t- edm with polarized beams

17
EDM with polarized beams EDM with polarized beams Gabriel González Sprinberg Instituto de Física, Facultad de Ciencias Montevideo Uruguay [email protected] EUROPHYSICS CONFERENCE ON HIGH ENERGY PHYSICS MANCHESTER, ENGLAND 19-25 JULY 2007.

Upload: thaddeus-shaffer

Post on 01-Jan-2016

19 views

Category:

Documents


0 download

DESCRIPTION

t- EDM with polarized beams. Gabriel González Sprinberg Instituto de Física, Facultad de Ciencias Montevideo Uruguay [email protected]. EUROPHYSICS CONFERENCE ON HIGH ENERGY PHYSICS MANCHESTER, ENGLAND 19-25 JULY 2007.  . t- EDM with polarized beams. - PowerPoint PPT Presentation

TRANSCRIPT

EDM with polarized beamsEDM with polarized beams

Gabriel González SprinbergInstituto de Física, Facultad de Ciencias

Montevideo Uruguay

[email protected]

EUROPHYSICS CONFERENCE ON HIGH ENERGY PHYSICS MANCHESTER, ENGLAND

19-25 JULY 2007.  

electric dipole moment can be bounded from high statistic B/Super B factories data. For polarized beams we study new CP-odd observables and we find that limits of the order of 10-19 e-cm can be obtained.

OUTLINE

1. ELECTRIC DIPOLE MOMENT (EDM)

1.1 Definition 1.2 Experiments

2. OBSERVABLES

3. CONCLUSIONS

EDM with polarized beamsEDM with polarized beams

1. EDM 1. EDM 1.1Definition1.1Definition

P and T-odd interaction of a fermion with gauge fields (Landau 1957): Besides, chirality flipping (insight into the mass origin)

Classical electromagnetismOrdinary quantum mechanics

Same H with non-relativistic limit of Dirac’s equation:

CPT: CP and T are equivalent

d sd

EDM d E ,

H

5( )2

iH i eA m Fd

SM : • vertex corrections • at least 4-loops for leptons

Beyond SM: • one loop effect (SUSY,2HDM,...)

• dimension six effective operator

EDM

1. EDM 1. EDM 1.1Definition1.1Definition

SM :

VCKM V*CKM E.P.Shabalin ’78

We need 3-loops for a quark-EDM, and 4 loops for a lepton...

1. EDM 1. EDM 1.1Definition1.1Definition

= 0 !!!

2 5 344 10

F S

d eG m J / ( ) ecm

BOUNDS:

PDG ’06 95% CL EDM BELLE ‘02

1. EDM 1. EDM 1.2 Experiments1.2 Experiments

172 2 4 5 10 Re(d ) : ( . to . ) e cm

172 5 0 8 10I m(d ) : ( . to . ) e cm

1. EDM 1. EDM 1.2 Experiments1.2 Experiments

Light Fermions :

• Stables or with enough large lifetime• EDM : spin dynamics in electric fields

Heavy Fermions:

• Short living particles

• Spin matrix and angular distribution of decay

products in TAU-pair production may depend on the EDM

1. EDM 1. EDM 1.2 Experiments1.2 Experiments

si s

j

si

HOW DO WE MEASURE ELECTRIC DIPOLE MOMENTS?

Total cross sections e+e- +-

e+e- e+e- +-

Partial widths Z +-

Sensitive to many contributions

Spin correlations · Linear polarizations

Correlations and asymmetries observables select EDM by symmetry properties

2. Observables 2. Observables Tau pair production

Normal polarization:

and needs helicity-flip so for the Tau it is mass enhanced

Genuine if J.Bernabéu,GGS,J.Vidal

Nucl. Phys B763 (2007)

NORMAL POLARIZATION: T-odd P-even

Vs.

EDM: T-odd P-odd

Polarized beams provide another P-odd source

NP T odd, P even

N NP P CP

2. Observables 2. Observables

+ -

101011-1

211-1

2 TAU P

AIRS

TAU P

AIRS

2. Observables 2. Observables

Diagrams

e e , (s ) (s )

d

d

2. Observables 2. Observables

+

RESONANT PRODUCTION

22 22 22

3

3be Q FH(M ) Br( e e )

M

Normal polarization: EDM and polarized beams can produce a

P-even observable

2. Observables 2. Observables

Angular asymmetries ( ) are proportional to EDM

One can also measure for and/or

1

2 CP

N N NA (A A )

NP

A

CP :

2

23

8 3L R

NL R

Rem

(dA )( ) e

2 cos si Ren ( )N

mdP

e

For polarized beams

2. Observables 2. Observables

2. Observables 2. Observables

Bounds:

1 ab = 10-18 b

1

1

19

20

1 15

5 75

1 6 10

7 2 10

SuperB factory, yr running, ab

SuperB factory, yrs running, ab

Re(d ) . ecm

Re(d ) . ecm

3. Conclusions3. Conclusions

• We studied linear polarization CP-odd observables at SuperB factories.

• Normal Tau polarization observables and polarized beams allow to put strong limits on the EDM.

• These observables are independent from other low and high energy observables already investigated.

• These bounds are 3 orders of magnitude below current limits.

Discussions with J.Bernabéu, J.Vidal and A.Santamaria are gratefully acknowledged

SOME REFERENCES

J. Bernabéu, G-S., Jordi Vidal

Nuclear Physics B763 (2007) 283-292

D. Gomez-Dumm, G-S.

Eur. Phys. J. C 11, 293-300 (1999)

3. Conclusions3. Conclusions

Gabriel González Sprinberg, Facultad de Ciencias, Uruguay

[email protected]