technetium: mo/ tc “generators” and production of tc...

17
Technetium: 99 Mo/ 99m Tc “generators” and production of Tc radiotracers *Board of Interdivisional Group of Radiochemistry, GIR Italian Society of Chemistry, SCI *Mauro L. Bonardi and Flavia Groppi Radiochemistry Laboratory, LASA Universita’ degli Studi and INFN, Milano, Italy Collaborations: JRC-Ispra-EC, IAEA-NDS, ATOMKI-Debrecen-HU, Beer Sheva-Israel, INR-Russia, NIST-USA, LANL-USA, TRIUMF-CA, ORNL-USA, iThemba LABS-SA http://wwwGIR.mi.infn.it *EuCheMS-Division NRC, ANS-IC [email protected] [email protected] and International Union of Pure and Applied Chemistry

Upload: others

Post on 20-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Technetium: 99Mo/99mTc “generators”and production of Tc radiotracers

    *Board of Interdivisional Group of Radiochemistry, GIR

    Italian Society of Chemistry, SCI

    *Mauro L. Bonardi and Flavia GroppiRadiochemistry Laboratory, LASA

    Universita’ degli Studi and INFN, Milano, Italy

    Collaborations: JRC-Ispra-EC, IAEA-NDS, ATOMKI-Debrecen-HU,Beer Sheva-Israel, INR-Russia, NIST-USA, LANL-USA,

    TRIUMF-CA, ORNL-USA, iThemba LABS-SA

    http://wwwGIR.mi.infn.it

    *EuCheMS-Division NRC, ANS-IC

    [email protected] [email protected]

    International Union of Pureand Applied Chemistry

    mailto:[email protected]:[email protected]

  • Main steps in accelerator (or reactor) production of a labelled compound (e.g. radiopharmaceutical)

    The Quality Control (QC) and God Manufacturing Practice (GMP) are mandatory for each step of the procedure

    In a selected number of cases, it is possible to avoid the radiochemical ich happens in target itself: recoil labelling with hot atomsprocessing step, wh

  • 99Mo

    87.6

    %

    36Kr 37Rb 38Sr 39Y 40Zr 41Nb 42Mo 43Tc 44RuISOBAR-99

    99mTc

    35 36 37 38 39 40 41 42 43 44 45

    10-1210-1110-1010-910-810-710-610-510-410-310-210-1100101

    RbNb

    YSrZr

    Kr

    inde

    pend

    ent f

    issi

    on y

    ield

    (%)

    atomic number , Z

    Tc

    Mo

    Independent Fission Yields (%) of thermal neutrons on U-235

    isobar-99 comulative yield = 6.161% gaussian model

    β − decay

  • Z.B. ALFASSI, M.L. BONARDI, J.J.M. De GOEIJ, F. GROPPI, On the “carrier-free” nature of 99mTc, Appl. Radiat. Isot., 63 (1) (2005) 37-40.

    Simplified decay scheme of isobar-99 and Mo-Tc “generator”The 99mTc is never a carrier-free radionuclide due to the unavoidable presence of the long-lived 99gTc isotopic carrier

    W.C. ECKELMAN, M. BONARDI, W.A. VOLKERT, True radiotracers: are we approaching theoretical specific activity with Tc-99m and I-123?, Nucl. Med. Biol., 35 (5) (2008) 523-527.

    Present WorldDemand

    450.000 GBq/week12.000 GCi/week

    [email protected]@mi.infn.it

    mailto:[email protected]:[email protected]

  • • Classical Nuclear Reactor Methods for production of 99Mo 99mTc “generator”

    *(HEU 99 %) U-235 (n,fiss) Mo-99 thermal neutrons 36.10 barn # (σfiss = 586 b)(liquid LEU 20 %) U-235 (n,fiss) Mo-99 thermal neutrons 7.22 barn #

    #normalized to 6.161 barn of isobar 99 on 235U

    *Mo-98 (nat 9.63 %) (n,γ) Mo-99 thermal neutrons 0.14 barn

    • New Possibilities via 99Mo 99mTc “generator”*Mo-100 (nat 9.63 %) (n,2n) Mo-99 neutrons 6 - 17 MeV 1.5 barn $

    $ Yasuki NAGAI, Yuichi HATSUKAWA, Production of 99Mo for Nuclear Medicine by 100Mo(n,2n)99Mo, J. Phys. Soc. Japan Letter, 78 (3) (2009)

