tankform1

Upload: quoctrangbk02

Post on 03-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 TankForm1

    1/18

    Confidential

    REFERENCE MANUAL

    To calculate and generate Storage Tank

  • 8/12/2019 TankForm1

    2/18

    Confidential

    Content:

    1. Introduction............................................................................................................................. 3

    2. Purpose.................................................................................................................................... 33. Using the program.................................................................................................................. 34. Limitation................................................................................................................................ 45. Installation............................................................................................................................... 46. Future...................................................................................................................................... 47. Support.................................................................................................................................... 4

  • 8/12/2019 TankForm1

    3/18

  • 8/12/2019 TankForm1

    4/18

    Confidential

    Main Tank Form[2]

    Automatic characteristic outputs of chosen material:

    Other form definition (watch materials, plates and corrosion possibilities)Option A Option B.

    Shown Calculation volumeautomatically

    Main Material & lates

    Choose correction of corrosionfor plates

    Run Calculation (1)

    Choose common corrosionalowance

    Last Material, platesacc. Other Material

    Reset all data todefault (for Tank only)

    Write Nr. of plates fromthe bottom to up forthese materials & plates

    Other then basic material ?

    Other material &plates

    Additional heightabove float. Roof atcritical level

    Critical level

    Choose correction of corrosionthickness for plates Method how to around

    calculated plate

    thicknessby each1mm or 0.5 mm

  • 8/12/2019 TankForm1

    5/18

    Confidential

    Note.2. Critical level is calculated from nom volume added in Main Form[1] and diameter, and is increased about volume of slopedbottom (1:120) and volume of sink of floating roof shell) (if) and 200mm extra. Tank height is + delta height + max construction offolating roof if is chosen. Critical level can be slightly degrased to whole value e.g. 12263 was degreased to 12190mm forcalculation, then operating and max volumes and levels were recalculated back.

    How to set various or same materials, and various manufactured plates.If the tank must be all designed from 1(Basic) material 11 503.1 1 (Rm = 490 Re = 345 Sd = 196 St = 210 Kcv = 1503) turn off

    button other material to off, and choose same material in option Set mat. From Tmin. Watch option A.Program deactivated plates and material with option Other, and set Nr. To 1 means from 1 to last plate.

    In the case, designer wants to combine main Basic material with Other (using of manufactured plates 2080mm(height) x 7980mmlength) with mat. E.g. 11503.1 (11503.1 Rm = 490 Re = 345 Sd = 196 St = 210 Kcv = 1503), and from plates 1,2 and 5,6, writeplates position (from the bottom) as 1,2,5,6. Program automatically find missing Nr.3,4 and will calculated shell from nr. 7 to top withset material - 11418.1 (Rm = 400 Re = 255 Sd = 160 St = 171 Kcv = 1418), plates 2480mm x 7980mmwith weakness Re, Rm,. Sd,St Kcv. Other Material of Plates option must be turned ON, and automatically will be set CYAN background colour for text. Programchecks (EN,API) if is thL lower course not thicker then thU upper course

    In the case is set different material Set mat. From Tmin thickness, program calculates wall thickness for every ring, andcompares to API (same as EU standards), and final thickness is used minimum allowed Tmin(see Note3). For instance, programscalculates 4mm without corrosion and 5 with corrosion, so th min = max(4,5) for diameter 78m, but for this diameter must beusedmin thickness 10 mm. So program will add to this thickness mat 11 375.1 (cheapest) -> 11375.1 (Rm = 363 MPa Re = 235 MPa Sd= 145 MPa St = 156 MPa Kcv = 1375), and calculation is repeated to not exceed Tmin. Shown in Option B.

    Note3For explanation, until th min calculated thickness is not smaller then Tmindepending from API 650/EN/GOST and diameter of

    tank, still is used Basic or Other material, so when is Thmin = 10mm as result of higher thickness fordesign(+allowance)/hydrotest conditions, still will be used mat 11418.1. If program calculates that th is thinner then Tmin for basic orOther material, will test if th is thinner than Tmin too, if not, returns back th for Basic or Other material. For EN will be donecalculation acc point 9.2.3in the calculation will be reduced H(liquid level) for 0.3 m. Then is checked with Tmin.The program was tested for condition from APIsee K.2 Variable-Design-Point Example #2, file H101T-vm in subdirectory/directories/Tank/Data, (for directoriessee chapter 5. Installation)Notes:

    When is pressed button Calculated Tank Shell Weight + wall thicknesses after successful calculation procedure, Orangecolourof this button will be changed to default. Any updating data in the form, changes colour back to Orange.Same logic is used for all further forms.All buttons/text gadgets in all forms have tooltip explanation.If during of testing you want to see outputs calculated data in the command line, turn ON in main form button Test TankParameters.Calculation of tank data(and safety tank) depends from the Critical Level(as result of storage volume, diameter of tank(safety tank)and its height. The overall heightof tank or safety tank is controlled by chosen height of plates, and controlled by API 650lastone ring of plates, which can not be less as 1830mm.

    Typical output (acc sample from API and sample K.2 Variable-Design-Point Example #2 transformed to mm) mat Sd 28.000(193.1Mpa) and St 30.000(206.8 Mpa) and Sd

    23200(159.9 Mpa) and St 24900(171.6 Mpa) Psi, Diam 280ft = 85340mm H = 40ft = 12190mm , height of plate 8ft = 2430mm.

    --------------------------------------------------------------------------------------------

    Main Data for TANK H-10api

    --------------------------------------------------------------------------------------------

    Nominal volume ==> Vhmax = 67500 m3

    Maxim volume ==> Vhmax = 66526 m3, => maximum level = 11990 (mm)

    Critical volume ==> Vcrit = 69727 m3, => critical level = 12190 (mm)

    Nominal Diameter of Tank = 85340 (mm)

    Overall Height of Tank = 14620 (mm)

    Storage medium = CRUDE OIL

    Density of medium, = 868 (kg/m3) (cca 0.85G from sample K.2)

    Corrosion allowance of TANK = 3 (mm)possible to reduce for selected plates

    ====================================================================================================

    ----------------------------------- TANK calculated data with First Foot + Variable method acc API 650 release 1.Febr. 2012 -----------------

    Design calculation : td = (4.9 * (D * (H - 300) * Ro * g) / (kw * Sd * 1 exp10)) + ca (additional allowance)

    Design calculation : td = (4.9 * (D * (H - 300)) / (kw * St * 1 exp10))--------------------------------------------------------------------------------------------------------------------------------------------------------------------

    Diameter 85340 mm * Overall Height 14410 * Critical level 12190 mm * Medium CRUDE OIL * Density 868 kg/m3

    --------------------------------------------------------------------------------------------------------------------------------------------------------------------

    Course. Material. H Sd St Ca td[i] tdc[i] tt[i] t1d[i] t1t[i] tmin[i] th[i] Weight Weight

    Nr.[i] Mpa MPA (mm) des des htest des htest CA = 0 CA[i] +ca +all

    ====================================================================================================

