tati p2 parte2

41
INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA PRÁCTICA NÚMERO 2 “LA SEGURIDAD EN EL LABORATORIO” PARTE 2 ALUMNOS: GARCIA GARCIA SALVADOR VELEZ RODRIGUEZ FERNANDO GRUPO: 8EV1 SUBGRUPO: B PROFESOR: EZEQUIEL SOLIS ARAUJO

Upload: fher-velez

Post on 10-Jul-2016

222 views

Category:

Documents


2 download

DESCRIPTION

alta tension

TRANSCRIPT

Page 1: Tati p2 Parte2

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA

PRÁCTICA NÚMERO 2

“LA SEGURIDAD EN EL LABORATORIO”

PARTE 2

ALUMNOS:

GARCIA GARCIA SALVADOR

VELEZ RODRIGUEZ FERNANDO

GRUPO: 8EV1 SUBGRUPO: B

PROFESOR:

EZEQUIEL SOLIS ARAUJO

FECHA DE ENTREGA: 27/04/16

Page 2: Tati p2 Parte2

Índice

Pruebas eléctricas..............................................................................................................................2

Jaula de Faraday...............................................................................................................................6

Sistema de Tierras...........................................................................................................................15

Page 3: Tati p2 Parte2

Pruebas eléctricas.

En la industria, lo más importante es la continuidad del servicio de energía eléctrica, ya que de eso depende el proceso de producción; por ello, es importante asegurar que los equipos e instalaciones eléctricas estén en óptimas condiciones. Es indispensable que se realicen pruebas y se dé el mantenimiento correspondiente.

Tipos de pruebas

Existen varias pruebas eléctricas que se denominan con relación al lugar o la finalidad de las mismas.

Pruebas prototipo.

Son aquéllas que se realizan a diseños nuevos, con la finalidad de verificar si se cumple con las especificaciones y normas que apliquen, según sea el caso, considerando la evaluación de los materiales utilizados, así como los criterios de diseño.

Pruebas de fábrica.

Éstas se realizan como rutina, por parte del área de control de calidad, conforme a los métodos establecidos en las normas aplicables. Tienen el objetivo de verificar las características del equipo, sus condiciones de operación y la calidad de la fabricación antes de ser entregados al cliente. Estas pruebas pueden ser atestiguadas por el cliente.

Pruebas de aceptación.

Se realizan a todo equipo nuevo y reparado para verificar que no ha sufrido algún desperfecto en el traslado, que cumple con las especificaciones y que se ha realizado la correcta instalación. También se realizan para establecer referencias para pruebas futuras. Estas pruebas se realizan previamente a la puesta en servicio.

Pruebas de mantenimiento.

Se realizan periódicamente durante toda la vida del equipo, con el propósito de verificar si el equipo se encuentra en condiciones de operación satisfactorias y detectar fallas de manera oportuna, antes de que se convierta en un problema grave. Se realizan cuando existen sospechas de que un equipo se halla en problemas o cuando dicho equipo se ha sometido a condiciones de trabajo extremas.

Page 4: Tati p2 Parte2

Pruebas con corriente directa o corriente alterna

Las pruebas se realizan con corriente directa o con corriente alterna, dependiendo de lo que se desea simular o valorar. En términos generales, el principio básico de las pruebas obedece a la Ley de Ohm. Por ejemplo: la prueba de resistencia de aislamiento. En ella, el instrumento inyecta una tensión eléctrica (volts), el cual mide una corriente de fuga (micro-amperes) y la expresa en resistencia (megohms):

R = V / I

Entre los instrumentos de medición que operan con corriente directa, se encuentran: medidor de resistencia de aislamiento (megóhmetro), probador de potencial aplicado (hi-pot) y medidor de resistencia (óhmetro).

Las pruebas con corriente alterna, en términos generales, producen esfuerzos eléctricos similares a las condiciones reales de operación de los equipos, como las pruebas de factor de disipación, pruebas de relación de transformación, reactancia de dispersión, resistencia a tierra y potencial aplicado a frecuencia nominal o a baja frecuencia.

Qué equipo eléctrico probar

Prácticamente, todo equipo y sistema eléctrico se puede probar para verificar si cumple con las normas de producto, especificaciones, proyecto eléctrico, así como para valorar el estado funcional y estimar su vida útil.

Pruebas básicas

Si se considera que un sistema debe estar aislado con el fin de que no exista un cortocircuito o fallas a tierra, la prueba básica es la medición de resistencia de aislamiento. Esta prueba es aplicable a cables de media tensión, componentes de subestación compacta (bus, cuchillas, apartarrayos, interruptor), transformadores, componentes de tableros eléctricos (bus e interruptores), cables alimentadores y derivados; arrancadores, motores, etc. En general, en donde queramos comprobar que el aislamiento de los equipos es satisfactorio.

Page 5: Tati p2 Parte2

Otra prueba básica es la medición de la resistencia del sistema de tierra y continuidad de las conexiones. Dicha prueba se realiza en instalaciones nuevas para verificar que se cumpla la NOM-001-SEDE y, posteriormente, con el fin de asegurar que las condiciones iniciales se mantengan. Para el último caso se debe considerar la NOM-022-STPS, la cual indica que se tienen que realizar mediciones anualmente.

Métodos y procedimientos de prueba

Los métodos y procedimientos de prueba dependen de la prueba en cuestión y del equipo a probar. Por ejemplo, la norma mexicana NMX-J-169 establece los métodos de prueba para transformadores y autotransformadores de distribución y potencia. En algunas normas se establecen también criterios de evaluación.

Existen, además, normas de referencia como la NRF-048-PEMEX, referente al diseño de instalaciones eléctricas; en su anexo D, se indican criterios de evaluación para pruebas en campo. Por su parte, Comisión Federal de Electricidad cuenta con su Manual de procedimientos de pruebas de campo para equipo primario de subestaciones de distribución, denominado SOM-3531.

Pruebas confiables

El primer elemento a considerar es que las mediciones y pruebas eléctricas se realicen con equipos calibrados por un laboratorio acreditado para tal fin; es decir, acreditado por la Entidad Mexicana de Acreditación (EMA). Otra parte importante es el personal capacitado y calificado para realizar dichas pruebas, ya que, al final del día, lo importante no es tener el valor de prueba, sino el diagnóstico para saber qué hacer.