    033201*Mo-100 (γ,n) Mo-99 $GDR 10–30 MeV photons (bremstrahlung, Thomson)*Mo-100 (p,pn) Mo-99 15 – 64 MeV protons 158 mbarn (max)*Mo-98 (n,γ) Mo-99 %ARC thermal-epi neutrons from protons 1 GeV, 1 mA*[Mo-98]complex Szilard-Chalmers Mo-99 thermal-epithermal neutrons > 0.14 barnU-nat (p,fiss) Mo-99 70 MeV protons about 30-50 mbarnU-nat (d,fiss) Mo-99 fast deuterons U-nat (γ,fiss) Mo-99 10 – 30 MeV fast photons (bremstrahlung, Thomson)

    *Zr-96 (nat 6.8 %) (α,n) Mo-99 15 – 35 MeV alphas

    • Direct production of 99mTc from molybdenum target ( without “generator )*Mo-100 (nat 9.63 %) (p,2n) Tc-99m (+Tc-99g) 12 – 22 MeV 200 mbarn (max)*Mo-98 (p,γ) Tc-99m (+Tc-99g) 30 – 50 MeV 130 mbarn (max)

    *Mo-98 (d,n) Tc-99m (+Tc-99g) 10 – 35 MeV

    * high enriched target $ Giant Dipole Resonance % Adiabatic Resonance Crossing

  • Cross-sections of neutrons on 98Mo

    1 / v law

    several resonances

  • Radiative neutron capture cross section of 98Mo(n,γ)99Mo , (the epithermal contribution could be substantial)

    epithermal

    thermal neutrons

    0.14 barn

    0.02

    5 eV

  • fiss CB for protonson 238U = 12.3 MeV

    10 MeV p

    100 MeV p

    Fission of 238U with 70 MeV protonsthe σ of isobar—99 is about 30-50 mbarn

  • In radiochemistry, the short half-life must gain a radiochemical yield (RCY) larger than the chemical yield (CY) of conventional chemistry. The blue line represent in

    semilog scale the decay of radionuclide during the radiochemical steps.EOP: End Of radiochemical Processing

  • The “generators” : 99Mo 99mTc

    The classical and widespread 99Mo 99mTc generator is based on a small radiochromatographic column (normally of stainless steel) filled with a few cm3 of acidic alumina (AAO or acidic Al2O3) and the single charged aqua-anion TcO4- is eluted with a physiological saline solution (NaCl 0.9 %), while the double charged anion MoO42- is strongly retained onto the column (see next slides).

    Other generators based on different filling materials:• gel of zyrconium molybdate, for large volume samples starting from either liquid LEU

    or highly enriched 98Mo targets

    • performances of nanoparticellar zyrconia vs. alumina

    • PZC: solid support of nanocomposites of polyzirconyl anion exchanger

    • PTCs: different kinds of Phase Transfer Catalysts (enhance velocity of either nucleofilic substitution or electrofilic addition/substitution smaller reagent and solvent volumes), for low-medium activity

    • DOWEX-1x8 or AG1x8 strong anion exchanger, for low-medium activity (radiation damage due to the organic lattice)

    Electrochemical generator (similar to 90Sr/90Y one, developed in India)

  • 13

    Present World

    Demand450 TBq/week12 TCi/week

    2sterilysing

    filter

    TcO

    4-el

    uted

    Mo

    2-ad

    sorb

    ed30

    cm

    4

    15 cm

  • TcO

    4-el

    uted

    100

    % ?

    Mo 4

    2-ad

    sorb

    ed10

    0 %

    ?

    15 cm

    30 c

    m

    15 cmPresent World

    Demand

    450 TBq/week12 TCi/week

    2

    3

    sterilysingfiltern

    o M

    o

    brea

    kthr

    ough

    !

