sys 849 5 lecture burr deburring and edge finishing

Upload: amrakram2

Post on 06-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    1/68

    2014-0

    Surface Treatment, Finishing and Integrity:Special Case of Machined Edge Finishing – 

    Burr and Deburring

    June 3th  2014

    Dr. Seyed Ali Niknam

    Laboratory of Products, Processes and Systems Engineering (LPPSE)

    Department of Mechanical Engineering

    École de technologie supérieure (ETS)

    Course outline

    1. Burr definition

    2. Burr formation mechanism, shapes and classifications

    3. Factors governing burr formation

    4. Burr size minimization/optimization

    5. Burr formation/size modeling

    6. Burr measurement and detection methods

    7. Burr removal (deburring) and edge finishing

    2Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    2/68

    2014-0

    1.Burr definition

    Exit burrs observed when Drilling Al 6061-T6Zedan et al., Machining & Machinability of Materials, 2012

    Turning burrs

    Slot milling burrsNiknam and Songmene., Journal of Engineering and Manufacture, 2013

    b) Limited & non visible burrb) Large burr formation

    A burr is a extended body over the workpiece surface.

    Definition of burrs according to ISO 13175

    4

    Burr definition

    4Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    3/68

    2014-0

    A Short History of the Burr

    • Metal burrs first appeared ~3000 B.C. (5000 years ago) at the

    beginning of the Bronze Age (in Thailand as well as in

    Mediterranean area)

    • Burrs in iron and steel appear first about 1000 B.C. (3000

    years ago).

    Source: Gillespie, in Proc. 7th Int’l Conf. on Deburring and Surface Conditioning, UC-Berkeley, 2004

    5Niknam, Seyed Ali –  June 3rd  2014

    Burr Formation Studies

    1958 Keiji Okushima - First publisher of burr

    formation mechanics

    Source: Gillespie, in Proc. 7th Int’l Conf. on Deburring and Surface Conditioning, UC-Berkeley, 2004

    6Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    4/68

    2014-0

    Burrs are everywherethere is an edge!

    Why are we interested to burrs ?

    Source:(Aurichet al , CIRP Annals, 2009)

    7Niknam, Seyed Ali –  June 3rd  2014

    Burrs are everywhere

    there is an edge!

    Why are we interested to burrs ?

    Source:(Aurichet al , CIRP Annals, 2009)

    8Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    5/68

    2014-0

    Their presence :

    1. Represents 30% of the finishing cost of the component;

    2. Reduces the quality of components in an assembly;

    3. Causes injury to workers during handling (Gillespie, 1999);

    4. Is the main reason for tool change in milling of aluminium alloys(Lee, 2004)

    9

    Category of expenses due to presence of burr

    Why are we interested to burrs ?

    Source: (Aurich et al , CIRP Annals, 2009)

    9Niknam, Seyed Ali –  June 3rd  2014

    Breakdown of manufacturing

    expenses (Bosch)

    Why are we interested to burrs ?

    10Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    6/68

    2014-0

    2. Burr formation mechanism, shapesand classifications

    Burr formation mechanism 

    Burr/breakout formation model:

    (a) initiation, (b) development and (c) final burr formation

    Source: (Niknam, Ph.D thesis, ETS, 2013)

    12Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    7/68

    2014-0

    Burr formation mechanism

    Source:(Hashimura,et al., ASME Manufacturing journa l , 1999)

    13Niknam, Seyed Ali –  June 3rd  2014

    Burr formation process 

    Source:(Hashimura,et al., ASME Manufacturing journa l , 1999)

    14Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    8/68

    2014-0

    Burr Formation Sequence in Al2024-O(SEM Images)

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    15Niknam, Seyed Ali –  June 3rd  2014

    Edge Quality Standard

    Burr Burr

    Burr

    Theoretical workpiece edge

    (Gillespie, Journal of Manufacturing Engineering, 1996)

    Source: (Aurich et al , CIRP Annals, 2009)

    16Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    9/68

    2014-0

    Measurement values of burr

    Source: (Schäfer, 1975)

    17Niknam, Seyed Ali –  June 3rd  2014

    Various Types of Burrs in Machining

    Source:(Aurichet al , CIRP Annals, 2009)

    18Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    10/68

    2014-0

    Advanced Cutting Mechanics: Milling

    One of the most versatile processes available. 3D effects become very important!

