talk cold mg atoms for optical clock · 2007-09-12 · holger wolf dr. jochen keupp dr. albane...

24
Institute of Quantum Optics University of Hannover Welfengarten 1 D-30159 Hannover Germany Cold Magnesium Atoms for an Optical Clock Cold Magnesium Atoms for an Optical Clock Tanja Mehlstäubler Jan Friebe Volker Michels Karsten Moldenhauer Nils Rehbein Dr. Hardo Stöhr Dr. Ernst-Maria Rasel Prof. Dr. Wolfgang Ertmer

Upload: others

Post on 30-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

Institute of Quantum OpticsUniversity of HannoverWelfengarten 1D-30159 HannoverGermany

Cold Magnesium Atoms for an Optical ClockCold Magnesium Atoms for an Optical Clock

Tanja Mehlstäubler

Jan FriebeVolker Michels

Karsten MoldenhauerNils Rehbein

Dr. Hardo StöhrDr. Ernst-Maria Rasel

Prof. Dr. Wolfgang Ertmer

Page 2: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

Jan Friebe

Volker Michels

Tanja Mehlstäubler

Karsten Moldenhauer

Nils Rehbein

Dr. Hardo Stöhr

Dr. Ernst-Maria Rasel

Prof. Wolfgang Ertmer

former members:

Holger WolfDr. Jochen KeuppDr. Albane Douillet

The Mg - Atom Interferometry group in Hannover

Page 3: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

OutlineOutline

• Brief history of frequency standards

• Ramsey-Bordé interferometery in Mg

• How to get to µK temperatures ?

(A) 25Mg and heating in MOT

(B) Quench cooling

(C) 2-photon resonances

• Summary & Outlook

Page 4: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

time

ν0

freq

uen

cy Stability

A brief history of frequency standardsA brief history of frequency standards

time

ν0

freq

uen

cy Accuracy δν/ν0

2/1

2 1)(

=

TN

SQ

y

τπ

τσν

ν

∆=Q,

• microwave standards

1950 : Ramsey develops seperated field method

Ø atomic beam clocks surpass quarz

1989 : “a Mg atomic beam frequency standard” Bava et al., Appl. Phys. B, 48, p.495, (1989)

1989 : first fountain (Na): ∆ν∆ν∆ν∆ν = 2 Hz

Kasevich et al., PRL, 63, p.612, (1989)

• optical standards

neutral alkaline-earth (like) atoms Æ high S/N

1992 : “the Mg Ramsey interferometer” Sterr et al., Appl. Phys. B, 54, p.341, (1992)

1999 : narrow line cooling in Sr : ρ : ρ : ρ : ρ ~ 10-2 in MOT Katori et al., PRL, 82, p.1116, (1999)

2001 : quench cooling in Ca: TMOT ~ 6 µK Binnewies et al., PRL, 87, 123002, (2001)

Curtis et al., Phys. Rev. A, 64, 031403, (2001)

2003 : Yb BEC via narrow line cooling ! Takasu et al., PRL, 91, 040404, (2003)

δν/ν0 = 7µ10-16

σy = 1.6µ10-14 in 1s

(Cs/Rb fountains)

δν/ν0 = 1.2µ10-14 (Ca)

σy = 7µ10-15 in 1s

(Ca/Hg+ comparison)

Page 5: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

The magnesium atomThe magnesium atom

• 457 nm clock transition

– atomic quality factor

Q=2â1013

– potential for T < µK(1)

• 285 nm cooling transition

– strong light forces

– high TD ~ 2 mK

(1) H. Wallis and W. Ertmer, J.Opt.Soc.Am. B 6, 2211 (1989)

MOT

285 nm

80 MHz

Singlet Triplet

1S01P1

1D23S1

3P0123D123

457 nm, 31Hz - Interferometry

0

21

J=0

462 nm

4 MHz 881 nm

24Mg

Page 6: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

laser beam/puls

π/2

TD TD

Pex ∂ cos(2TD(∆+δrec))

|gÚ

|eÚ

Ch. Bordé, C.R. Acad. Sci. Ser. B, 284, p.101 (1977)