Existe otro elemento de gran importancia, el cual consiste en que las pruebas se realicen en forma sistemática; es decir, que existan procedimientos de seguridad y prueba documentados. Esto se obtiene con una compañía en donde esté colaborando personal calificado, que tiene la infraestructura (equipos calibrados) y un sistema de calidad certificado. De tal forma, se asegura que existirá un registro (archivo) de las mediciones para consultas futuras.

Page 6: Tati p2 Parte2

Medidas de seguridad básicas

La seguridad se obtiene utilizando instrumentos de medición adecuados, procedimientos de trabajo seguros y equipo de protección personal:

Utilizar guantes aislantes No utilizar joyas o relojes de pulsera Utilizar gafas de seguridad Utilizar zapatos dieléctricos Utilizar ropa ignífuga

En cuanto a los instrumentos de medición:

Verificar que la carcasa no esté rota y que los cables no estén desgastados Asegurarse de que las baterías tengan suficiente energía para obtener lecturas

confiables Verificar la resistencia de los cables de prueba para detectar si no existe ruptura

interna

Para mayor información sobre aspectos de seguridad consultar la NOM-029-STPS, la cual establece las condiciones de seguridad para las actividades de mantenimiento en las instalaciones eléctricas en los centros de trabajo, a fin de evitar accidentes al personal responsable de llevar a cabo dichas actividades y a personas ajenas a ellas que se pudieran encontrar en riesgo. La norma mencionada aplica a todas las instalaciones eléctricas permanentes y provisionales, y a todas aquellas actividades de mantenimiento que se desarrollan en las líneas eléctricas aéreas y subterráneas.

Page 7: Tati p2 Parte2

Jaula de Faraday.Campo Magnético.

Los campos magnéticos son producidos por corrientes eléctricas, las cuales pueden ser corrientes macroscópicas en cables, o corrientes microscópicas asociadas con los electrones en órbitas atómicas. El campo magnético B se define en función de la fuerza ejercida sobre las cargas móviles en la ley de la fuerza de Lorentz.

La interacción del campo magnético con las cargas, nos conduce a numerosas aplicaciones prácticas. Las fuentes de campos magnéticos son esencialmente de naturaleza dipolar, teniendo un polo norte y un polo sur magnéticos.

La unidad SI para el campo magnético es el Tesla, que se puede ver desde la parte magnética de la ley de fuerza de Lorentz, Fmagnética = qvB, que está compuesta de (Newton x segundo)/(Culombio x metro).

El Gauss (1 Tesla = 10.000 Gauss) es una unidad de campo magnético más pequeña.

La cantidad magnética B a la que llamamos aquí "campo magnético", se le llama a veces "densidad de flujo magnético". El Weber por metro cuadrado es el nombre antiguo de Tesla, siendo el Weber la unidad de flujo magnético.

Campo Eléctrico.

Una carga eléctrica puntual q (carga de prueba) sufre, en presencia de otra cargaq1 (carga fuente), una fuerza electrostática. Si eliminamos la carga de prueba, podemos pensar que el espacio que rodea a la carga fuente ha sufrido algún tipo de perturbación, ya que una carga de prueba situada en ese espacio sufrirá una fuerza.

Page 8: Tati p2 Parte2

La perturbación que crea en torno a ella la carga fuente se representa mediante un vector denominado campo eléctrico. La dirección y sentido del vector campo eléctrico en un punto vienen dados por la dirección y sentido de la fuerza que experimentaría una carga positiva colocada en ese punto: si la carga fuente es positiva, el campo eléctrico generado será un vector dirigido hacia afuera (a) y si es negativa, el campo estará dirigido hacia la carga (b):

Campo eléctrico creado en el punto P por una carga de fuente q1 positiva (a) y por una otra negativa (b).

El campo eléctrico E creado por la carga puntual q1 en un punto cualquiera P se define como:

Donde q1 es la carga creadora del campo (carga fuente), K es la constante electrostática, r es la distancia desde la carga fuente al punto P y ur es un vector unitario que va desde la carga fuente hacia el punto donde se calcula el campo eléctrico (P). El campo eléctrico depende únicamente de la carga fuente (carga creadora del campo) y en el Sistema Internacional se mide en N/C o V/m.

Si en vez de cargas puntuales se tiene de una distribución continua de carga (un objeto macroscópico cargado), el campo creado se calcula sumando el campo creado por cada elemento diferencial de carga, es decir:

Page 9: Tati p2 Parte2

Esta integral, salvo casos concretos, es difícil de calcular. Para hallar el campo creado por distribuciones continuas de carga resulta más práctico utilizar la Ley de Gauss.

Una vez conocido el campo eléctrico E en un punto P, la fuerza que dicho campo ejerce sobre una carga de prueba q que se sitúe en P será:

Por tanto, si la carga de prueba es positiva, la fuerza que sufre será paralela al campo eléctrico en ese punto, y si es negativa la fuerza será opuesta al campo, independientemente del signo de la carga fuente.

Fuerza que un campo eléctrico E ejerce sobre una carga de prueba q positiva (a) y sobre otra negativa (b).

El campo eléctrico cumple el principio de superposición, por lo que el campo total en un punto es la suma vectorial de los campos eléctricos creados en ese mismo punto por cada una de las cargas fuente.

Líneas de campo

El concepto de líneas de campo (o líneas de fuerza) fue introducido por Michael Faraday (1791-1867). Son líneas imaginarias que ayudan a visualizar cómo va variando la dirección del campo eléctrico al pasar de un punto a otro del espacio. Indican las

Page 10: Tati p2 Parte2

trayectorias que seguiría la unidad de carga positiva si se la abandona libremente, por lo que las líneas de campo salen de las cargas positivas y llegan a las cargas negativas:

Además, el campo eléctrico será un vector tangente a la línea en cualquier punto considerado.

Líneas de campo causadas por una carga positiva y una negativa.

Las propiedades de las líneas de campo se pueden resumir en:

El vector campo eléctrico es tangente a las líneas de campo en cada punto.

Las líneas de campo eléctrico son abiertas; salen siempre de las cargas positivas o del infinito y terminan en el infinito o en las cargas negativas.

El número de líneas que salen de una carga positiva o entran en una carga negativa es proporcional a dicha carga.

La densidad de líneas de campo en un punto es proporcional al valor del campo eléctrico en dicho punto.

Las líneas de campo no pueden cortarse. De lo contrario en el punto de corte existirían dos vectores de campo eléctrico distintos.