    ----------------------------------- TANK calculated data with First Foot + Variable method acc API 650 release 1.Febr. 2012 -----------------

    Design calculation : td = (4.9 * (D * (H - 300) * Ro * g) / (kw * Sd * 1 exp10)) + ca (additional allowance)

    Design calculation : td = (4.9 * (D * (H - 300)) / (kw * St * 1 exp10))

    --------------------------------------------------------------------------------------------------------------------------------------------------------------------

    Diameter 85340 mm * Overall Height 14620 * Critical level 12190 mm * Medium CRUDE OIL * Density 868 kg/m3

    --------------------------------------------------------------------------------------------------------------------------------------------------------------------

    Course. Material. H Sd St Ca td[i] tdc[i] tt[i] t1d[i] t1t[i] tmin[i] th[i] Weight Weight

  • 8/12/2019 TankForm1

    6/18

    Confidential

    Nr.[i] Mpa MPA (mm) des des htest des htest CA = 0 CA[i] +ca +all

    ====================================================================================================

    1 A573-70 2435 193.1 206.8 3 21.92 24.92 24.04 24.28 23.21 25 25 112.8 128.2

    2 A573-70 2435 193.1 206.8 3 16.65 19.65 19.32 0 0 19.65 20 87.1 102.5

    3 A573-70 2435 193.1 206.8 1.5 11.92 13.42 12.96 0 0 13.42 14 64.1 71.8

    4 A36 2435 159.9 171.6 0 9.7 9.7 10.73 0 0 10.73 11 56.4 56.4

    5 A36 2435 159.9 171.6 0 4.28 4.28 4.63 0 0 4.63 10 51.3 51.3

    6 A36 2435 159.9 171.6 0 0 0 0 0 0 0 10 51.3 51.3

    ---------------------------------------------------------------------------------------------------------------------------------------------------------------------

    Weight of TANK SHELL (without and with corr. allowance) 423 (t) 461.5 (t)

    Weight of TANK SHELL During Hydrotest at Crit level V = 69727 m3 70150 (t) 70188.5 (t)

    Weight of TANK SHELL During Hydrotest at Maximum level V = 68583 m3 69006 (t) 69044.5 (t)

    Weight of TANK SHELL at Crit level with medium V = 69727 m3 60946 (t) 60984.5 (t)

    Weight of TANK SHELL at Maximum level with medium V = 68583 m3 59953 (t) 59991.5 (t)

    ====================================================================================================

    Length of Horizontal welds of Tank Shell 20 mm = 268.2 m

    Length of Horizontal welds of Tank Shell 14 mm = 268.1 m

    Length of Horizontal welds of Tank Shell 11 mm = 268.1 m

    Length of Horizontal welds of Tank Shell 10 mm = 268.1 m

    Length of Vertical welds of Tank Shell 25 mm = 82.8 m

    Length of Vertical welds of Tank Shell 20 mm = 82.8 m

    Length of Vertical welds of Tank Shell 14 mm = 82.8 m

    Length of Vertical welds of Tank Shell 11 mm = 82.8 m

    Length of Vertical welds of Tank Shell 10 mm = 165.6 m

    ============================================================================================

    Variable methode for Course Nr 1--------------------------------------------------------------------------------------------

    td = 21.92 = 4.9 * 85340 * (12190 - 300) * 8512.1722 / (1 * 193.1 * 1exp10)

    tdc = 24.92 = 21.92 + 3

    tt = 24.04 = 4.9 * 85340 * (12190 - 300) / (1 * 206.8 * 1exp6)

    t1d = 24.28 = 1.06 - 0.0696 * 85340 / 12190 * sqrt(12190 * 8512.1722 * 1exp-7 / 193.1)) * (4.9 * 12190 * 85340 * 8512.1722 * 1exp-10 / 193.1) + 3

    t1t = 23.21 = 1.06 - 0.0696 * 85340 / 12190 * sqrt(12190 * 1exp-3 / 206.8)) * (4.9 * 12190 * 85340 * 1exp-6 / 206.8

    --------------------------------------------------------------------------------------------

    Preliminary calculation tdx tu tt for Course Nr.2

    --------------------------------------------------------------------------------------------

    tdx = 4.9 * D * (H - x ) * G / (kw * Sd) * 1xp10 + CA , where x[i] starts with i = 1 -> 300mm

    20.429 = 4.9 * 85340 * (9755 - 300) * 8512.1722 * 1exp10 / (1 * 193.1) + 3

    tu = tdx - CA = 17.429

    tt = 4.9 * D * (H - x) / (kw * St * 1exp6) , where x[i] starts with i = 1 -> 300mm)

    19.119 = 4.9 * 85340 * (9755 - 300) / (1 * 206.8 * 1exp6)

    --------------------------------------------------------------------------------------------

    Variable method for Course Nr 2

    -------------------------------- D E S I G N CONDITION -------------------------------------iter tu K C x1 x2 x3 x td-Ca

    --------------------------------------------------------------------------------------------

    1 17.429 1.262 0.122 906.89 1190.11 1052.1 906.89 16.31

    2 16.31 1.349 0.158 1002.1 1541.29 1017.77 1002.1 16.135

    3 16.135 1.363 0.164 1018.09 1599.82 1012.29 1012.29 16.116

    4 16.116 1.365 0.164 1017.79 1599.82 1011.7 1011.7 16.117

    --------------------------------------------------------------------------------------------

    ---------------------------------- H Y D R O T E S T ---------------------------------------

    iter tu K C x1 x2 x3 x tt

    --------------------------------------------------------------------------------------------

    1 19.119 1.214 0.101 866.25 985.26 1101.93 866.25 17.974

    2 17.974 1.291 0.134 952.51 1307.17 1068.42 952.51 17.799

    3 17.799 1.304 0.139 965.51 1355.95 1063.21 965.51 17.773

    4 17.773 1.306 0.14 968.24 1365.7 1062.43 968.24 17.768

    --------------------------------------------------------------------------------------------

    k[1] = 1.262 = tL / tu => 22 / 17.429

    Ck[1] = 0.122 = sqrt(k) * (k - 1) / (1 + pow(k,3/2)) => sqrt(1.262) * (1.262 - 1) / (1 + pow(1.262,3/2))x1[1] = 906.89 = 0.61 * sqrt(rad * tu) + 320 * C * H => 0.61 * sqrt(0.5 * 85340 * 17.429) + 320 * 0.122 * 9755 * 0.001

    x2[1] = 1190.11 = 1000 * C * H => 0.122 * 9755

    x3[1] = 1052.1 = 1.22 * sqrt(rad * tu) => 1.22 * sqrt(0.5 * 85340 * 17.429)

    x4[1] = 906.89 = min(x1,x2,x3)

    k[2] = 1.349 = tL / tu => 22 / 16.31

    Ck[2] = 0.158 = sqrt(k) * (k - 1) / (1 + pow(k,3/2)) => sqrt(1.349) * (1.349 - 1) / (1 + pow(1.349,3/2))