• Doppler free Ramsey spectroscopy

ULE-ULE-ULE-ULE-

resonatorresonatorresonatorresonator

Eddie currentEddie currentEddie currentEddie current

dampingdampingdampingdamping

intermediateintermediateintermediateintermediate

massmassmassmass

springspringspringspring

mountismountismountismountis

12,5 cm12,5 cm12,5 cm12,5 cm

16 cm16 cm16 cm16 cm

Ramsey-Bordé InterferometryRamsey-Bordé Interferometry

3P1

1P1

1S0

457 nm

31 Hz

285 nm

MOT

• 140 mW at 457 nm with dye laser

• stabilized to high finess cavities

24Mg

Page 7: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

Ramsey-Bordé InterferometryRamsey-Bordé Interferometry

• resolution 280 Hz

• potential stability σy = 8 x10 -14

• laser line width ∆υLaser § (170 ≤ 15) Hz

ï atomic motion limits stability

ï only 8 % of atoms are excited (τPulse= 4 µs)

decay of signal

TMOT = 3.8 mK

39600 40000 40400 40800 412001100000

1120000

1140000

1160000

1180000

1200000

1220000

1240000

σy(τ= 1s) = 7.64 10

-14

coun

t ra

te [

s-1]

detuning [Hz]

T = 860,8 µs

21.05.02

290 Hz resolution

N = (8700±1000)s-1

S = 16000

Q = 2.26 1012

r60b

Page 8: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

0,0 0,2 0,4 0,6 0,8 1,0 1,2

2

4

6

8

10

12

14

16

Tem

per

atu

re [

mK

]

Stotal

24

Mg

25

Mg

Doppler limit

0 2 4 6 8 10 12 14 16 18 20

2

3

4

5

6

7

8

N1/3

n2/3

[108/cm

2]

change of oven temperature misaligned MOT

change of laser intensity

Mg25

Te

mp

era

ture

[m

K]

Temperatures in MOTTemperatures in MOT

• new set up to study cooling techniques

• optical access for UV, quenching, interferometry, dipole trapping

• up to108 atoms

MOT coils (grad B = 130 Gauss/cm)Mg beam slowing beam

Page 9: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

Sub-Doppler forces in Sub-Doppler forces in 2525MgMg

[ΓΓΓΓ/k]]]] [ΓΓΓΓ/k]]]]

[hk

γ]γ] γ]γ]

F=5/2

F=3/2

F=5/2

F=7/2

∆=19 MHz

∆=27 MHz

γ=80 MHz

25Mg

87Sr

Ω/Γ=1

[ΓΓΓΓ/k]]]] [ΓΓΓΓ/k]]]]

[hk

γ]γ] γ]γ][h

kγ]γ] γ]γ]

B=16 MHz

B=0 MHz

Sub-Doppler cooling of 25Mg ?

(Coop. J.Dunn, J.Ye, NIST)

[hk

γ]γ] γ]γ][h

kγ]γ] γ]γ]

[hk

γ]γ] γ]γ][h

kγ]γ] γ]γ]

[ΓΓΓΓ/k]]]] [ΓΓΓΓ/k]]]]

25Mg

Ω/Γ=0.25

Hyperfine Quenching of

clock transition 1S0→3P0 :

90 µHz → 0.44 mHz(Porsev u. Derevianko, physics/0312006,

Dez.2003)

> 105 atoms

in MOT

Isat =450 mW/cm2

Page 10: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

Sub-Doppler forces in Sub-Doppler forces in 2525MgMg

[ΓΓΓΓ/k]]]] [ΓΓΓΓ/k]]]]

[hk

γ]γ] γ]γ]

87Sr

Ω/Γ=1Sub-Doppler cooling of 25Mg ?

(Coop. J.Dunn, J.Ye, NIST)

Hyperfine Quenching of

clock transition 1S0→3P0 :

90 µHz → 0.44 mHz(Porsev u. Derevianko, physics/0312006,

Dez.2003)