A grandes distancias de un sistema de cargas, las líneas están igualmente espaciadas y son radiales, comportándose el sistema como una carga puntual.

Campo electromagnético.

Page 11: Tati p2 Parte2

Los campos eléctricos tienen su origen en diferencias de voltaje: entre más elevado sea el voltaje, más fuerte será el campo que resulta. Campos magnéticos tienen su origen en las corrientes eléctricas: una corriente más fuerte resulta en un campo más fuerte. Un campo eléctrico existe aunque no haya corriente. Cuando hay corriente, la magnitud del campo magnético cambiará con el consumo de poder, pero la fuerza del campo eléctrico quedará igual. (Información que proviene de Electromagnetic Fields, publicado por la Oficina Regional de la OMS para Europa (1999).

Fuentes naturales de campos electromagnéticos

En el medio en que vivimos, hay campos electromagnéticos por todas partes, pero son invisibles para el ojo humano. Se producen campos eléctricos por la acumulación de cargas eléctricas en determinadas zonas de la atmósfera por efecto de las tormentas. El campo magnético terrestre provoca la orientación de las agujas de los compases en dirección Norte-Sur y los pájaros y los peces lo utilizan para orientarse.

Fuentes de campos electromagnéticos generadas por el hombre

Además de las fuentes naturales, en el espectro electromagnético hay también fuentes generadas por el hombre: Para diagnosticar la rotura de un hueso por un accidente deportivo, se utilizan los rayos X. La electricidad que surge de cualquier toma de corriente lleva asociados campos electromagnéticos de frecuencia baja. Además, diversos tipos de ondas de radio de frecuencia más alta se utilizan para transmitir información, ya sea por medio de antenas de televisión, estaciones de radio o estaciones base de telefonía móvil.

Conceptos básicos sobre la longitud y frecuencia de las ondas

¿Por qué son tan diferentes los diversos tipos de campos electromagnéticos?

Una de las principales magnitudes que caracterizan un campo electromagnético (CEM) es su frecuencia, o la correspondiente longitud de onda. El efecto sobre el organismo de los diferentes campos electromagnéticos es función de su frecuencia. Podemos imaginar las ondas electromagnéticas como series de ondas muy uniformes que se desplazan a una velocidad enorme: la velocidad de la luz. La frecuencia simplemente describe el número de oscilaciones o ciclos por segundo, mientras que la expresión «longitud de onda» se refiere a la distancia entre una onda y la siguiente. Por consiguiente, la longitud de onda y la frecuencia están inseparablemente ligadas: cuanto mayor es la frecuencia, más corta es la longitud de onda.

Page 12: Tati p2 Parte2

El concepto se puede ilustrar mediante una analogía sencilla. Ate una cuerda larga al pomo de una puerta y sujete el extremo libre. Si lo mueve lentamente arriba y abajo generará una única onda de gran tamaño; un movimiento más rápido generará numerosas ondas pequeñas. La longitud de la cuerda no varía, por lo que cuantas más ondas genere (mayor frecuencia), menor será la distancia entre las mismas (menor longitud de onda).

Campos electromagnéticos de frecuencias bajas.En presencia de una carga eléctrica positiva o negativa se producen campos eléctricos que ejercen fuerzas sobre las otras cargas presentes en el campo. La intensidad del campo eléctrico se mide en voltios por metro (V/m). Cualquier conductor eléctrico cargado genera un campo eléctrico asociado, que está presente aunque no fluya la corriente eléctrica. Cuanto mayor sea la tensión, más intenso será el campo eléctrico a una determinada distancia del conductor.

Los campos eléctricos son más intensos cuanto menor es la distancia a la carga o conductor cargado que los genera y su intensidad disminuye rápidamente al aumentar la distancia. Los materiales conductores, como los metales, proporcionan una protección eficaz contra los campos magnéticos. Otros materiales, como los materiales de construcción y los árboles, presentan también cierta capacidad protectora. Por consiguiente, las paredes, los edificios y los árboles reducen la intensidad de los campos eléctricos de las líneas de conducción eléctrica situadas en el exterior de las casas. Cuando las líneas de conducción eléctrica están enterradas en el suelo, los campos eléctricos que generan casi no pueden detectarse en la superficie.

Los campos magnéticos se originan por el movimiento de cargas eléctricas. La intensidad de los campos magnéticos se mide en amperios por metro (A/m), aunque en las investigaciones sobre campos electromagnéticos los científicos utilizan más frecuentemente una magnitud relacionada, la densidad de flujo (en microteslas, µT). Al contrario que los campos eléctricos, los campos magnéticos sólo aparecen cuando se pone en marcha un aparato eléctrico y fluye la corriente. Cuanto mayor sea la intensidad de la corriente, mayor será la intensidad del campo magnético.Al igual que los campos eléctricos, los campos magnéticos son más intensos en los puntos cercanos a su origen y su intensidad disminuye rápidamente conforme aumenta la distancia desde la fuente. Los materiales comunes, como las paredes de los edificios, no bloquean los campos magnéticos.

Los campos electromagnéticos variables en el tiempo que producen los aparatos eléctricos son un ejemplo de campos de frecuencia extremadamente baja (FEB, o ELF, en inglés), con frecuencias generalmente de hasta 300 Hz. Otras tecnologías producen campos de frecuencia intermedia (FI), con frecuencias de 300 Hz a 10 MHz, y campos de radiofrecuencia (RF), con frecuencias de 10 MHz a 300 GHz. Los efectos de los campos electromagnéticos sobre el organismo no sólo dependen de su intensidad sino también de su frecuencia y energía. Las principales fuentes de campos de FEB son la red de suministro eléctrico y todos los aparatos eléctricos; las pantallas de computadora, los

Page 13: Tati p2 Parte2

dispositivos antirrobo y los sistemas de seguridad son las principales fuentes de campos de FI y las principales fuentes de campos de RF son la radio, la televisión, las antenas de radares y teléfonos celulares y los hornos de microondas. Estos campos inducen corrientes en el organismo que, dependiendo de su amplitud y frecuencia, pueden producir diversos efectos como calentamiento y sacudidas eléctricas. (No obstante, para producir estos efectos, los campos exteriores al organismo deben ser muy intensos, mucho más que los presentes habitualmente en el medio.)Campos electromagnéticos de frecuencias altasLos teléfonos móviles, la televisión y los transmisores de radio y radares producen campos de RF. Estos campos se utilizan para transmitir información a distancias largas y son la base de las telecomunicaciones, así como de la difusión de radio y televisión en todo el mundo. Las microondas son campos de RF de frecuencias altas, del orden de GHz. En los hornos de microondas, utilizamos estos campos para el calentamiento rápido de alimentos.En las frecuencias de radio, los campos eléctricos y magnéticos están estrechamente relacionados y sus niveles se miden normalmente por la densidad de potencia, en vatios por metro cuadrado (W/m2).Puntos clave:

1. El espectro electromagnético abarca tanto fuentes de campos electromagnéticos naturales como fuentes generadas por el hombre.