    Source: www.mmsonline.com

    19Niknam, Seyed Ali –  June 3rd  2014

    Advanced Cutting Mechanics: Milling 

    Milling terms/conventions

    Source: www.mmsonline.com

    20Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    11/68

    2014-0

    Types of Burrs in Milling

    Slot milling burrs

    Face milling burrs

    Source: (Lee, Ph.D thesis, UC-Berekley, 20 04)

    21Niknam, Seyed Ali –  June 3rd  2014

    Milling burr classification 

    Source: (Nakayama, Arai, CIRP Annals, 1987)

    22Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    12/68

    2014-0

    Milling burr classification-Location 

    Source:(Hashimura,et al., ASME Manufacturing journa l , 1999)

    23Niknam, Seyed Ali –  June 3rd  2014

    Milling burr classification-Shape 

    Source:(Hashimura,et al., ASME Manufacturing journa l , 1999); (Chern, Ph.D thesis, UC-Berekley,1993)

    24Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    13/68

    2014-0

    Milling burr classification-Classification

    Source:(Hashimura,et al., ASME Manufacturing journa l , 1999); (Kishimoto et al., Bull. Jpn. Soc. Precis. Eng, 1981)

    25Niknam, Seyed Ali –  June 3rd  2014

    Milling burr classification-Example

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    26Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    14/68

    2014-0

    Drilling Burr formation mechanism 

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    27Niknam, Seyed Ali –  June 3rd  2014

    Drilling Burr Mechanism 

    © 2009 Laboratory for Manufacturing and Sustainability, UC-Berekley

    28Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    15/68

    2014-0

    Drilling burr formation

    Source: R. Furness, Ford

    29Niknam, Seyed Ali –  June 3rd  2014

    Drilling Burr Classification

    Source: (Kim, Journal of Engineering materials and technology,2000)

    30Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    16/68

    2014-0

    Burr Formation in Intersecting Holes

    Problems:

    Limited accessibility of the burr

    Burr not tolerable in flow-through areas

    © DaimlerChrysler AG

    31Niknam, Seyed Ali –  June 3rd  2014

    Burr Formation in Intersecting Hole

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    32Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    17/68

    2014-0

    Geometry Variation in Intersecting Holes

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    33Niknam, Seyed Ali –  June 3rd  2014

    Comparison of burr shapes

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    34Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    18/68

    2014-0

    3. Factors governing burr formation

    35Niknam, Seyed Ali –  June 3rd  2014

    Factors governing burr formation

    Source:(Aurichet al.,CIRP Annals, 2009)

    36Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    19/68

    2014-0

    1. Machined part (geometry, dimension, mechanical properties, etc.)

    2. Cutting parameters(cutting speed, feed rate, depth of cut, etc.)

    3. Cutting tool (material, shape, geometry, rake angle, lead angle, helix angle, etc.)

    4. Machine tool (rotational speed, dynamic strength, etc.)

    5. Manufacturing strategy (tool path, coolant, back cutting, lubrication condition ,etc.)

    6. Other parameters(e.g. cutting forces)

    37

    This summary is still inadequate due to complex interaction effects between processparameters

    The factors governing milling burrs can not be separated to Direct and Indirect factors

    Critical Factors governing burr formation

    37Niknam, Seyed Ali –  June 3rd  2014

    Other governing factors on burr formation 

    • Built-Up Edge, or BUE (layers of welded work

    material) may form at the tip of the tool.

    • Especially prevalent in machining of aluminum.

