talk dynamicmodel course ii

Upload: bardia68

Post on 05-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Talk DynamicModel Course II

    1/9

    Large Eddy Simulation, Dynamic

    Model, and ApplicationsCharles Meneveau

    Department of Mechanical Engineering

    Center for Environmental and Applied Fluid Mechanics

    Johns Hopkins University

    Mechanical Engineering

    SCAT 1st Latin-American Summer School

    January 9th, 2007

    Part II:

    !

    !

    G(x): Filter

    Large-eddy-simulation (LES) and filtering:

    N-S equations:

    !uj

    !t+ uk

    !uj

    !xk= "

    !p

    !xj+ #$

    2uj "

    !

    !xk%jk

    Filtered N-S equations:

    !uj

    !t+

    !ukuj

    !xk= "

    !p

    !x j+ #$

    2

    u j

    !uj

    !t+

    !ukuj

    !xk= "

    !p

    !x j+ #$

    2

    uj

    where SGS stress tensor is:

    !ij= u

    iu

    j" u

    iu

    j

    !uj

    !xj

    = 0

    !

    !

    G(x): Filter

    Energetics (kinetic energy):

    ! 12ujuj

    !t+ uk

    ! 12ujuj

    !xk= "

    !

    !xj....( ) " 2#SjkSjk " "$jkSjk( )

    !"= # $jk

    Sjk

    Inertial-range flux

    (most attention)

    Effects of ijupon resolved motions:

    E(k)

    k

    LES resolved SGS

    !"

    !

    "

    ! ="u3

    L

    !Sij =

    1

    2

    ! !ui!xj

    +

    ! !uj!xi

    "

    #$

    %

    &'

    SGS energy dissipation:

    !"= # $jk

    Sjk

    If we wish to control

    dissipation of energy we can

    setij

    proportional to-Sij

    E.g. Smagorinsky-Lilly model:

    !

    ij

    d= "#

    sgs

    $ !ui$xj

    +

    $ !uj$xi

    %

    &'

    (

    )*= "2#sgs !Sij

    !sgs =

    ?? = (velocity " scale)# (length " scale)

  • 7/31/2019 Talk DynamicModel Course II

    2/9

    !ij

    d= "#sgs

    $ !ui

    $xj

    +

    $ !uj$x

    i

    %

    &'

    (

    )*= "2#sgs !Sij

    !sgs = cs"( )2

    | S|

    Length-scale: ~ " (instead ofL),

    Velocity-scale ~ " |S|

    !sgs ~ "2 | !S |

    cs: Smagorinsky constant

    Theoretical calibration ofcs (D.K. Lilly, 1967):

    E(k)

    kLES resolved SGS

    !"

    !

    "

    ! ="u3

    L

    E(k) = cK!

    2/ 3k"5/ 3

    !" = #= $ %ij !Sij

    #= cs2"2 2 | !S| !Sij !Sij

    #& cs2"2 23/2 !Sij !Sij

    3/2

    !Sij !Sij = 12 '

    !

    ui'x

    j

    '!

    ui'x

    j

    + '!

    uj'x

    i

    ()* +,-=

    =1

    2[kj

    2.ii (k)+ kikj.ij(k)]d3k =

    |k|

  • 7/31/2019 Talk DynamicModel Course II

    3/9

    Measure empirical Smagorinsky coefficient for atmospheric surface layer

    as function of height and stability (thermal forcing or damping):

    cs=

    ! "jkSjk2#2 | S| SijSij

    $

    %&&

    '

    ())

    1/2

    Example result: effect of atmospheric

    stability on coefficient from sonic

    anemometer measurements in

    atmospheric surface layer

    (Kleissl et al., J. Atmos. Sci. 2003)

    HATS - 2000(with NCAR)Kettleman City

    (Central Valley, CA)

    Stable stratification

    Neutralstratification

    cs= c

    s(x, t)

    How to avoid tuning and case-by-case

    adjustments of model coefficient in LES?

    The Dynamic Model

    (Germano et al. Physics of Fluids, 1991)

    E(k)

    k

    LES resolved SGS

    L

    T

    Germano identity and dynamic model(Germano et al. 1991):

    Exact (rare in turbulence):

    uiuj ! uiuj = uiuj ! uiuj

    E(k)

    k

    LES resolved SGS

    L

    T

    Germano identity and dynamic model(Germano et al. 1991):

    Exact (rare in turbulence):

    uiuj ! ui uj = uiuj - uiuj + uiuj ! uiuj

  • 7/31/2019 Talk DynamicModel Course II

    4/9

    E(k)

    k

    LES resolved SGS

    L

    T

    Germano identity and dynamic model(Germano et al. 1991):

    Exact (rare in turbulence):

    Tij=

    !ij + Lijuiuj ! uiuj = uiuj - uiuj + uiuj ! uiuj

    Lij! (T

    ij! "

    ij)= 0

    E(k)

    k

    LES resolved SGS

    L

    T

    Germano identity and dynamic model(Germano et al. 1991):