2. Un campo electromagnético se caracteriza mediante su frecuencia o su longitud de onda. En una onda electromagnética, estas dos características están directamente relacionadas entre sí: cuanto mayor es la frecuencia, más corta es la longitud de onda.

3. La radiación ionizante, como los rayos X y rayos gamma, contiene fotones con energía suficiente para romper enlaces moleculares. Los fotones de las ondas electromagnéticas de frecuencias de red y de radio son mucho menos energéticos y no tienen esa capacidad.

4. Los campos eléctricos se generan en presencia de una carga eléctrica y su intensidad se mide en voltios por metro (V/m). Los campos magnéticos se originan por la corriente eléctrica. Sus densidades de flujo se miden en µT (microtesla) o mT (militesla).

5. En las frecuencias de radio y de microondas, los campos eléctricos y magnéticos se consideran, conjuntamente, como los dos componentes de una onda electromagnética. La intensidad de estos campos se describe mediante la densidad de potencia, medida en vatios por metro cuadrado (W/m2).

6. Las ondas electromagnéticas de frecuencia baja y frecuencia alta afectan al organismo de formas diferentes.

7. Las redes de distribución eléctrica y los aparatos eléctricos son las fuentes más comunes de campos eléctricos y magnéticos de frecuencia baja del entorno cotidiano. Las fuentes habituales de campos electromagnéticos de radiofrecuencia son las telecomunicaciones, las antenas de radiodifusión y los hornos de microondas.

En 1836, Michael Faraday observó que el exceso de carga en un conductor cargado residia únicamente en su exterior y no tenía ninguna influencia sobre nada encerrada en ella. Para demostrar este hecho, construyó una sala recubierta con papel de aluminio y las descargas de alta tensión permitidas a partir de un generador electrostático golpean el exterior de la

Page 14: Tati p2 Parte2

habitación. Usó un electroscopio para mostrar que no había ninguna carga eléctrica presente en el interior de las paredes de la habitación.

Aunque este efecto jaula se ha atribuido a los famosos experimentos del cubo de hielo de Michael Faraday realizados en 1843, fue Benjamin Franklin en 1755 quien observó el efecto descendiendo una bola de corcho sin carga suspendida de un hilo de seda a través de una abertura en una lata de metal con carga eléctrica. En sus palabras, «el corcho no fue atraído por el interior de la lata como habría sido en el exterior, y aunque tocó la parte inferior, sin embargo, cuando se sacó no se encontró electrificada (cargada) al tacto, como habría estado tocando el exterior. El hecho es singular». Franklin había descubierto el comportamiento de lo que ahora se refiere como una jaula de Faraday o escudo (basado en experimentos posteriores de Faraday, que duplicaron el corcho y caja de Franklin).

Se conoce como jaula de Faraday el efecto por el cual el campo electromagnético en el interior de un conductor en equilibrio es nulo, anulando el efecto de los campos externos. Esto se debe a que, cuando el conductor está sujeto a un campo electromagnético externo, se polariza, de manera que queda cargado positivamente en la dirección en que va el campo electromagnético, y cargado negativamente en el sentido contrario. Puesto que el conductor se ha polarizado, este genera un campo eléctrico igual en magnitud pero opuesto en sentido al campo electromagnético, luego la suma de ambos campos dentro del conductor será igual a 0.

Se pone de manifiesto en numerosas situaciones cotidianas, por ejemplo, el mal funcionamiento de los teléfonos móviles en el interior de ascensores o edificios con estructura de rejilla de acero. Una manera de comprobarlo es con una radio sintonizada en una emisora de Onda Media. Al rodearla con un periódico, el sonido se escucha correctamente. Sin embargo, si se sustituye el periódico con un papel de aluminio, la radio deja de emitir sonidos: el aluminio es un conductor eléctrico y provoca el efecto jaula de Faraday.

Este fenómeno, descubierto por Michael Faraday, tiene una aplicación importante en aviones o en la protección de equipos electrónicos delicados, tales como discos duros o repetidores de radio y televisión situados en cumbres de montañas y expuestos a las perturbaciones electromagnéticas causadas por las tormentas.

El funcionamiento de la jaula de Faraday se basa en las propiedades de un conductor en equilibrio electrostático. Cuando la caja metálica se coloca en presencia de un campo eléctrico externo, las cargas positivas se quedan en las posiciones de la red; los electrones, sin embargo, que en un metal son libres, se mueven en sentido contrario al campo eléctrico y, aunque la carga total del conductor es cero, uno de los lados de la caja (en el que se

Page 15: Tati p2 Parte2

acumulan los electrones) se queda con un exceso de carga negativa, mientras que el otro lado se queda sin electrones (carga positiva).

El funcionamiento de la jaula de Farday se basa en las propiedades de un conductor en equilibrio electrostático. Cuando la caja metálica se coloca en presencia de un campo eléctrico externo, las cargas positivas se quedan en las posiciones de la red; los electrones, sin embargo, que en un metal son libres, empiezan a moverse puesto que sobre ellos actúa una fuerza dada por:

Donde e es la carga del electrón. Como la carga del electrón es negativa, los electrones se mueven en sentido contrario al campo eléctrico y, aunque la carga total del conductor es cero, uno de los lados de la caja (en el que se acumulan los electrones) se queda con un exceso de carga negativa, mientras que el otro lado queda con un defecto de electrones (carga positiva). Este desplazamiento de las cargas hace que en el interior de la caja se cree un campo eléctrico (representado en rojo en la siguiente animación) de sentido contrario al campo externo, representado en azul.

El campo eléctrico resultante en el interior del conductor es por tanto nulo

.

