task 2.3 thermal-hydraulic analysis of the lfr and etdr

12
Task 2.3 Thermal-hydraulic analysis of the LFR and ETDR Konstantin Mikityuk Paul Scherrer Institut

Upload: gallia

Post on 19-Jan-2016

52 views

Category:

Documents


1 download

DESCRIPTION

Task 2.3 Thermal-hydraulic analysis of the LFR and ETDR. Konstantin Mikityuk Paul Scherrer Institut. Task 2.3 Thermal-hydraulic analysis of the LFR and ETDR ( PSI , CIRTEN, NRG, SRS,UJV). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Task 2.3 Thermal-hydraulic analysis  of the LFR and ETDR

Task 2.3 Thermal-hydraulic analysis of the LFR and ETDR

Konstantin MikityukPaul Scherrer Institut

Page 2: Task 2.3 Thermal-hydraulic analysis  of the LFR and ETDR

Technical DocumentsT56 : Thermal-hydraulics assessment of the ETDR core (M24: April 2012)T62 : Thermal-hydraulics assessment of the LFR cores (M30: Oct 2012)

Goal: to assess thermal-hydraulic core performance for the defined core geometry and power distributions provided by task 2.1 and 2.2. The results will be feed-backed to the mentioned task in order to avoid hot spots in the core (cladding and fuel) and to allow a satisfying natural circulation in case of loss of flow.

Task 2.3 Thermal-hydraulic analysis of the LFR and ETDR (PSI, CIRTEN, NRG, SRS,UJV)

Page 3: Task 2.3 Thermal-hydraulic analysis  of the LFR and ETDR

T56: Table of Content1 INTRODUCTION (PSI) 32 1D THERMAL-HYDRAULIC ANALYSIS OF THE CORE (PSI) 6 2.1 1D CORE MODEL 6 2.2 POWER DISTRIBUTION AND COOLING GROUPS 63 CFD ASSESSMENT OF GRID SPACER DESIGNS (NRG) 10 3.1 EFIT SPACER DESIGN 10 3.2 SRS SPACER DESIGN 17 3.3 COMPARISON: EFIT SPACER VS. SRS SPACER 23 3.4 CONCLUSIONS TO SECTION 3 244 CFD ASSESSMENT OF PRESSURE DROPS AT FA INLET AND OUTLET (SRS) 25 4.1 ALFRED FA PROPOSAL 25 4.2 PRESSURE DROP EVALUATION 27 4.3 CONCLUSIONS TO SECTION 4. 365 CFD ASSESSMENT OF PRESSURE DROPS ALONG BARE FUEL BUNDLE (UJV) 386 CFD ASSESSMENT OF ALFRED FA: A ONE-TWELFTH MODEL (POLIMI) 39 6.1 INTRODUCTION 39 6.2 ALFRED FUEL ASSEMBLY MODEL 39 6.3 SIMULATION RESULTS 42 6.4 CONCLUSIONS TO SECTION 6 597 CONCLUSIONS (PSI) 608 REFERENCES 61

Page 4: Task 2.3 Thermal-hydraulic analysis  of the LFR and ETDR

TRACE/FRED model of the ALFRED core

56

110

170

2

16

34

58

88

112

133

100

73

46

25

5

17

15

33

57

87

111

153

134

101

74

47

26

12

6

14

32

86

152

135

75

48

27

13

30

31

55

85

151

171

163

136

102

76

49

28

29

53

54

84

150

164

137

77

50

51

52

82

83

109

149

169

165

138

103

78

79

80

81

107

108

148

139

104

105

106

146

147

140

141

142

143

144

145

166

167

1683

8

17

35

59

89

113

132

99

72

45

24

11

4

9

18

36

60

114

131

71

44

23

10

20

19

37

61

90

115

154

162

130

98

70

43

22

21

39

38

62

116

155

161

129

69

42

41

40

64

63

91

117

156

160

128

97

68

67

66

65

93

92

118

127

96

95

94

120

119

126

125

124

123

122

121

159

158

157

171 parallel 1D channels and 171 heat structures representing one fuel rod per SA

3 channels for bypasses -- between FAs; -- through reflector; and -- through CAs

BC on inlet coolant temperature (400C) and flowrate (25458 kg/s)

Page 5: Task 2.3 Thermal-hydraulic analysis  of the LFR and ETDR

Power distribution in fuel assemblies and non-fuel regions, MW

Fuel assemblies 294.0Reflector assemblies 3.1Control assemblies 1.7Coolant in the gap between fuel assemblies 1.2Total 300.0

Page 6: Task 2.3 Thermal-hydraulic analysis  of the LFR and ETDR

Power distribution (D7)