    Exact (rare in turbulence):

    Tij=

    !ij + Lij

    uiuj ! ui uj = uiuj - uiuj + uiuj ! uiuj

    !2 cs2"( )2

    | S | Sij

    !2 cs"( )2

    | S| Sij

    Assumes scale-invariance:

    Lij! (T

    ij! "

    ij)= 0

    where

    Lij! cs2Mij = 0

    Mij= 2!2| S| Sij" 4 | S | Sij

    ( )

    Germano identity and dynamic model(Germano et al. 1991):

    Minimized when:Averaging over regions of

    statistical homogeneity

    or fluid trajectories

    Lagrangian dynamic model (CM, Tom Lund & Bill Cabot, JFM 1996):

    Average in time, following fluid particles for Galilean invariance:

    A = A(t')

    !"

    t

    #1

    Te!(t-t')

    T dt

    Lij! cs2Mij = 0

    Over-determined system:solve in some average sense

    (minimize error, Lilly 1992):

    != Lij" cs2M

    ij( )2

    cs

    2

    =

    LijM

    ij

    MijM

    ij

    Mixed tensor Eddy Viscosity Model:Taylor-series expansion of similarity (Bardina 1980) model

    (Clark 1980, Liu, Katz & Meneveau (1994), )

    Deconvolution:

    (Leonard 1997, Geurts et al, Stolz & Adams, Winckelmans etc..)

    Significant direct empirical evidence, experiments:

    Liu et al. (JFM 1999, 2-D PIV)

    Tao, Katz & CM (J. Fluid Mech. 2002):

    tensor alignments from 3-D HPIV data

    Higgins, Parlange & CM (Bound Layer Met. 2003):

    tensor alignments from ABL data

    From DNS: Horiuti 2002, Vreman et al (LES), etc

    ( )k

    j

    k

    inlijSij

    x

    u

    x

    uCSSCT

    !

    !

    !

    !"+"#=

    ~~2

    ~~)2(2

    22

    ijS

    k

    j

    k

    inl

    mnl

    ij SSCx

    u

    x

    uC

    ~~)(2

    ~~22

    !"#

    #

    #

    #!=$

    Two-parameter dynamic mixed model jijiijijij uuuuTL~~~~

    !=!" #

    !"ij

    d

    Sij

    Similarity, tensor eddy-viscosity, and mixed models

  • 7/31/2019 Talk DynamicModel Course II

    5/9

    Reality check:

    Do simulations with these closures produce

    realistic statistics ofui(x,t)?

    Need good data Need good simulations

    Next: Summary of results from Kang et al. (JFM 2003)

    Smagorinsky model,

    Dynamic Smagorinsky model,

    Dynamic 2-parameter mixed model

    Remake of Comte-Bellot & Corrsin (1967)

    decaying isotropic turbulence experiment

    at high Reynolds number

    Contractions

    Active Grid

    M= 6 "

    1x

    2x

    M20 M30 M40 M48

    Test Section

    1u

    2u X-wire probe array

    !1 = 0.01m!

    2= 0.02m

    !3

    = 0.04m

    !4 = 0.08m

    0.91mFlow

    h1 = 0.005m

    !1 = 0.01mh3 = 0.02m

    !3 = 0.04m

    !

    Corrsin Wind-tunnel & active grid:

    Makita (1991)

    Mydlarski & Warhaft (1996) Grid Size M: 6 inches

    Winglet Speed # [208, 417]

    rpm selected with uniform

    probability randomly in

    both directions.

    Randomly rotating winglets

    X-Wire Probe Array and

    Automatic Calibration System

    * Four X-wire Probes

    !L/d = 200, d = 2.5 m! Measurement

    volume = 0.5 mm

    * "= 0.01, 0.02, 0.04, 0.08 m* 36,000,000 data points / probe

    * with a sampling rate of 40 kHz

  • 7/31/2019 Talk DynamicModel Course II

    6/9

    1x

    2x

    M20 M30 M40 M48

    1u

    2u

    Flow

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    100

    101

    102

    103

    104

    E(!)

    !

    x1/M=20

    x1/M=48

    Initial condition for LES

    (m3

    s-2

    )

    (m-1)

    Resu

    lts

    LES

    Temporally Decaying Turbulence

    3-D Filter

    Experiment

    Spatially Decaying Grid Turbulence

    2-D Box Filter tux 11 =

    TaylorHypothesis

    LES of Temporally Decaying Turbulence

    " Pseudo-spectral code: 1283 nodes, carefully dealiased (3/2N)

    " All parameters are equivalent to those of experiments.