Como en el interior de la caja no hay campo, ninguna carga puede atravesarla; por ello se emplea para proteger dispositivos de cargas eléctricas. El fenómeno se denomina apantallamiento eléctrico.

Page 16: Tati p2 Parte2

Sistema de Tierras.

Una tierra física se define como un sistema de conexión formado por electrodos y líneas de tierra de una instalación eléctrica.

Generalmente el término es usado para hacer referencia a una red o conexión de seguridad que debe instalarse en los centros de trabajo o en cualquier lugar donde se tenga equipo eléctrico o electrónico, ya que de improviso surgen descargas ya sean por fenómenos naturales como los rayos o artificiales como sobre cargas, interferencias o incluso errores humanos, es por eso que una instalación de puesta a tierra tiene como función forzar o drenar al terreno las intensidades de corriente nocivas que se puedan originar. En pocas palabras consiste en la conexión de equipos eléctricos u electrónicos a tierra, esto es pasando por el cable hasta llegar al terreno donde se encuentra una pieza de metal llamada electrodo en donde se hace la conexión mediante la cual circula la corriente no deseada o las descargas eléctrica evitando que se dañen aparatos, maquinaria o personas.

Las tierras físicas tienen una importancia vital para proteger el equipo eléctrico y electrónico y se hace mediante una conexión que permiten dar seguridad patrimonial y humana, ya que de improvisto pueden surgir descargas, sobrecargas o interferencias que dañan severamente el equipo. Su principal función es forzar o drenar al terreno las intensidades de corriente que se puedan originar por cortocircuito, por inducción o por alguna descarga atmosférica. Instalación de Tierra física La instalación a Tierra física se realiza en el terreno inmediato donde se hizo la instalación del equipo con la finalidad de que al originarse las descargas ya mencionadas, estas sean confinadas en forma de ondas para que se dispersen en el terreno subyacente y la carga que fluye hacia la tierra física se disipe. Una instalación de tierra física idealmente interconecta las redes eléctricas, la estructura metálica del edificio, las tuberías metálicas y pararrayos. El tipo de instalación dependerá del tipo de terreno y el uso de energía de cada lugar.

Los objetivos que persigue un sistema de puesta a tierra son muchos, en especial el de brindar seguridad a las personas, proteger las instalaciones, los equipos, maquinarias, facilitar y garantizar la correcta operación de los dispositivos de protección, asegurar ventajas en los centros de trabajo y la vida de los equipos, establecer la permanencia de un potencial de referencia al estabilizar la tensión eléctrica a tierra bajo las condiciones normales de la operación. Beneficios de la tierra física Existen muchos entre los que destacan el incremento en la seguridad en los centros de trabajo, además de que disminuye el calentamiento en los motores y cables, también se incrementa el tiempo de vida en los equipos y aparatos y disminuye el consumo en la energía eléctrica. Además mejora

Page 17: Tati p2 Parte2

considerablemente la calidad del servicio, se disipa la corriente asociada a descargas atmosféricas y limita las sobre tensiones generadas. Así mismo, al instalar un sistema de puesta a tierra o tierra física se evita que las descargas atmosféricas (rayos) caigan en lugares indeseados y puedan causar accidentes, así que mediante un sistema de pararrayos conectado directo a tierra se proporciona un camino para guiar al rayo y evitar que caiga en un lugar indeseado.

No todos los sistemas de puesta a tierra gozan de buena calidad y su durabilidad es escaza, otros tienen un rendimiento mínimo y hay que darles mantenimiento constantemente. En fin, existen algunos factores que deben considerarse al momento de adquirir un sistema de tierra fisca o pararrayos. Por ejemplo, un sistema tradicional de puesta a tierra como los electrodos de varilla (varilla copperweld) presentan condiciones desfavorables para su desempeño como variables no controlables entre las que destacan la humedad, la temperatura del ambiente o el terreno, la época del año, etcétera, además su método de instalación y operación así como los materiales de construcción tienen un tiempo de vida corto y al ser un sistema bidireccional logra disipar corrientes de falla pero a la vez recibe impulsos electromagnéticos del subsuelo. Por ello, un buen sistema debe tener amplia garantía y asegurar beneficios significativos.

¿Qué es un electrodo?

Entre los elementos que se deben usar para la instalación del sistema de tierra física destaca el electrodo, que por lo general es una pieza de metal, cobre la mayoría de las veces que debe ser resistente a la corrosión por las sales de la tierra, esta pieza va enterrada a la tierra a una profundidad variable para servir como el elemento que tendrá como función disipar la corriente a tierra en caso de alguna sobrecarga o falla de la instalación o incluso un rayo.

El sistema estructural de tierra física fue ideado para sobrepasar la problemática de las tierras físicas convencionales. Importancia de la selección de sistema de tierra física Es importante saber que un sistema de tierra física debe llevar electrodo para crear la conexión, sin embargo no todos los sistemas aseguran buena calidad, algunos tienen poca durabilidad, otros presentan desventajas importantes en el desempeño o incluso salen costosos porque constantemente requieren de mantenimiento.

Diferencia entre neutro y tierra

La diferencia de estos dos elementos es que el neutro lo usamos como regreso de nuestra línea de alimentación o en otras palabras es por donde pasa la corriente de regreso a los postes de suministro eléctrico.

Page 18: Tati p2 Parte2

Por otro lado la conexión a tierra, es la conexión que usamos para que circule la corriente no deseada o descargas eléctricas hacia tierra para evitar que dañen a equipos eléctricos, electrónicos e incluso a personas, explicado de otra forma es la conexión que usamos para la protección personal y de equipos contra sobre tensiones o descargas eléctricas de cualquier tipo.

Concepto y objetivo de un sistema de puesta a tierra

Un sistema de puesta a tierra consiste en la conexión de equipos eléctricos y electrónicos a tierra, para evitar que se dañen los equipos en caso de una corriente transitoria peligrosa, o también que por falta de aislamiento en uno de los conductores y al quedar en contacto con las placas de los contactos y ser tocados por alguna persona pudiera ocasionarle lesiones o incluso la muerte.

Por estas razones, se recomienda que se realicen las instalaciones de puesta a tierra por que la corriente siempre busca el camino más fácil por donde poder pasar, y al llegar a tierra se disipa por esta esto si se tiene una resistividad muy baja en el terreno donde se realizo la instalación.

El objetivo de un sistema de puesta a tierra es:

El de brindar seguridad a las personas

Proteger las instalaciones, equipos y bienes en general, al facilitar y garantizar la correcta operación de los dispositivos de protección.

