for a 2 × 2 matrix       :

The green unit circle is mapped to the blue ellipse under the transformation by       .

eigshow(A)

Try MATLAB command

For a certain input          the image              is major/minor axis of the ellipse.

Page 37: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Matrix decompositionsMatrix decompositionsFormally stated the SVD guarantees that for any

where  and diagonal

and unitary

Page 38: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Matrix decompositionsMatrix decompositionsThe diagonal matrix         has                                            non‐negative values:

These are the “singular values” of       

The                         columns of        and         form the left and right “singular vectors” of        , respectively.       

Page 39: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Matrix decompositionsMatrix decompositionsWe can thus write the SVD as a sum of rank‐1 projectors:

This generalises our earlier 2 × 2 example. Acting        on         gives       

Each unit vector        is mapped to a unit vector         rescaled by          which form the semiaxes of the hyperellipse.

Unlike an eigenvalue decomposition everymatrix has an SVD and its singular values are uniquely determined. 

For every distinct          the singular vectors are also uniquely determined up to a phase: 

Page 40: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Matrix decompositionsMatrix decompositionsAs it stand the SVD contains redundant information since we only used at most the first p columns. Suppose        has rank r < p then

So let’s simply discard the redundant bits to get:

Page 41: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Matrix decompositionsMatrix decompositionsThis is called a reduced SVD. Since        and        are no longer square they cannot be unitary. However their columns are still orthonormal so they continue to obey:

The SVD has some connection to eigenvalue decompositions. Taking    we can form two new positive semi‐definite matrices:

Using the SVD of       we then get that: 

So both share non‐negative eigenvalues                                              and their eigenvectors are the left and right singular vectors.  

and 

and 

and 

Page 42: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Matrix decompositionsMatrix decompositionsPerhaps the most important property of the SVD is its ability to provide low‐rank approximations of matrices. Take the following:

Given        has rank r what is the “best” approximation        to          with rank χ < r. By “best” we mean it minimises:

The remarkable result is that       is just the partial sum of the SVD up to the χ‐th term:

with a residual error given by                                               . 

Page 43: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Matrix decompositionsMatrix decompositionsThis result has many applications. Here is an example of image compression:

Later we will use the same technique to compress quantum states …

The full uncompressed image formally has a rank of r = 512, however we can severely truncate the SVD and still retain a good image. 

Page 44: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Computational complexityComputational complexityIn the forthcoming lectures will be very interested in how expensive operations are. For this we will need to know the computational complexity of the linear algebra operations just discussed:

Dense matrix multiplication

naively  more optimally 

Eigenvalue decomposition

Singular value multiplication

The “Big‐O” notation hides constants crucial for practical calculations – using good linear algebra libraries is essential. 

assuming          is diagonalisable 

Page 45: Tensor Network Theory - NUS · Tensor Network Theory (TNT) is a powerful toolbox for dealing with strong correlations. So what are strong correlationsexactly? “correlations” is

Next lecture …Next lecture …Over the next 3 lectures we will introduce tensors and explore tensor network like matrix product states, and discuss others …  

1D

2D