    " Initial energy distribution: 3-D energy spectrum atx1/M= 20

    " LES Models: standard Smagorinsky-Lilly model,

    dynamic Smagorinsky and

    dynamic mixed tensor eddy-visc. model

    Results: Dynamic Model Coefficients

    "Dynamic Smagorinsky "Dynamic Mixed tensor eddy visc:

    ijS

    k

    j

    k

    inl

    mnnl

    ij SSCx

    u

    x

    uC

    ~~)(2

    ~~22

    !"#

    #

    #

    #!=$

    0

    0.05

    0.1

    0.15

    0.2

    0 10 20 30 40 50

    Cs

    x1/M

    Cs

    0

    0.05

    0.1

    0.15

    0.2

    0 10 20 30 40 50

    Cs

    Cnl

    x1/M

    Cnl

    Cs

    Cnl

    Cs

    1/12 from the first order

    approximation of"ij

    !ij

    dyn"Smag= "2

    LijMij

    MijMij#

    2SS

    ij

  • 7/31/2019 Talk DynamicModel Course II

    7/9

    3-D Energy Spectra (LES vs experiment)

    " Dynamic Smagorinsky

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    100

    101

    102

    103

    E(!)

    !

    x1/M=20

    x1/M=48

    cutoff grid filter

    (! = 0.04 m)

    cutoff test filterat 2!

    Exp.

    "Dynamic Mixed tensor eddy-visc. model

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    100

    101

    102

    103

    E(!)

    !

    x1/M=20

    x1/M=48

    cutoff grid filter

    (! = 0.04 m)

    cutoff test filterat 2!

    3-D Energy Spectra (LES vs experiment)

    PDF of SGS Stress

    "SGS Stress

    0

    5

    10

    15

    20

    25

    -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

    PDF

    x1/M=48

    Exp.

    Dynamic Mixed

    Nonlinear

    Smagorisnky

    Dynamic

    Smagorisnky

    2

    112

    ~/

    rmsu!

    Dynamic mixed tensoreddy-viscmodelpredicts PDF oftheSGS stress accurately.

    212112

    ~~uuuu !"#

    (LES vs experiment) Lagrangian dynamic model (M, Lund & Cabot, JFM 1996):Average in time, following fluid particles for Galilean invariance:

    ! E = 0 " Cs2=

    LijMij#$

    t

    %1

    Te# (t-t ')

    T dt'

    MijMij#$

    t

    %1

    Te#(t-t ')

    T dt'

    E = Lij !Cs2Mij( )

    2

    !"

    t

    #1

    Te!(t-t')

    T dt'

    With exponential weight-function, equivalent to relaxation forward equations:

    !MM = MijMij"#

    t

    $1

    Te"(t-t')

    T dt'

    !LM = LijMij"#

    t

    $ 1Te"

    (t-t')

    T dt'

    !"LM

    !t+ uk

    !"LM

    !xk=

    1

    T(LijMij# "LM)

    !"MM

    !t+ uk

    !"MM

    !xk=

    1

    T(MijMij # "MM)

    cs

    2=

    !LM

    (x,t)

    !MM

    (x,t)

  • 7/31/2019 Talk DynamicModel Course II

    8/9

    Lagrangian dynamic model has allowed applying the Germano-

    identity to a number of complex-geometry engineering problems

    LES of flows in internal combustion engines :

    Haworth & Jansen (2000)

    Computers & Fluids 29.

    LES of structure of impinging jets:

    Tsubokura et al. (2003)

    Int Heat Fluid Flow 24.

    LES of flow over wavy walls

    Armenio & Piomelli (2000)

    Flow, Turb. & Combustion.

    Examples:

    LES of flow in thrust-reversers

    Blin, Hadjadi & Vervisch (2002)

    J. of Turbulence.

    Examples: Examples:

    LES of convective atmospheric boundary layer:

    Kumar, M. & Parlange (Water Resources Research, 2006)

    Transport equation for temperature

    Boussinesq approximation

    Coriolis forcing Lagrangian dynamic model with assumed #=Cs(2")/Cs(")

    Constant (non-dynamic) SGS Prandtl numberPrsgs=0.4 Imposed surface flux of sensible heat on ground Diurnal cycle: start stably stratified, then heating.

    Imposed ground

    heat flux during day:

  • 7/31/2019 Talk DynamicModel Course II

    9/9

    Diurnal cycle: start stably stratified, then heating.

    Examples:

    Resulting dynamic

    coefficient (averaged):

    Consistent with HATS

    field measurements:

    Large-eddy-Simulation of atmospheric flow over fractal trees:

    Downtown Baltimore:

    URBAN CONTAMINATION

    AND TRANSPORT

    Yu-Heng Tseng, C. Meneveau & M. Parlange, 2006 (Env. Sci & Tech. 40, 2653-2662)

    Momentum and scalar transport equations solved using LES andLagrangian dynamic subgrid model. Buildings are simulated using

    immersed boundary method.

    wind

    Useful references on LES and SGS modeling:

    P. Sagaut: Large Eddy Simulation of Incompressible

    Flow (Springer, 3rd ed., 2006)

    U. Piomelli, Progr. Aerospace Sci., 1999

    C. Meneveau & J. Katz, Annu Rev. Fluid Mech., 2000