    x1[2] = 1002.1 = 0.61 * sqrt(rad * tu) + 320 * C * H => 0.61 * sqrt(0.5 * 85340 * 16.31) + 320 * 0.158 * 9755 * 0.001

    x2[2] = 1541.29 = 1000 * C * H => 0.158 * 9755

    x3[2] = 1017.77 = 1.22 * sqrt(rad * tu) => 1.22 * sqrt(0.5 * 85340 * 16.31)

    x4[2] = 1002.1 = min(x1,x2,x3)

    k[3] = 1.363 = tL / tu => 22 / 16.135

    Ck[3] = 0.164 = sqrt(k) * (k - 1) / (1 + pow(k,3/2)) => sqrt(1.363) * (1.363 - 1) / (1 + pow(1.363,3/2))

    x1[3] = 1018.09 = 0.61 * sqrt(rad * tu) + 320 * C * H => 0.61 * sqrt(0.5 * 85340 * 16.135) + 320 * 0.164 * 9755 * 0.001

  • 8/12/2019 TankForm1

    7/18

    Confidential

    x2[3] = 1599.82 = 1000 * C * H => 0.164 * 9755

    x3[3] = 1012.29 = 1.22 * sqrt(rad * tu) => 1.22 * sqrt(0.5 * 85340 * 16.135)

    x4[3] = 1012.29 = min(x1,x2,x3)

    k[4] = 1.365 = tL / tu => 22 / 16.116

    Ck[4] = 0.164 = sqrt(k) * (k - 1) / (1 + pow(k,3/2)) => sqrt(1.365) * (1.365 - 1) / (1 + pow(1.365,3/2))

    x1[4] = 1017.79 = 0.61 * sqrt(rad * tu) + 320 * C * H => 0.61 * sqrt(0.5 * 85340 * 16.116) + 320 * 0.164 * 9755 * 0.001

    x2[4] = 1599.82 = 1000 * C * H => 0.164 * 9755

    x3[4] = 1011.7 = 1.22 * sqrt(rad * tu) => 1.22 * sqrt(0.5 * 85340 * 16.116)

    x4[4] = 1011.7 = min(x1,x2,x3)

    k[5] = 1.365 = tL / tu => 22 / 16.117

    --------------------------------------------------------------------------------------------

    2.513 = 2435 / sqrt(0.5 * 85340 * 22)

    if 2.513 gt 1.375 and 2.513 lt 2.625 ==> td[2] = 16.645927543442 = 16.12 + (22 - 16.12) * (2.1 - 2435 / (1.25 * (sqrt(0.5 * 85340 * 22

    --------------------------------------------------------------------------------------------

    k[1] = 1.214 = tL / tt => 23.212 / 19.119

    C[1] = 0.101 = sqrt(k) * (k - 1) / (1 + pow(k,3/2)) => sqrt(1.214) * (1.214 - 1) / (1 + pow(1.214,3/2))

    x1[1] = 866.25 = 0.61 * sqrt(rad * tt) + 320 * C * H => 0.61 * sqrt(0.5 * 85340 * 19.119) + 320 * 0.101 * 9755 * 0.001

    x2[1] = 985.26 = 1000 * C * H => 0.101 * 9755

    x3[1] = 1101.93 = 1.22 * sqrt(rad * tt) => 1.22 * sqrt(0.5 * 85340 * 19.119)

    x4[1] = 866.25 = min(x1,x2,x3)

    k[2] = 1.291 = tL / tt => 23.212 / 17.974

    C[2] = 0.134 = sqrt(k) * (k - 1) / (1 + pow(k,3/2)) => sqrt(1.291) * (1.291 - 1) / (1 + pow(1.291,3/2))

    x1[2] = 952.51 = 0.61 * sqrt(rad * tt) + 320 * C * H => 0.61 * sqrt(0.5 * 85340 * 17.974) + 320 * 0.134 * 9755 * 0.001

    x2[2] = 1307.17 = 1000 * C * H => 0.134 * 9755

    x3[2] = 1068.42 = 1.22 * sqrt(rad * tt) => 1.22 * sqrt(0.5 * 85340 * 17.974)

    x4[2] = 952.51 = min(x1,x2,x3)k[3] = 1.304 = tL / tt => 23.212 / 17.799

    C[3] = 0.139 = sqrt(k) * (k - 1) / (1 + pow(k,3/2)) => sqrt(1.304) * (1.304 - 1) / (1 + pow(1.304,3/2))

    x1[3] = 965.51 = 0.61 * sqrt(rad * tt) + 320 * C * H => 0.61 * sqrt(0.5 * 85340 * 17.799) + 320 * 0.139 * 9755 * 0.001

    x2[3] = 1355.95 = 1000 * C * H => 0.139 * 9755

    x3[3] = 1063.21 = 1.22 * sqrt(rad * tt) => 1.22 * sqrt(0.5 * 85340 * 17.799)

    x4[3] = 965.51 = min(x1,x2,x3)

    k[4] = 1.306 = tL / tt => 23.212 / 17.773

    C[4] = 0.14 = sqrt(k) * (k - 1) / (1 + pow(k,3/2)) => sqrt(1.306) * (1.306 - 1) / (1 + pow(1.306,3/2))

    x1[4] = 968.24 = 0.61 * sqrt(rad * tt) + 320 * C * H => 0.61 * sqrt(0.5 * 85340 * 17.773) + 320 * 0.14 * 9755 * 0.001

    x2[4] = 1365.7 = 1000 * C * H => 0.14 * 9755

    x3[4] = 1062.43 = 1.22 * sqrt(rad * tt) => 1.22 * sqrt(0.5 * 85340 * 17.773)

    x4[4] = 968.24 = min(x1,x2,x3)

    --------------------------------------------------------------------------------------------

    2.358 = 2435 / sqrt(0.5 * 85340 * 25)

    if 2.358 gt 1.375 and 2.358 lt 2.625 ==> tt[2] = 19.316719564971 = 17.77 + (25 - 17.77) * (2.1 - 2435 / (1.25 * (sqrt(0.5 * 85340* 25)

    --------------------------------------------------------------------------------------------

    Preliminary calculation tdx tu tt for Course Nr.3--------------------------------------------------------------------------------------------

    tdx = 4.9 * D * (H - x ) * G / (kw * Sd) * 1xp10 + CA , where x[i] starts with i = 1 -> 300mm

    14.437 = 4.9 * 85340 * (7318 - 300) * 8512.1722 * 1exp10 / (1 * 193.1) + 1.5

    tu = tdx - CA = 12.937

    tt = 4.9 * D * (H - x) / (kw * St * 1exp6) , where x[i] starts with i = 1 -> 300mm)

    14.191 = 4.9 * 85340 * (7318 - 300) / (1 * 206.8 * 1exp6)

    --------------------------------------------------------------------------------------------