Establecer la permanencia, de un potencial de referencia, al estabilizar la tensión eléctrica a tierra, bajo condiciones normales de operación.

Mejorar calidad del servicio

Disipar la corriente asociada a descargas atmosféricas y limitar las sobre tensiones generadas.

Dispersar las cargas estáticas a tierra.

Elementos de un sistema de puesta a tierra.

Los elementos que usamos para efectuar una instalación de puesta a tierra son los siguientes:

Electrodos: Estas son varillas (generalmente de cobre) que sean resistentes a la corrosión por las sales de la tierra, que van enterradas a la tierra a una profundidad de 3m para servirnos como el elemento que nos disipara la corriente en la tierra en caso de alguna falla de nuestra instalación o de alguna sobrecarga, las varillas mas usadas para este tipo de

Page 19: Tati p2 Parte2

instalaciones son las varillas de marca copperwell ya que son las que cumplen con las mejores características.

Conductor o cable: este como ya se había mencionado es el que nos permitirá hacer la conexión de nuestro electrodo hacia las demás partes dentro de nuestro edificio. Debe procurarse que este cable no sea seccionado y en caso de ser necesario debe preferentemente ser soldado para poder asegurarse de su contacto y continuidad del sistema de conexión, pero hay que aclarar que no se puede usar cualquier soldadura sino que debe usarse soldadura exotérmica, ya que al calentar el cobre del conductor este puede dañarse y ya no tendría un buen contacto con la soldadura que se le coloque.

Otra cosa importante sobre este conductor es de que debe procurarse usar un cable desnudo para que todas las partes metálicas de la instalación queden conectadas a tierra. En el caso de que se use un cable con aislante este debe ser color verde para poder distinguirlo de los otros cables.

RESISTIVIDAD DEL TERRENO

Definición de resistividad del terreno

La resistividad del terreno se define como la resistencia que presenta 1 m3 de tierra, y resulta de un interés importante para determinar en donde se puede construir un sistema de puesta a tierra.

Factores que afectan la resistividad del terreno

En la resistividad del terreno influyen varios factores que pueden variarla, entre los mas importantes se encuentran: naturaleza del terreno, humedad, temperatura, salinidad, estratigrafía, compactación y las variaciones estaciónales.

Naturaleza del Terreno:

Esta se refiere a que la resistividad varía según el tipo de terreno, es decir se tiene una resistividad más elevada en un terreno rocoso que en uno donde haya arena.

Humedad:

Aquí varia la resistividad según la humedad del terreno, mientras mas húmedo sea éste más baja será la resistividad del terreno y mientras más seco este el terreno mayor será la resistividad de éste, es por esta razón que debe procurarse un terreno un poco más húmedo para obtener mejores valores

Temperatura:

Page 20: Tati p2 Parte2

Aquí también la temperatura afecta en las mediciones ya que el calor crea una resistencia en el terreno, ya que es como si se tuviera un terreno seco. Y por el contrario a temperaturas muy bajas la poca humedad que hay en el terreno puede congelarse (solo la superficie del agua), y como se sabe el hielo no es un buen conductor por lo que se eleva la resistividad del terreno.

Salinidad:

Como se sabe el agua por si sola no conduce la electricidad pero con sales se convierte en un excelente conductor, es por esto que mientras mas sales contenga el terreno y este húmedo mas bajo serán los valores de resistividad.

Estratigrafía:

Esta afecta por el exceso de rocas y piedras de tamaño considerable en un terreno ya que las rocas y piedras provocan una mayor resistencia en el terreno.

Compactación:

Aquí la resistividad disminuye mientras mas compactado este un terreno ya que cuando no esta bien compacto hay pequeños espacios de aire los cuales impiden que la corriente eléctrica se pueda esparcir por el terreno.

Variaciones estaciónales:

Las estaciones también intervienen en el valor de la resistividad de un terreno ya que en una estación calurosa como lo es primavera el terreno estará mas seco que si se tuviera una estación con muchas lluvias y por esto los valores cambiarían según la estación del año en que nos encontremos es por esto que se recomienda hacer varias mediciones en diferentes estaciones del año para determinar la resistividad promedio.

Debido a la uniformidad del terreno, cuando se mide la resistividad del terreno en un punto, por cualquier método, el valor que se obtiene es llamado resistividad media o aparente. Por esto se recomienda hacer varias mediciones en el terreno en diferentes posiciones y después sacar un promedio de estas para obtener un valor de resistividad mas exacto.

RESISTENCIA A TIERRA

Definición de resistencia a tierra

La resistencia a tierra se puede definir como la resistencia que ofrece un sistema de tierra al paso de la corriente eléctrica. Este valor de resistencia depende de la resistividad del terreno, las características físicas del electrodo a tierra (diámetro, área, longitud, etc.), también de la longitud y el área de los conductores.

Page 21: Tati p2 Parte2

El valor de resistencia a tierra es la resistencia ohmica entre un conductor puesto a tierra y un punto a potencial cero.

Resistencia del electrodo de tierra.

La resistencia de tierra de un electrodo depende de sus dimensiones, de su forma y de la resistividad del terreno en el que se establece. Esta resistividad varía frecuentemente de un punto a otro del terreno, y varía también con la profundidad.

La Tabla 2 da, a título de orientación, unos valores de la resistividad para un cierto número de terrenos. Con el fin de obtener una primera aproximación de la resistencia de tierra, los cálculos pueden efectuarse utilizando los valores medios indicados en la Tabla 3.

Bien entendido que los cálculos efectuados a partir de estos valores no dan más que un valor muy aproximado de la resistencia de tierra del electrodo. La medida de resistencia de tierra de este electrodo puede permitir, aplicando las fórmulas dadas en la Tabla 4, estimar el valor medio local de la resistividad del terreno; el conocimiento de este valor puede ser útil para trabajos posteriores efectuados en unas condiciones análogas.