    X

  • Elution profile of 99mTc from a 99Mo “generator”(the elution is carried out as a rule every 24 h)

    99Mo

    99mTc

    87.6

    %

    Tmax = 22.83 h withdecay branching

    of 100 %

    0 24 48 72 96 120

    10

    100

    time (days)

    99M

    o an

    d 99

    mTc

    act

    ivity

    (%)

    time (hours)

    0 1 2 3 4 5

    elut

    ion

    6

    elut

    ion

    5elut

    ion

    3

    elut

    ion

    2

    elut

    ion

    1

    RCY of elutions 100 %

    elut

    ion

    4

    decay branching100 % (black dots)

    realbranching87.6 %

  • Taken from Dewi M. Lewis (GE) and Natesan Ramamoorthy, IAEA, Vienna , WORKSHOP “PHYSICS FOR HEALTH IN EUROPE”, CERN 02 - 04 Feb 2010

    1 Accelerator or Research Reactor

    facility for target irradiation

    The accelerators are normally cyclotrons or linac (light ions and electrons for intense

    photon beams)

    2 Radiochemical Processing in a

    series of Hot-Cells and master-slave

    manipulators

    3 Partitioning of bulk activity after QC under GMP

    rules and restrictions

    Schematics of main stepsin commercial production

    of radionuclides and radiopharmaceuticals

    [email protected]@mi.infn.it

    mailto:[email protected]:[email protected]

  • Hot Cell facility for radionuclide processing at LANLEach cell dedicated to 1 different radionuclide or radiopharmaceutical

    Master-Slave manipulators

    Pb glass windows

    Manip Hand Hood

    Dis

    pens

    ary

    Cel

    lWarm Corridorfor maintenance

    Cell1

    Cell2

    Cell3

    Cell4

    Cell5

    Cell6

    Cell7

    Cell8

    Cell9

    Cell10

    Cell11

    Cell12

    Cell13

    Foye

    r

    TrainMaintRoom

    Dis

    solv

    ing

    Ben

    ch

    train

    railw

    ay

    Master Cell

    Train for activity

    distribution

    M-S

    man

    ipul

    ator

    s

  • Mauro Bonardi, Claudio Birattari, FlaviaGroppi, Enrico Sabbioni, Thin-target excitation functions, cross-sections and optimised thick-target yields for natMo(p,xn)94g,95m,95g,96(m+g)Tc nuclear reactions induced by protons from threshold up to 44 MeV. No Carrier Added radiochemical separation and quality control, Appl. Radiat. Isot., 57 (5) (2002) 617-635.

    Other radionuclides of technetiumproduced in a proton cyclotron via

    Mo(p,xn) reactions for research purposes (Milano and Ispra 1982 – 2004)

    • Claudio Birattari, Mauro Bonardi, Marco Castiglioni, J. Edel, Monica Gattinoni, F. Mousty, Enrico Sabbioni, Gamma-emitting technetium radiotracers production for waste disposal studies at Milan AVF Cyclotron,Report INFN, INFN/TC-84/24, Frascati, Roma, 1984

    • Andrea Marchi, Licia Uccelli, Luciano Magon, Mauro Bonardi, Mario Gallorini, Flavia Groppi, Sabrina Saponaro,

    Technetium complexes with ligands of pharmacological interest, J. Radioanal. Nucl. Chem., 195 (1995) 237-242.• Mauro Bonardi e Flavia Groppi, Masurio-99m, Masurio-99, Renio-186g, Renio-188,: Radioelementi chimici isomorfi, ma

    con attività specifica e proprietà chimico-fisiche differenti. Storia e produzione di radiotraccianti. Metodiche di produzione e controllo di qualità, Rapporto INFN/TC-01/04, Frascati, Roma, 2001

    0 5 10 15 20 25 30 35 40 450

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    22

    24 94gTc 95gTc

    95mTc*103

    96(g+m)Tc

    Thin

    Tar

    get Y

    ield

    (GB

    q/C

    MeV

    )

    Proton Energy (MeV)

    [email protected]@mi.infn.it

    mailto:[email protected]:[email protected]

  • Ciclotrone 70 MeV

    [email protected] and [email protected]

    IUPAC

    Technetium: 99Mo/99mTc “generators” and production of Tc radiotracersSimplified decay scheme of isobar-99 and Mo-Tc “generator”The 99mTc is never a carrier-free radionuclide due to the unavoidaRadiative neutron capture cross section of 98Mo(n,g)99Mo, (the epithermal contribution could be substantial)Fission of 238U with 70 MeV protons the s of isobar—99 is about 30-50 mbarnThe “generators” : 99Mo 99mTcElution profile of 99mTc from a 99Mo “generator”(the elution is carried out as a rule every 24 h)Hot Cell facility for radionuclide processing at LANLMauro Bonardi, Claudio Birattari, Flavia Groppi, Enrico Sabbioni, Thin-target excitation functions, cross-sections and optimi