    Variable method for Course Nr 3

    -------------------------------- D E S I G N CONDITION -------------------------------------

    iter tu K C x1 x2 x3 x td-Ca

    --------------------------------------------------------------------------------------------

    1 12.937 1.287 0.132 762.33 965.98 906.44 762.33 12.084

    2 12.084 1.378 0.17 836.12 1244.06 876.05 836.12 11.948

    3 11.948 1.394 0.176 847.7 1287.97 871.1 847.7 11.927

    4 11.927 1.396 0.177 849.66 1295.29 870.34 849.66 11.923

    5 11.923 1.396 0.177 849.59 1295.29 870.19 849.59 11.924

    6 11.924 1.396 0.177 849.6 1295.29 870.23 849.6 11.9237 11.923 1.396 0.177 849.59 1295.29 870.19 849.59 11.924

    8 11.924 1.396 0.177 849.6 1295.29 870.23 849.6 11.923

    9 11.923 1.396 0.177 849.59 1295.29 870.19 849.59 11.924

    10 11.924 1.396 0.177 849.6 1295.29 870.23 849.6 11.923

    --------------------------------------------------------------------------------------------

    ---------------------------------- H Y D R O T E S T ---------------------------------------

    iter tu K C x1 x2 x3 x tt

    --------------------------------------------------------------------------------------------

    1 14.191 1.361 0.163 856.38 1192.83 949.35 856.38 13.066

    2 13.066 1.479 0.208 942.56 1522.14 910.95 910.95 12.956

    3 12.956 1.491 0.213 952.35 1558.73 907.1 907.1 12.963

    4 12.963 1.49 0.212 950.13 1551.42 907.35 907.35 12.963

    Etc

  • 8/12/2019 TankForm1

    8/18

    Confidential

    Main Safety Tank Form[3]

    The form is similar as Main Tank form[2]just with additional distance between bottoms, which has an influence for calculation ofcritical level inside of Safety Tank leaked out from the Main Tank. This value (concrete foundation, or double vacuum plate) +volume of shell tank sank into medium + slope of bottoms will rise Critical level against simple calculation of clear Safety Tankvolume sometimes more than 1 m

    Form for roof(s)[4]Program does not calculate for size profiles etcsimply can help to predict total weight for further calculation (wind overloading

    stability ..as attached part to tank shell, same as stiffening rings, stairs etc) , and summary of the welds. In the case of usingfloating roof(with cassettes) the weight has impact for max critical level, because if sink in the medium is from 85-120mm min.) Up tonow the conic or spherical roof is really only basically done as Fixed roof.The data are set immediately when the Main form [2] is called, or changed diameter, density in form [1]. User can adjust in this formtype of roof, Min Max height of roof, parameters of fixed chosen roof, dimensions of plates.The fixed roof the construction is just roughly guessed, so user can rewrite new weight important for a next calculations withspecial influence of structural weight(as difference between total weight and plate roof weight) and only roof plate weight to seismicstability.

    Critical level

    Distance between bottomsof Tank and Safety Tank

    Only floatingrooof

    Height of the floatingroof on the maxdiamater

    Conic/Spheric roof if(floating button is notoff)

    Height of the floatingroof in centre

  • 8/12/2019 TankForm1

    9/18

    Confidential

    Typical view to floating roof with cassettes, manholes to cassettes or via roof, showing material plates

    Typical output:Roof calculation for Tank H-101 = 90000 m3=================================================================================='

    4mm fillet weld(Plate for Rain and Foam) = 479.97 m'

    5mm fillet weld of vertical circle bended plates = 2124.18 m'5 mm fillet welds straight(cross sections(cassettes)) = 937.26 m'

    5 mm fillet welds of dashed(interrupted welds) = 2398.25 m

    5 mm fillet welds of crossing beams = 907.2 m

    5 mm fillet welds of floating roof plates = 3413.6 m

    5 mm butt welds of floating roof plates = 5231.5 m

    5mm fillet welds of inspection holes = 270.5 m

    ----------------------------------------------------------------------------------

    Aproxim. weight of floating roof plates (bottom + top) = 377977 (kg)

    Weight of vertical circle bracing plates(rings) = 48470 (kg)

    Weight of legs and vent legs cca 112 = 24150 (kg)

    Weight of inspection holes and roof insp. holes = 8300 (kg)

    Weight of plates creating cassettes(cross-sections cca 112) = 26830 (kg)

    Weight of horizontal U bracing profile = 75844 (kg)

    Weight of vertical U bracing profile = 26035 (kg)

    ----------------------------------------------------------------------------------

    Aprox. needed plates with dimensions 1500 x 4000 x 5 = 1602 (pcs)

    Calculated Weight of Floating Rood (without 254 mm water bar) cca = 595577 (kg)Weight of water => 254 mm precipitation = 1200978 (kg)

    Diameter of fl. roof. = 77590 (mm), maximum roof height = 1200 (mm), Minim. roof height = 800 (mm)

    The Sink of the roof in medium with density = 1000 (kg/m3) is = ** 126 mm **

    The Sink of the roof in medium with density = 868 (kg/m3) is = ** 145 mm **

    The Sink of the roof(with 254mm of water) in medium with density = 700 (kg/m3) = ** 543 v mm **

    ==================================================================================

    Weight of Floating Roof in the form(User choice) (without 254 mm water bar) cca = 595577 (kg)

    ==================================================================================

    Note. The intend of this program is not to calculate the stability of the roof etc but just estimate the weight, for furthercalculation(wind stability etc..). Program allows to changethe calculated weight if is too light.

  • 8/12/2019 TankForm1

    10/18

    Confidential

    Form for definitions of bottoms[5]

    Typical output:====================================================================================================

    ------- Bottom of TANK H-101 = 90000 m3

    -----------------------------------------------------------------------------------------------------------------------

    Cut bottom(circle) of TANK Inside diameter of Tank Outside diameter of Tank close to bottom

    -----------------------------------------------------------------------------------------------------------------------

    78220 (mm) 78000 (mm) 78070 (mm)-----------------------------------------------------------------------------------------------------------------------

    -----------------------------------------------------------------------------------------------------------------------

    Length of all butt welds of Edge Plates thickness 12 (mm) = 32.2 (m)

    Length of all fillet welds of Bottom Plates (to Edge Plates) thickness 9 (mm) = 240.9 (m)

    Length of all butt welds of Bottom Plates thickness 9 (mm) = 1958.6 (m)

    Length of all fillet welds of Bottom Plates thickness 9 (mm) = 904.1 (m)

    Aprox. needed plates with dimensions 8000 x 2000 x 9 = 279 (pcs)

    ====================================================================================================

    Total weight of Bottom plates of TANK = 349882 (kg)

    ====================================================================================================

    ====================================================================================================

    ------- Bottom of SAF TANK H-101 = 90000 m3

    -----------------------------------------------------------------------------------------------------------------------

    Cut bottom(circle) of SAF TANK Inside diameter of Tank Outside diameter of Tank close to bottom