NATURALEZA DEL TERRENO RESISTIVIDAD EN OHM*M

Terrenos pantanosos de algunas unidades a 30

Limo 20 a 100

Humus 10 a 150

Turba húmeda 5 a 100

Arcilla plástica 50

Margas y arcillas compactas 100 a 200

Margas del jurásico 30 a 40

Arena arcillosa 50 a 500

Arena silícea 200 a 3.000

Suelo pedregoso cubierto de césped 300 a 500

Page 22: Tati p2 Parte2

Suelo pedregoso desnudo 1500 a 3.000

Calizas blandas 100 a 300

Calizas compactas 1000 a 5000

Calizas agrietadas 500 a 1000

Pizarras. 50 a 300

Rocas de mica y cuarzo 800

Granitos y gres procedente de alteración 1.500 a 10.000

Granitos y gres muy alterados 100 a 600

Tabla 2. Valores de resistividad de algunos materiales

Naturaleza del terrenoValor medio de la resistividad en Ohm*m

Terrenos cultivables y fértiles, terraplenes compactos y húmedos 50

Terraplenes cultivables poco fértiles y terraplenes 500

Suelos pedregosos desnudos, arenas secas permeables.. 3.000

Tabla 3. Valores de resistividad de algunos suelos

Electrodo Resistencia de la tierra en ohm

Placa enterrada

Page 23: Tati p2 Parte2

Pica vertical

Conductor enterrado horizontalmente

Tabla 4. Como obtener la resistencia de un electrodo

R, resistividad de terreno (ohm*m)

P, perímetro de la placa (m)

L, longitud de la pica del conductor (m)

ELECTRODOS DE PUESTA A TIERRA

5.1 Tipos y configuraciones de electrodos de tierra

Para realizar un sistema de puesta a tierra se necesitan electrodos de tierra, los cuales existen de muchos tipos, algunos mejores que otros en ciertas características como el costo, entre otras.

Cuando se instala un electrodo de tierra, es común tener un registro, el cual puede ser de un pedazo de un tubo de albañal o bien, construir un registro. El objetivo de tener este registro es para poder ubicar el lugar donde se encuentra con facilidad y para que después de un cierto tiempo se le pueda dar mantenimiento. (el uso de un registro es opcional).

Tipos de electrodos

Como se mencionaba anteriormente los electrodos de tierra se pueden encontrar en diferentes tamaños, formas, y con diferentes características. A continuación se describen los tipos de electrodos más comunes:

a) Varilla Copperweld.

Esta varilla es una de las mas usadas, ya que es de bajo costo de material. Este tipo de electrodo esta hecho de acero y recubierto de una capa de cobre, su longitud es de 3.05 metros y un diámetro de 16 milímetros. Esta varilla se debe enterrar en forma vertical y a una profundidad de por lo menos 2.4 metros, esto por norma. También por norma se acepta que la varilla vaya enterrada en forma horizontal, siempre y cuando sea en una zanja de mínimo 80cm de profundidad, pero no es muy recomendable. La varilla copperweld no tiene mucha área de contacto, pero sí una longitud considerable, con la cual es posible un contacto con capas de tierra húmedas, lo cual se obtiene un valor de resistencia bajo.

Page 24: Tati p2 Parte2

b) Varilla.

Este tipo de electrodo de tierra tiene un área de contacto mas grande que la varilla copperweld, por lo que no necesita mucha longitud. Este electrodo se forma por un perfil de acero galvanizado, y puede ser en forma de cruz, de ángulo recto o en te.

c) Rehilete.

Este electrodo se forma de dos placas de cobre cruzadas, las cuales van soldadas. Este tipo de electrodo es bueno para terrenos donde es difícil excavar, ya que tiene mucha área de contacto.

d) Placa.

Debido a que este electrodo tiene una gran área de contacto es recomendado en terrenos que tengan alta resistividad. Según el artículo 250-83 debe tener un área de por lo menos 2000cm² y un espesor mínimo de 6.4mm en materiales ferrosos y mínimo de 1.52mm en materiales no ferrosos.

e) Electrodo en estrella.

Este tipo de electrodo se puede hacer con cable de cobre desnudo con ramificaciones de 60° de ángulo. Estos electrodos se utilizan en el campo, ya que por la longitud del cable se obtiene un valor de resistencia menor.

f) Electrodo de anillos.

Este electrodo consiste en una espira de cable de cobre desnudo, con un diámetro mínimo de 33.6mm² y una longitud mínima de 6m en contacto con la tierra, también el articulo 250-81 establece que debe tener una profundidad de por lo menos 80cm, así como también dice que se le pueden conectar electrodos.

g) Malla.

La malla se hace armando una red de conductores de cobre desnudos, esta malla se puede mejorar con algunos electrodos. Esta malla es muy utilizada en las subestaciones eléctricas, ya que reduce el riesgo de descargas.

h) Placa estrellada.

Este tipo de electrodo es una placa que tiene varias puntas en su contorno, esta se conecta por medio de una barra atornillable. Su principal ventaje es que ayuda a que se disipe la energía a través de sus puntas.

i) Electrodo de varillas de hierro o acero.

Page 25: Tati p2 Parte2

Prácticamente este electrodo son las varillas que se aprovechan en la construcción de algún edificio, las varillas deben tener por lo menos 16mm de diámetro.

j) Electrodo de tubo metálico.

Este tipo de electrodo puede ser la tubería metálica del agua. El diámetro debe ser de mínimo 19mm, si el tubo es de acero o hierro tiene que tener una cubierta de otro metal para que lo proteja de la corrosión, la tubería debe estar enterrada por lo menos 3m.

k) Electrodo empotrado en concreto.

Este tipo de electrodo se debe encontrar en una cimentación que este enterrada y tenga una longitud de por lo menos 6m, con varillas desnudas con 13mm de diámetro mínimo. El electrodo debe estar incrustado en concreto como mínimo 5 cm.

l) Electrodo de aluminio.

Los electrodos de aluminio según el articulo 250-83 no están permitidos, ya que el aluminio se corroe rápidamente al estar en contacto con la tierra.

m) Electrodo horizontal o contra-antena.

El electrodo horizontal es un conductor de cobre desnudo enterrado de forma horizontal en una zanja de 50cm mínimo de profundidad, se pueden hacer varias configuraciones, pero la mas utilizada es la línea recta. Su principal inconveniente es que la excavación es muy costosa.

n) Electrodo profundo.

Este tipo de electrodo no es mas que una varilla copperweld unida a un conductor de cobre desnudo de gran longitud. Este electrodo es utilizado en terrenos donde haya mucha roca, se hace una perforación vertical profunda hasta encontrar las capas húmedas de la tierra, ya que la humedad aumenta la conductividad.

o) Electrodo en espiral.