SA-wise power distribution over core radius (CEA)

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 11 0 1 2 0 1 3 0 1 4 0R ad iu s , cm

0 .50 .60 .70 .80 .91 .01 .11 .21 .31 .41 .5

SA

pea

king

fac

tor

B O C 1E O C 1B O C 2E O C 2B O C 3E O C 3B O C 4E O C 4B O C 5E O C 5A v erag e

Page 7: Task 2.3 Thermal-hydraulic analysis  of the LFR and ETDR

Power distribution (D7, Figs. 7-11) SA-wise power distribution and proposal for cooling groups (CEA)

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 11 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0S A n u m b e r

0 .6

0 .7

0 .8

0 .9

1 .0

1 .1

1 .2

1 .3

1 .4

SA

-wis

e po

wer

pea

king

fac

tor

CG1

CG2

CG3

CG4

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 11 0 1 2 0 1 3 0 1 4 0R ad iu s , cm

0 .50 .60 .70 .80 .91 .01 .11 .21 .31 .41 .5

SA

pea

king

fac

tor

B O C 1E O C 1B O C 2E O C 2B O C 3E O C 3B O C 4E O C 4B O C 5E O C 5A v e rag e

Page 8: Task 2.3 Thermal-hydraulic analysis  of the LFR and ETDR

Cooling groups Proposal for cooling groups

CG1 : 1 – 87CG2 : 88 – 111CG3 : 113 –117 120 – 125 127 – 132 134 – 139 141 – 146 148 – 153CG4 : 112, 119, 126, 133, 140, 147 154 – 171CG 5: 172CG 6: 173CG7: 174

56

110

170

2

16

34

58

88

112

133

100

73

46

25

5

17

15

33

57

87

111

153

134

101

74

47

26

12

6

14

32

86

152

135

75

48

27

13

30

31

55

85

151

171

163

136

102

76

49

28

29

53

54

84

150

164

137

77

50

51

52

82

83

109

149

169

165

138

103

78

79

80

81

107

108

148

139

104

105

106

146

147

140

141

142

143

144

145

166

167

1683

8

17

35

59

89

113

132

99

72

45

24

11

4

9

18

36

60

114

131

71

44

23

10

20

19

37

61

90

115

154

162

130

98

70

43

22

21

39

38

62

116

155

161

129

69

42

41

40

64

63

91

117

156

160

128

97

68

67

66

65

93

92

118

127

96

95

94

120

119

126

125

124

123

122

121

159

158

157

Page 9: Task 2.3 Thermal-hydraulic analysis  of the LFR and ETDR

Outlet coolant temperatures TRACE results : 474 – 491 C. The maximum difference is ~17 C

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 11 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0S A n u m b er

4 7 4

4 7 5

4 7 6

4 7 7

4 7 8

4 7 9

4 8 0

4 8 1

4 8 2

4 8 3

4 8 4

4 8 5

4 8 6

4 8 7

4 8 8

4 8 9

4 9 0

4 9 1

Out

let c

oola

nt te

mpe

ratu

re (

C)

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0R ad iu s , cm

0 .50 .60 .70 .80 .91 .01 .11 .21 .31 .41 .5

SA

pea

king

fac

tor

B O C 1E O C 1B O C 2E O C 2B O C 3E O C 3B O C 4E O C 4B O C 5E O C 5A v erag e

Page 10: Task 2.3 Thermal-hydraulic analysis  of the LFR and ETDR

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0R ad iu s , cm

0 .50 .60 .70 .80 .91 .01 .11 .21 .31 .41 .5

SA

pea

king

fac

tor

B O C 1E O C 1B O C 2E O C 2B O C 3E O C 3B O C 4E O C 4B O C 5E O C 5A v erag e

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 11 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0S A n u m b er

8 0

1 2 0

1 6 0

2 0 0

2 4 0

2 8 0

Coo

lant

flo

wra

te (

kg/s

)

C G 1

C G 2

C G 3

C G 4

R e flec to r

A ll C A s

B y p ass b tw F A s

Flowrate

Page 11: Task 2.3 Thermal-hydraulic analysis  of the LFR and ETDR

Coolant flowrate distribution in the core, kg/s

Cooling group number

Average per channel

Averagetotal

1 FAs 172.3 149902 FAs 145.2 34843 FAs 117.5 42314 FAs 93.4 22415 Reflector 261 2616 Control assemblies 143 1437 Bypass between FAs 110 110

Page 12: Task 2.3 Thermal-hydraulic analysis  of the LFR and ETDR

T62: LFR core thermal hydraulics

What is expected?

1D TH analysis of the core?