    -----------------------------------------------------------------------------------------------------------------------

    84216 (mm) 84000 (mm) 84066 (mm)

    -----------------------------------------------------------------------------------------------------------------------

    Length of all butt welds of Edge Plates thickness 12 (mm) = 34.1 (m)

    Length of all fillet welds of Bottom Plates (to Edge Plates) thickness 9 (mm) = 259.7 (m)

    Length of all butt welds of Bottom Plates thickness 9 (mm) = 2314.7 (m)

    Length of all fillet welds of Bottom Plates thickness 9 (mm) = 1086.5 (m)

    Aprox. needed plates with dimensions 8000 x 2000 x 9 = 344 (pcs)

    ====================================================================================================

    Total weight of Bottom plates of SAF TANK = 404813 (kg)

    ====================================================================================================

  • 8/12/2019 TankForm1

    11/18

    Confidential

    Sample of Bottom of Tank

    Sample of Bottom of Safety Tank

  • 8/12/2019 TankForm1

    12/18

    Confidential

    Sample of both Bottoms of Tanks

    Stiffening(Bracing) rings[6]

    Notes:1. Is used corroded thickness of shell for calculation of Top Wind Girder and stiffening Girders.2. In this application, I think will latter provide button which can run calculation according separate chosen Standard(user maybewants Shell calculation acc API, but Stiffening rings acc EN)

    3. In calculation equations of J-kvad modules are up to know used only 1xused 16 x th proportion of the shell tank, what can beincreased for 2x , it means above and bellow profile welded to shell tank(If applicable). That means J-kvad modules are little bitstronger. Watch attached calculation report with values.

  • 8/12/2019 TankForm1

    13/18

    Confidential

    Tank with Stiffening and Interm. rings(2) Saf.Tank with Stiffening and Interm. rings(1)

    Bellow is a sample of top girder calculationsee EN 14015 sample J.4------------------------------------------------------------------------------------------------------------------------------------------------------------

    Calculation of Stiffening ring and intermediate rings from wind loading of TANK H-101 acc EN 14015Diameter TANK 95000 mm , Overall TANK Height 20000 mm

    ------------------------------------------------------------------------------------------------------------------------------------------------------------

    Top Curb angle profile 25 mm from the top of TANK 80 x 80 x 6 mm weight = 2191 kg Painting area = 95.6 m2

    Fillet Weld(80 x 80 x 6) - 6 mm length = 298.5 m

    Stich Fillet Weld 100mm/100mm (80 x 80 x 6) - 6 mm length = 149.25 m

    Top wind girder - main stiffening ring, minimum calculated Z = 0.058 * D * D * H * V * V / (45 * 45) = 18612 cm3

    Z = 0.058 * 1ex-9 * 95000 * 95000 * 20000 * 60 * 60 / (45 * 45) = 18612 cm3

    ------------------------------------------------------------------------------------------------------------------------------------------------------------

    Top wind girder CALCULTED from profiles bellow with sufficient width where Z1 > Z 1919.5 mm: Z1 = 18885 cm3

    Top wind girder USED as min allowed acc EN 14015 from profiles bellow with width 1919.5 mm: Zu = 18885 cm3

    Top wind girder with width 1919.5 mm has walking clearance 1791.2 mm: = 1919.5 - 48.3 - 80

    ------------------------------------------------------------------------------------------------------------------------------------------------------------

    Walking Stiffening Ring made from: Profile U 240 x 85 weight = 10307 kg Painting area = 242.1 m2

    Walking Stiffening Ring made from: Profile L 160 x 100 x 12 weight = 10534.5 kg Painting area = 213.4 m2

    Walking Stiffening Ring made from: Plate 100 x 12 weight = 2921 kg Painting area = 69.5 m2

    Walking Stiffening Ring made from: Rail 48.3 x 2.6 weight = 2296 kg Painting area = 119.1 m2

    Walking Stiffening Ring made from: Grade weight = 5995 kg

    Top wind girder totally: weight = 32053.5 kg Painting area = 644.1 m2

    Fillet Weld - 8 mm length = 639 m

    Stich Fillet Weld 100mm/100mm (L 160 x 100 x 12 + Pl.100 x 12) - 8 mm length = 319.5 m

    ------------------------------------------------------------------------------------------------------------------------------------------------------------

    Top wind girder placed at position 1000 mm from top of TANK, resp 19000 mm from the bottom, at the shell plate thickness(without corrosion allowance) 12 mm

    ------------------------------------------------------------------------------------------------------------------------------------------------------------

    Calculation of Maximum unstiffened Height Hp (Top profile or Walking wind girder for Open Tanks see EN 14015 9.3.3.6

    K = 95000 / (3.563 * Ws * Ws + 580 * p) = 6.040644

    K = 95000 / (3.563 * 60 * 60 + 580 * 5) = 6.040644

    Hp = K * sqrt(pow(t,5) / pow(d,3)) = 3254 mm

    Hp = 6.040644 * sqrt(pow(12,5) / pow(95000 / 1000,3)) = 3254 mm

    ------------------------------------------------------------------------------------------------------------------------------------------------------------

    Calculation of Transformed Shell TANK Height 20000 mm see EN 14015 9.3.3.6

    ------------------------------------------------------------------------------------------------------------------------------------------------------------

    Course 1 124 = 2500 * sqrt(pow(12 / 39.9),5)

    Course 2 173.3 = 2500 * sqrt(pow(12 / 34.9),5)

    Course 3 257.2 = 2500 * sqrt(pow(12 / 29.8),5)

    Course 4 411.3 = 2500 * sqrt(pow(12 / 24.7),5)

    Course 5 724 = 2500 * sqrt(pow(12 / 19.7),5)

    Course 6 1641.2 = 2500 * sqrt(pow(12 / 14.2),5)

    Course 7 2500 = 2500 * sqrt(pow(12 / 12),5)

    Course 8 1500 = 1500 * sqrt(pow(12 / 12),5)

    ------------------------------------------------------------------------------------------------------------------------------------------------------------

    Overall Transformed Shell TANK = 7331 mm

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    Because (Overall Trans. Shell TANK / Hp) = int(7331 / 3529) = 2.077, => 2 intermediate wind girders are required EN 14015 9.3 to 9.3.3.6

    An intermediate wind girder nr. 1 will be preliminary placed at 1/3 of Transf. Shell height = 2443 mm (from bottom) see EN 14015 9.3 to 9.3.3.6

    An intermediate wind girder nr. 1 will be placed at height = 13648.887955036 mm from the bottom on the plate with 14.2 mm thickness

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    An intermediate wind girder nr. 1 plate sizes: Plate 200 x 12 weight = 5340 kg Painting area = 120.2 m2

    An intermediate wind girder nr. 1 plate sizes: Plate 100 x 12 weight = 2673 kg Painting area = 56.8 m2

    An intermediate wind girder nr. 1 plate sizes: Plate 50 x 12 weight = 1335 kg Painting area = 35.1 m2