El electrodo en espiral es un cable de cobre denudo en espiral de diferentes diámetros y enterrados a diferentes profundidades para hacer contacto con las diferentes capas de la tierra.

p) Electrodos químicos.

Los electrodos químicos son aquellos electrodos a los que se les adiciona algún compuesto químico para aumentar la conductividad y de esta forma disminuir el valor de resistencia.

Page 26: Tati p2 Parte2

De acuerdo a pruebas que se han realizado a los electrodos mencionados anteriormente se puede decir que el mas utilizado es la varilla copperweld, gracias a su gran eficiencia y bajo costo de material e instalación.

 Naturaleza de los electrodos

Los electrodos pueden ser artificiales o naturales. Se entiende por electrodos artificiales los establecidos con el exclusivo objeto de obtener la puesta a tierra, y por electrodos naturales las masas metálicas que puedan existir enterradas.

Para las puestas a tierra se emplearan principalmente electrodos artificiales. No obstante los electrodos naturales que existirán en la zona de una instalación y que presenten y aseguren un buen contacto permanente con el terreno, pueden utilizarse bien solos o conjuntamente con otros electrodos artificiales. En general, se puede prescindir de éstos cuando su instalación presente serias dificultades y cuando los electrodos naturales cumplan los requisitos anteriormente señalados con sección suficiente y la resistencia de tierra que se obtenga con los mismos presente un valor adecuado.

Constitución de los electrodos artificiales

Los electrodos podrán estar constituidos por:

Electrodos simples constituidos por barras, tubos, placas, cables, pletinas u otros perfiles.

- Anillos o mallas metálicas constituidos por elementos indicados anteriormente o por combinaciones de ellos.

Los electrodos serán de metales inalterables a la humedad y a la acción química del terreno, tal como el cobre, el hierro galvanizado, hierro sin galvanizar con protección catódica o fundición de hierro. Para este último tipo de electrodos, las secciones mínimas serán el doble de las secciones mínimas que se indican para los electrodos de hierro galvanizados.

Sólo se admite los metales ligeros, cuando sus resistencias a la corrosión son netamente superiores a la que presentan, en el terreno que se considere, el cobre o el hierro galvanizado.

La sección de un electrodo no debe ser inferior a la sección del conductor que constituye la línea principal de tierra.

Constitución de los electrodos naturales

Los electrodos naturales puedan estar constituidos por:

a) Una red extensa de conducciones metálicas enterradas, siempre que la continuidad de estas conducciones quede perfectamente asegurada, y en el caso de que las conducciones

Page 27: Tati p2 Parte2

pertenezcan a una distribución pública o privada, haya acuerdo con los distribuidores correspondientes. Se prohíbe utilizar como electrodos las canalizaciones de gas, de calefacción central y las conducciones de desagüe, humos o basuras.

b) La cubierta de plomo de los cables de una red eléctrica de baja tensión enterrada, con la condición de que la continuidad de la cubierta de plomo esté perfectamente asegurada y, en el caso de que la red pertenezca a una distribución pública, haya acuerdo con el distribuidor.

c) Los pilares metálicos de los edificios, si están interconectados, mediante una estructura metálica, y enterrados a cierta profundidad.

El revestimiento eventual de hormigón no se opone a la utilización de los pilares metálicos como tomas de tierra y no modifica sensiblemente el valor de su resistencia de tierra.

.3 Configuraciones de electrodos

Como ya se menciono, la varilla copperweld es el electrodo mas utilizado debido a sus características, también ya mencionadas. El objetivo de este electrodo es estar en contacto con las capas húmedas de la tierra, y para lograrlo se recomienda instalarla en forma vertical, enterrada por lo menos 2.4m (figura 5), con esto se debe obtener un valor de resistencia bajo, si no se logra con una varilla se pueden colocar mas varillas conectadas por medio de conductor de cobre desnudo en diferentes configuraciones y un espaciado de por lo menos la longitud del electrodo.

Los electrodos que se unan eléctricamente se deben considerar como un solo electrodo. Por norma la separación mínima entre los 5electrodos debe ser de 1.83m.

En la tabla 5 se muestra el porcentaje en que se disminuye el valor de resistencia de acuerdo a diferentes configuraciones de electrodos.

Numero de electrodos Valor original El valor original se reduce al

Un solo electrodo 100%

Dos electrodos en línea 55%

Tres electrodos en línea 38%

Tres electrodos en triángulo 35%

Cuatro electrodos en simetría 28%

Page 28: Tati p2 Parte2

Ocho electrodos en simetría 16%

Anillo de tierra

Un anillo de tierra consiste en un conductor de cobre desnudo, de sección transversal no menor al calibre 2 AWG y de longitud no menor a 6 m enterrado a una profundidad de 800 mm y, que rodee al edificio o estructura.

Estos anillos de tierra se emplean frecuentemente circundando una fábrica o un sitio de comunicaciones, para proveer un plano equipotencial alrededor de edificios y equipos.

Mallas

La norma oficial mexicana de instalaciones eléctricas requiere de un sistema enmallado de tierra con múltiples electrodos y conductores enterrados, cuando están involucradas tensiones y corrientes eléctricas muy altas, con el fin de minimizar los riesgos al personal en función de la tensión eléctrica de paso y de contacto [921-18]

La malla consta de una red de conductores enterrados a una profundidad que usualmente varía de 0,30 a 1,0 m, colocados paralela y perpendicularmente con un espaciamiento adecuado a la resistividad del terreno y preferentemente formando retículas cuadradas.

El cable que forma el perímetro exterior de la malla debe ser continuo de manera que encierre toda el área en que se encuentra el equipo eléctrico de la subestación o planta generadora. Con ello, se evitan altas concentraciones de corriente y gradientes de potencial en el área y terminales cercanas [921-25).

En cada cruce de conductores de la malla, éstos deben conectarse rígidamente con soldadura exotérmica entre sí y en los puntos donde se conectan los equipos que pudieran presentar falla o, en las esquinas de la malla, los conductores deben conectarse a electrodos de varilla o tubo de 2,4 m de longitud mínima, clavados verticalmente.

Los cables que forman la malla deben colocarse preferentemente a lo largo de las hileras de estructuras o equipo para facilitar la conexión a los mismos, ya que es una práctica común de ingeniería aterrizar a dos cables diferentes todos los equipos.

Los conectores empleados en la malla del sistema de tierras de una subestación deben ser de tipo de compresión o soldables.