> 105 atoms

in MOT

87Sr 25Mg

(s = 2) vc ~ 0.07 m/s vc ~ 0.22 m/s

(s=0.13) vc ~ 0.02 m/s

vrec= 0.01 m/s vrec= 0.06 m/s

in MOT:

vrms= 0.4 m/s vrms= 1.1 m/s

F=5/2

F=3/2

F=5/2

F=7/2

∆=19 MHz

∆=27 MHz

γ=80 MHz

25Mg

Isat =450 mW/cm2

Page 11: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

Quench cooling in Quench cooling in 2424MgMg

• cooling on narrow lines

• 31S0 → 33P1 : Trec = 3.8 µK >> TDopp

• mg<Flight → γmin~90 Hz

• quench transition 33P1 → 41S0

200 mW @ 462 nm with Ti:Sapph

doubled with PPKTP

Clock transition457 nm 31Hz

MOT285 nm80 MHz

1P1

3P1

31S0

41S0

quench laser462 nm

γ = 4 MHz

3

2

1

4

Ω12, Γ1

Ω23, Γ2

γeff 31Hz

24Mg

Γ3

T.E. Mehlstäubler et al., J.O.B 5, p.183 (2003)

ILaser

3

2

Γ

Γ∝

3

2

231

Γ

Ω+Γ=Γeff

2

3

2

232233

Γ

Ω×= ρρ

33312222 Γ+Γ=Γ ρρρ eff

for s3 <<1:

Page 12: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

462 nm

457 nm

llll/2

Mg ovenT ~ 410 °C

detection

(PMT)

Mg beam

interaction zones

retro reflector

excitation

31S0

33P1

41S0llll/2

Search for the quenching transitionSearch for the quenching transition

Page 13: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

σ+

σ-

J=1

J=0

J=0

σ-

σ+

Kuruzc: ΓΓ2 2 = = 3.21 10³ s3.21 10³ s-1-1

new ab initio calculations:

Pal’chikov, Derevianko, Fischer(3)

ΓΓ2 2 = = 2.0 x 102.0 x 1022 s s-1-1

our measurement:

ΓΓ2 2 ~ ~ 1 x 101 x 1022 s s-1-1

Quench cooling in Quench cooling in 2424MgMg

(3) private communications, to be published

457nm

462nm

→ theo. transfer efficiency ~ 1%

→ x • 104 atoms expected @ T=10µK

→ 8% of 105 atoms, 70% of x • 104 atoms

→ lower duty cycle of interferometry

0 5 10 15 20 25 30

0

10

20

30

40

50

60

Tra

nsfe

r E

ffic

ien

cy [

%]

PQuench

[mW] per beam

(larger power @ 457nm)

0 200 400 600 800 1000

0

10

20

30

40

50

60

Tra

nsfe

r E

ffic

ien

cy [

%]

PQuench

[mW] per beam

(larger power @ 457nm)

Page 14: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

2-Photon resonances in 2-Photon resonances in 2424MgMg

W.C. Magno et al., Phys. Rev. A 67, 043407 (2003)

• 2-photon process more efficient

than 1 photon ?

2.2 MHz881 nm

80 MHzUV-MOT

31D2

loss3P1,2

ρ3 (IR)

ρ2 (UV)

exact solution of the Bloch equationsexact solution of the Bloch equations

for a 3 level systemfor a 3 level system

31S0

31P1

Page 15: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

80 MHz

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50

1

2

3

4

5

6

7

8

PIR

= 1.3 mW

σ = 16 MHz

PIR

= 44 mW

σ = 26 MHz

UV

co

unts

e6/s

detuning of 881 nm laser [MHz]

Resonance in MOT

2-Photon resonances in 2-Photon resonances in 2424MgMg

W.C. Magno et al., Phys. Rev. A 67, 043407 (2003)

• 2-photon process more efficient

than 1 photon ?

2.2 MHz881 nm

80 MHzUV-MOT

31D2

loss3P1,2

31S0

31P1

Page 16: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

2-Photon resonances in 2-Photon resonances in 2424MgMg

resonances in 1D molasses resonances in 1D molasses

Page 17: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

2-Photon resonances in 2-Photon resonances in 2424MgMg

resonances in 1D molasses resonances in 1D molasses

Page 18: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

60 80 100 120 1402

4

6

8

10

12

14

ν (IR) in MHz

T [

mK

]

scan7b

26 mK 21 mK

30 45 60 75 90 105 1200

5

10

15

20

25

T [

mK

]

ν (IR) in MHz

Temperature across 2-photon resonance

2-Photon resonances in 2-Photon resonances in 2424MgMg

Page 19: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

ρ33

ρ22

Populations in excited states

fi force at UV transition:

2-Photon resonances in 2-Photon resonances in 2424MgMg

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-4 -2 2 4

-40000

-20000

20000

40000

-3 -2 -1 1 2 3

-40000

-20000

20000

40000

-3 -2 -1 1 2 3

-40000

-20000

20000

40000

-2 -1 1 2

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-4 -2 2 4

-40000

-20000

20000

40000

-4 -2 2 4

-40000

-20000

20000

40000

-2 -1 1 2

-40000

-20000

20000

40000

-2 -1 1 2

-40000

-20000

20000

40000

-3 -2 -1 1 2 3

-40000

-20000

20000

40000

-2 2 4

-40000

-20000

20000

40000

-4 -2 2 4

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

-6 -4 -2 2 4 6

-40000

-20000

20000

40000

ρ22

UV

UV UV

IR

• positive feedback on faster atoms (bunching)

• higher friction for low velocities

v[m/s]

Page 20: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.001 0.001 0.002 0.003 0.004

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.001 0.001 0.002 0.003 0.004

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.001 0.001 0.002 0.003 0.004

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.001 0.001 0.002 0.003 0.004

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.001 0.001 0.002 0.003 0.004

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.001 0.001 0.002 0.003 0.004

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003 0.004

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-3 -2 -1 1 2

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-2 -1 1 2

-5000

5000

10000

15000

20000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-2 -1 1

-10000

-5000

5000

10000

15000

20000

25000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-3 -2 -1 1 2 3

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-2 -1 1 2

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-2 -1 1 2

-5000

5000

10000

15000

20000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-2 -1 1 2

-5000

5000

10000

15000

20000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-3 -2 -1 1 2 3

-20000

-10000

10000

20000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003 0.004

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003 0.004

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003 0.004

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003 0.004

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003 0.004

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003 0.004

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.002 -0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-20000

-10000

10000

20000

30000

-0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

-4 -2 2 4

-10000

10000

20000

30000

-0.001 0.001 0.002 0.003

0.005

0.01

0.015

0.02

0.025

0.03

• force at UV transitionfi dv = a(v) dt

• integrating eqs. of motion• TOF after 100µs molasses

-4 -2 2 4

-20000

-10000

10000

20000

-0.004 -0.002 0.002

0.005

0.01

0.015

0.02

0.025

0.03

T < 100 µK ?

e.g. for balanced molasses

2-Photon resonances in 2-Photon resonances in 2424MgMg

Page 21: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

Summary & OutlookSummary & Outlook

• Mg interferometry limited by temperature of atoms

• Sub-Doppler cooling forces in 25Mg are not sufficient

• Quenching transition @ 462 nm measured

Ø load 1% of atoms into QMOT at 9 µK ?

• 2-photon resonances observed

Ø Sub-Doppler temperatures possible

in 3D-molasses ?

Ø Channel to populate meta-stable states !

• Combination with dipole trap ?

Page 22: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

Udip [MHz]

400 600 800 1000

-100

-75

-50

-25

25

50

75

100

λtrap [nm]

ac-Stark-shift

1S0 m = 0 π

3P1 m = 0 σ +/−

m = +1 / -1 σ −/+

m = -1 / +1 σ +/−

w0 = 20 µm

Τtrap

≈ 0.3 mK

ΓRaleigh

≈ 0.1 Hz

- Yb:YAG 25 W @ 1030 nm

- quench cooling into dipole trap

- study of collisions

- trap potentials only identical

at crossing Æ λλλλ = 446 nm

Summary & OutlookSummary & Outlook

Page 23: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

Laser active medium : thin disk (~320 µm)

multiple pump light passes through the laser active medium

single frequency with 2 etalons : d = 0,6 mm und 4 mm

crystal

heatsink pump

fiber

parabolicpump mirror

etalons

700 mW@ 914 nm

Nd:YVO4

40 W @ 808 nm

outputcoupler

The thin disc laserThe thin disc laser

Page 24: talk Cold Mg Atoms for Optical Clock · 2007-09-12 · Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet The Mg - Atom Interferometry group in Hannover. Outline • Brief history of

w1~49 µµµµm

w2~147µµµµm

cavity length = 34 cm

incoupling efficiency: 85 %

conversion efficieny: 47 %

4/λλλλ

Det.

400 mW @ 914 nm

160 mW @ 457 nm

PPKTP crystal

w2

w1

Cavity:Hänsch-Couillaud lock

Frequency doublingFrequency doubling