    An intermediate wind girder nr. 1 totally: weight = 9348 kg Painting area = 190.4 m2

    Fillet Weld - 8 mm length = 282.8 m

    Stich Fillet Weld 100mm/100mm (Plate 200 x 12) - 8 mm length = 141.4 m

    An intermediate wind girder nr. 1 is 200 x 100 x 12

    ------------------------------------------------------------------------------------------------------------------------------------------------------

  • 8/12/2019 TankForm1

    14/18

    Confidential

    An intermediate wind girder nr. 2 will be preliminary placed at 2/3 of Transf. Shell height = 4887 mm (from bottom) see EN 14015 9.3 to 9.3.3.6

    An intermediate wind girder nr. 2 will be placed at height = 16557 mm from the bottom on the plate with 12 mm thickness

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    An intermediate wind girder nr. 2 plate sizes: Plate 200 x 12 weight = 5340 kg Painting area = 120.2 m2

    An intermediate wind girder nr. 2 plate sizes: Plate 100 x 12 weight = 2673 kg Painting area = 56.8 m2

    An intermediate wind girder nr. 2 plate sizes: Plate 50 x 12 weight = 1335 kg Painting area = 35.1 m2

    An intermediate wind girder nr. 2 totally: weight = 9348 kg Painting area = 190.4 m2

    Fillet Weld - 8 mm length = 282.8 m

    Stich Fillet Weld 100mm/100mm (Plate 200 x 12) - 8 mm length = 141.4 m

    An intermediate wind girder nr. 2 is 200 x 100 x 12

    ------------------------------------------------------------------------------------------------------------------------------------------------------Totally all Stiffening/Intermediate Rings weight = 50116 kg Painting area = 1079.8 m2

    ---------- Top wind girder ---------------------------------------------------------------------------------------------------------------------------

    Profiles characteristics see e.g. English version http://aladin.elf.stuba.sk/Katedry/KMECH/slovakversion/Predmety/PRP/goga/PRP_6_krut.pdf

    2304 (mm2) = 16 * 12 * 12 Section area of of shell 16 x t see API 5.9.6.2 an figure 5-24

    2990 (mm2) Section area L profile 160 x 100 x 12

    4230 (mm2) Section area UPN profile 240 x 85

    1200 (mm2) = 16 * 100 * 12 Section area of plate 100 x 12

    27648 (mm4) = 16 * 12 * 12 * 12 * 12 / 12 J-kvad. module of shell 16 x th

    7786200 (mm4) J-kvad. module of L profile 160 x 100 x 12

    2480000 (mm4) J-kvad. module of UPN profile 240 x 85

    1000000 (mm4) = 12 * 100 * 100 * 100 / 12 J-kvad. module of horizontal plate 100 x 12

    6 (mm) = 12 * 0.5 Centre point of Section area of shell 16 x t

    65.2 (mm) = 12 + 53.2 Centre point of Section area of L profile 160 x 100 x 12

    1609.2 (mm) = 12 + 160 + 1350 + 100 + 9.5 - 22.3 Centre point of Section area of UPN profile 240 x 85

    1572 (mm) = 12 + 160 + 1350 + 100 * 0.5 Centre point of Section area of plate 100 x 12

    109648 (mm4) = 27648 + 2304 * 6 * 6 Partial J-kvad. module of shell 16 x th to inside Diam of Shell

    20496200 (mm4) = 7786200 + 2990 * 65.2 * 65.2 Partial J-kvad. module of L profile 160 x 100 x 12 to inside Diam of Shell

    10956169000 (mm4) = 2480000 + 4230 * 1609.2 * 1609.2 Partial J-kvad. module of UPN profile 240 x 85 to inside Diam of Shell

    2966420000 (mm4) = 1000000 + 1200 * 1572 * 1572 Partial J-kvad. module of horizontal plate 100 x 12 to inside Diam of Shell

    13943194848 (mm4) = 109648 + 20496200 + 10956169000 + 2966420000 Final J-kvad. module of a Top wind girder to inside Diam of Shell

    830 (mm) = (2304 * 6 + 2990 * 65.2 + 4230 * 1609.2 + 1200 * 1572) / (2304 + 2990 + 4230 + 1200) Centre point J module of a Top wind girder to

    inside Diam of Shell

  • 8/12/2019 TankForm1

    15/18

    Confidential

  • 8/12/2019 TankForm1

    16/18

    Confidential

    Typical output for seismic calculation API(or EN):======================================================================================================================================================

    --- Calculation of Seismic Stability of TANK designed acc API 650 Appendix E, done by user ABCABH on 11 hour 5 min 33 sec 12 September 2013 --

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    Lateral acceleration coefficient : A = 0 %g

    Convective design response spectrum acceleration coefficient : Ac = 0.21 %g

    Acceleration coefficient for sloshing wave height calculation : Af = 0 %g

    Impulsive design response spectrum acceleration coefficient : Ai = 0.54EX-01 %g

    Vertical earthquake acceleration coefficient : Av = 0.125 %g

    Tank Diameter : D = 22 m

    Min. yield strength of bottom shell course : Fty = 345 MPa

    Min. yield strength of annular/bottom plate : Fy = 345 MPa

    Gravitation : g = 9.807 m/s2

    Specific medium Gravity * 0.001 : G = 0.865

    Effective Specific Gravity = G*(1-0.4*Av) : Ge = 0.82175

    Maximum(critical) level of medium : H = 20.109 m

    Designed min width of annular plate(measured fr inside of shell) : Lc = 600 mm

    Max. allowed width of annulus(fr inside of shell) = 3.5%D or 450 mm : Ls = 770 mm

    Design stress basis of bottom shell course : Sd = 196 MPa

    Thickness(without corrosion allow.) of plate under tank shell : ta = 6 mm

    Thickness(with corrosion allowance) of plate under tank shell : tac = 7 mm

    Thickness(without corrosion allow.) of bottom tank shell course : ts = 10 mm

    Thickness(with corrosion allowance) of bottom tank shell course : tsc = 11 mm

    Weight tank bottom(without corrosion allow) : Wf = 199300 N

    Weight of tank content : Wp = 66276300 N

    Tank shell weight(without corrosion allow) : Wst = 753000 N

    Tank weight of Stiffening/Intermediate Rings : Wsr = 70405 N

    Total Tank shell weight Wst + Wsr : Ws = 823405 N

    Total Fixed Roof weight : Wrc = 150500 N

    10% of Snow loading of Fixed Roof weight from 0.75 kPa : WSnw = 28508 NTotal Fixed Roof weight + 10% of Snow loading to Roof : Wr = 179008 N

    Roof load acting on the shell + 10% of Snow loading to Roof : wrs = 2590 N/m

    Total Tank weight:shell,roof,rings,bott,content=Ws(Wst+Wsr)+Wrc+Wf+Wp : WT = 67449505 N

    Total weight of Tank = 823405 + 150500 + 199300 + 66276300 : WT = 67449505 N

    Height of tank shell weight (Wst) centre gravity point : Xst = 9.56 m

    Height of total tank shell weight (Ws=Wst + Wsr) centre gravity point : Xsr = 10.25 m

    Height of gravity point of fixed roof from the bottom) : Xr = 22.533 m

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    Weight of the tank contents(Specific gravity 0.865) : Wp = 66276300 N

    Because Ratio D / H => 22 / 20.109 => 1.094 is < 1.333 see E.6.1.1 then => (E.6.1.1-2)

    Effective impulsive portion of Product - N : Wi = (1 - (0.218 * Diam / H)) * Wp

    Effective impulsive portion of Product - N : Wi = (1 - (0.218 * 22 / 20.109)) * 66276300 = 50469391 N

    Effective convective weight (E.6.1.1-3) : Wc = 0.23 * Diam / H * tanh(3.67 * H / Diam) * Wp

    Cpom = (tanh(3.67 * 20.109 / 22) : Cpom = 0.99756

    Effective convective weight (E.6.1.1-3) : Wc = 0.23 * 22 / 20.109 * 0.99756 * 66276300 = 16636322 N

    Design base shear due to impulsive component of eff. sloshing weight : Vi = Ai * (Ws + Wr + Wf + Wi)

    Effective convective weight (E.6.1-2) : Vi = 0.54EX-01 * (823405 + 179008 + 199300 + 50469391) = 2790240 N

    Design base shear due to convective component of eff. sloshing weight : Vc = Ac * Wc

    Des. base shear due to convective comp. of eff. sloshing w.(E.6.1-3) : Vc = 0.21 * 16636322 = 3493628 N

    Total Design base shear (E.6.1-1) : V = sqrt(Vi * Vi + Vc * Vc)

    Total Design base shear (E.6.1-1) : V = sqrt(2790240 * 2790240 + 3493628 * 3493628) = 4471116 N

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    ----- E.6.1.2.1 Center of Action for Ringwall Overturning Moment

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    Because Ratio D / H => 22 / 20.109 => 1.094 is < 1.333 see E.6.1.2.1 then => (E.6.1.2.1-2)

    Height fr bottom to centre of action ILFRM (E.6.1.2.1-2) : Xi = (0.5 - 0.094 * Diam / H) * H

    Height fr bottom to centre of action ILFRM (E.6.1.2.1-2) : Xi = (0.5 - 0.094 * 22 / 20.109) * 20.109 = 7.9865 m

    Height fr bottom to centre of action CLFRM (E.6.1.2.1-3) : Xc = (1 - (Dpom - 1) / (3.67 * H / Diam * Epom)) * H

    Dpom = cosh(3.67 * 20.109 / 22) : Dpom = 14.334

    Epom = sinh(3.67 * 20.109 / 22) : Epom = 14.299

    Height fr bottom to centre of action CLFRM (E.6.1.2.1-3) : Xc = (1-(14.334-1)/(3.67*20.109/22*14.299))*20.109 = 14.519 m

    Where ILFRM = lateral seismic force related to the Impulsive liquid force for Ringwall moment

    Where CLFRM = lateral seismic force related to the Convective liquid force for Ringwall moment

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    ----- E.6.1.2.2 Center of Action for Slab Overturning Moment

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    Because Ratio D / H => 22 / 20.109 => 1.094 is < 1.333 see E.6.1.2.1 then => (E.6.1.2.2-2)

    Height fr bottom to centre of action ILFSM (E.6.1.2.2-2) : Xis = (0.5 + 0.06 * Diam / H) * H

    Height fr bottom to centre of action ILFSM (E.6.1.2.2-2) : Xis = (0.5 + 0.06 * 22 / 20.109) * 20.109 = 11.3745 mBecause Dpom = 14.334, Epom = 14.299 see above calculated helping numbers of hypercos and hypersin fucntion (E.6.1.2.1-3)

    Height fr bottom to centre of action CLFSM (E.6.1.2.2-3) : Xcs = (1 - (Dpom - 1.937) / (3.67 * H / Diam * Epom)) * H

    Height fr bottom to centre of action CLFSM (E.6.1.2.2-3) : Xcs = (1-(14.334-1.937)/(3.67*20.109/22*14.299))*20.109 = 14.912 m

    Where ILFSM = lateral seismic force related to the Impulsive liquid force for Slab moment

    Where CLFSM = lateral seismic force related to the Convective liquid force for Slab moment

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    ----- E.6.1.3 Vertical Seismic Effects

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    The total vertical seismic force (E.6.1.3-1) : Fv = +/- Av * Weff

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    ----- E.6.1.4 Dynamic Liquid Hoop Forces due to the seismic motion in bottom tank shell course Y=H --> Ni, Nc, St

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    Because Ratio D / H => 22 / 20.109 => 1.094 is lt 1.333 see E.6.1.4 then => (E.6.1.4-3a) - Y is measured from the max level down is ge 0.75D

    Impulsive hoop membrane force in tank shell (E.6.1.4-3a) : Ni = 2.6*Ai*G*D*D =>

    Ni(Y=20.109 m) = 2.6*0.54EX-01*0.865*22*22 = 58.8 N/mm

  • 8/12/2019 TankForm1

    17/18

    Confidential

    Convective hoop membrane force in tank shell (E.6.1.4-4a) : Nc = 1.85*Ac*G*D*D*cosh[3.68*(H-Y)/D] / cosh(3.68*H/D)

    Nc(Y=20.109 m) = 1.85*0.21*0.865*22*22*hypercos(3.68*(20.109-20.109)/22)/hypercos(3.68*20.109/22) = 11.2 N/mm

    Total combined hoop stress in the shell St1,St2 = max(Dynamic hoop tensile stress(Ss) + or - product hydrostatic design stress(Sh))

    Total combined hoop stress in the shell : St1 = Sh + Ss, St2 = Sh - Ss (E.6.1.4-6)

    Product hydrostatic membrane force from 5.6.3.2 : Nh = 4.9 * D * (H-0.3) * G N/mm

    Product hydrostatic membrane force from 5.6.3.2 : Nh = 4.9 * 22 * (20.109-0.3) * 0.865 = 1847.1 N/mm

    St1 = (Nh + sqrt(Ni*Ni + Nc*Nc + pow((Av*Nh),2))/ts = (1847.1 + sqrt(58.8*58.8+11.2*11.2 + pow((0.125*1847.1),2))/10

    Total combined hoop stress in the shell : St1 = 208.6 Mpa

    St2 = (Nh - sqrt(Ni*Ni + Nc*Nc + pow((Av*Nh),2))/ts = (1847.1 - sqrt(58.8*58.8+11.2*11.2 + pow((0.125*1847.1),2))/10

    Total combined hoop stress in the shell : St2 = 160.9 Mpa

    Max Total combined hoop stress in the shell : Stmax = 208.6 MpaBecause calculated Max Total combined hoop stress in the shell Stmax < min(1.33*Sd = 260.68, 0.9*Fy = 310.5) in Mpa, is ** OK ** , see E.6.2.4

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    ----- E.6.1.5 Overturning Moment

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    Ringvall Moment Mrw (E.6.1.5-1) : Mrw = sqrt(pow((Ai*(Wi*Xi + Ws*Xs + Wr*Xr)), 2) + pow((Ac*Wc*Xc),2))

    Mrw = sqrt(pow((0.54EX-01 * (50469391 * 7.9865 + 823405 * 10.25 + 179008 * 22.533)), 2) + pow((0.21 * 16636322 * 14.519),2)))

    Ringvall Moment Mrw (E.6.1.5-1) : Mrw = = 55465806 Nm

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    Slab Moment Ms (E.6.1.5-2) : Ms = sqrt(pow((Ai*(Wi*Xis + Ws*Xs + Wr*Xr)), 2) + pow((Ac*Wc*Xcs),2))

    Ms = sqrt(pow((0.54EX-01*(50469391*11.3745 + 823405*10.25 + 179008*22.533)), 2) + pow((0.21*16636322*14.912),2))

    Slab Moment Ms (E.6.1.5-2) : Ms = = 60969464 Nm

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    Force resisting uplift in annular region (E.6.2.1.1-1a) : wa = 99 * ta * sqrt(Fy * H * Ge)

    Force resisting uplift in annular region (E.6.2.1.1-1a) : wa = 99 * 6 * sqrt(345 * 20.109 * 0.82175) = 44850 N/m

    Min required width of annular plate(measured fr inside of shell) : L = 17.23 * ta * sqrt(Fy / (H * Ge))

    Min required width of annular plate (E.6.2.1.1.2-la) : L = 17.23 * 6 * sqrt(345 / (20.109 * 0.82175)) = 472 mm

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    ----- Calculation of selected width to provide the resisting force to shell anchorage measured form the inside of shell see E.6.2.1 Anchorage

    Min. required width of Annular plates from inside of tank is 472 mm is < than used 600 mm < Ls 770 - is OK see E.6.2.1.1.2

    wa le 201.1 * H * Diam * Ge (E.6.2.1.1-1a) : = 44850 le (201.1 * 20.109 * 22 * 0.82175) = 73108

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    E.6.2.1.1.1 Anchorage Ratio, J

    Tank and weight Roof acting at base of shell (E.6.2.1.1.1-2) : wt = (Ws / (3.14 * Diam) + wrs)

    Tank and weight Roof acting at base of shell (E.6.2.1.1.1-2) : wt = 823405 / (3.141592654 * 22) + 2590 = 14504 N/m

    Anchorage Ratio J (E.6.2.1.1.1-1) : J = Mrw / (Diam * Diam * (wt * (1 - 0.4 * Av) + wa - 0.4 * wint))

    Anchorage Ratio J (E.6.2.1.1.1-1) : J = 55465806/(22*22*(14504*(1-0.4*0.125)+44850-0.4*0)) = 1.955

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    Because J = 1.955 is gt 1.54 ==> then.

    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

    !!!!Tank is not stable and cannot be se1f-anchored for the design load. Modify:

    1. the annular ring if L < 0.035D is not controlling or add mech. anchorage - L should not exceed 3.5%D or if Annulus did not used, Use them!

    2. Increase the thickness of the bottom/annular plates under shell ta = 6 - do not exceed ts = 10 of bottom shell course

    3. Increase the shell thickness ts = 10

    4. Change the proportion of TANK increase diameter and reduce height

    5. Anchor the TANK

    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

    Change calculated Conditions - include "ANCHOR TANK"

    ======================================================================================================================================================Because J = 1.955 is ge 0.785 ==> then see (E.6.2.2.1-2a)

    Sc = ((14504 * (1 + 0.4 * 0.125) + 44850) / (0.607 - 0.18667 * pow(1.955,(2.3)) )) / (1000 * 10) = -22.64 Mpa

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    Bpom = G * H * D * D / (ts * ts) = 0.865 * 20.109 * 22 * 22) / (11 * 11) = 69.6

    Because Ratio Bpom = 69.6 is ge 44 see (E.6.2.2.3-1 a) =>

    Max. Allowable Longitudinal Compression Stress in Shell - MPa : Fc = 83 * ts / D

    Max. Allowable Longitudinal Compression Stress in Shell - MPa : Fc = 83 * 10 / 22 = 37.73 Mpa

    TANK Calculation of Longitudinal Shell-Membrane Compression Stress is OK, because 0.5*Fty > Fc => 172.5 = 0.5*345 > 37.73 (MPa), (E.6.2.2.3-2a)

    4. Limitation

    Program works with mm units. Up to now works only for Tanks with material carbon steel, (ss, aluminium is not yet included, tankswith internal pressure(even this is limited to min pressure). Program calculates for roofs only guessed weight, but specially forcassette floating roofs, the weight is really precisely calculated.I did not include checking of Material Rm, Re acc various Standards, sorting to the various groups acc temperatures & conditions,program only checks if Sd or St is not higher then allowed calculation yield (e.g. 260 MPa acc En 14105.). It is up to designer whichmaterial wants to use, which welding material etc. Up to know is not included checking of min thickness acc type of material, onlymax or min allowed thickness is checked by program, it is recommended to check if maximum calculated thickness is allowed for thechosen material(manufactured), acc group of material/conditions/max allowed thickness (see kcv etc..) . Programs is done for simplecalculation of parameters described above.Other things are part of detail engineering, when is calculated seismic stability, wind stability etcBecause program PDMS uses mm as standard, I modified all calculation equations for using of mm, to get proper results.what isalways shown in the reports.

    As well in later version program I plan to add standard GOST, so user can choose acc which standard wants to calculate Tank andm model in design.Up to now is not included calculation for higher then 100 Degrees C, for this must be compared Young module at workingtemperature and for temperature in normal weather conditions(e.g. for calculation of stiffening rings).Up to now when is chosen Standard for calculation, all applications follow this Standard, but maybe for some specific reasons I canchanged philosophy and run e.g. only Stiffening rings calculation acc API, even Tank thickness plates were calculated acc EN

  • 8/12/2019 TankForm1

    18/18

    Confidential

    5. Installation

    to pmllib directory eg:

    c:\xxx\yyy\pmllib\...\Tankwhere Tank is directory where will be stored all above mentioned files.Then is necessary to write:

    Before 1th using:pml rehash allshow !!rvatankform()

    For calling of program is necessary write :Show !!rvatankform

    6. Future

    For the future, I plan to add calculation checking of shell for tanks with internal pressure for, for small tanks, or tanks from SS.Latest version of APIcan be incorporated after sending me a pdf version or link to website, where I can compare changes againstused API version (February 2012)

    7. Support

    For question, new ideas or support, ask:

    Robert Vancisin Dipl. Ing.

    [email protected]@aminet.sk

    ++ 421 (0)907 280 210

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]