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    38Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    20/68

    2014-0

    Other governing factors on burr formation 

    Tool Wear 

    Source:(Schey, McGraw-Hill , 1987)

    39Niknam, Seyed Ali –  June 3rd  2014

    Tool Wear

    Source:(Aurichet al , CIRP Annals, 2009)

    40Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    21/68

    2014-0

    Grain boundary effects

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    41Niknam, Seyed Ali –  June 3rd  2014

    Edge radius effects

    Conventional cutting Micro cutting

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    42Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    22/68

    2014-0

    Case study 1

    Investigation of factors governing

    slot milling burr formation

    By

    Seyed Ali Niknam and Victor SongmenePublished in

     Journal of Engineering and Manufacture in March 2013

    44

    List Burr name

    B1 Exit up milling side

    B2 Exit bottom bur

    B3 Exit down milling side burr

    B4 Top down milling burr

    B5 Top up milling burr

    B6 Entrance bottom burr

    B7 Entrance up milling side burr

    B8 Top up milling burr

    Main objective Statistical tools and experimental study are used to determine the dominant

    cutting parameters on burrs size (height and thickness) during slot milling of

    AA 2024-T351 and AA 6061-T6

    © Niknam and Songmene,  Journal of Engineering and Manufacture, 2013

    44Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    23/68

    2014-0

    45

    List Burr name

    B1 Exit up milling side

    B2 Exit bottom bur

    B3 Exit down milling side burr

    B4 Top down milling burr

    B5 Top up milling burr

    B6 Entrance bottom burr

    B7 Entrance up milling side burr

    B8 Top up milling burr

    Statistical tools and experimental study are used to determine the dominant

    cutting parameters on burrs size (height and thickness) during slot milling of

    AA 2024-T351 and AA 6061-T6

    Main objective 

    © Niknam and Songmene,  Journal of Engineering and Manufacture, 2013

    45Niknam, Seyed Ali –  June 3rd  2014

    Experimental procedure

    46

    3 Axes Machining Center Cutting trials configuration

    Optical microscope for burr size measurementProfilometer for surface roughness

    measurement

    © Niknam and Songmene,  Journal of Engineering and Manufacture, 2013

    46Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    24/68

    2014-0

    Most of existing research works characterized the burr height.

    From a deburring perspective, the burr thickness is of interest.

    Burr thickness describes the time and method necessary for deburring a workpiece.

    47

    Burrs geometrical description

    © Niknam and Songmene,  Journal of Engineering and Manufacture, 2013

    47Niknam, Seyed Ali –  June 3rd  2014

    48

    The statistical terms and techniques used:

    1. ANOVA ; 2. Pareto Analysis; 3.Main effect plot ; 4. Interaction effect

    analysis; 5. Regression model

    Experimental Plan

    Experimental parameters Level

    1 2 3

    A: Material AA 6061-T6 - AA 2024-T351

    B: ToolCoating TiCN TiAlN TiCN+Al2O3+TiN

    Insert nose radius, Re (mm) 0.5 0.83 0.5

    C: Depth of cut (mm) 1 - 2

    D: Feed per tooth (mm/z) 0.01 0.055 0.1

    E: Cutting speed (m/min) 300 750 1200

    Lubrication condition: Dry 

    48Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    25/68

    2014-0

    Milling exit burrs

    49

    1. B2 burr is formed by a loss of material from B1 burr2. Transition from primary to secondary burr formation is observed

    3. Larger Re leads to primary B2 burr where the depth of cut is smaller than

    the Re or very close to it.

    © Niknam and Songmene,  Journal of Engineering and Manufacture, 2013

    49Niknam, Seyed Ali –  June 3rd  2014

    50

    0 2 4 6 8 10 12

    Contribution to variation (%)

    ADACEEDDAB

    E:SpeedBDAEBE

    B:ToolCE

    C:DepthA:Material

    DECD

    D:FeedBC

    Sig. at 5%Not sig.

     

    0 10 20 30 40 50

    Contribution to variation (%)

    CDACCEDDBEAD

    A:MaterialABDEEEAE

    E:SpeedBDBC

    B:ToolC:DepthD:Feed

    Sig. at 5%Not sig.

    Exit up milling side burr (B1)

    Very sensitive to cuttingparameters

    B1 Height  B1 Thickness 

    © Niknam and Songmene,  Journal of Engineering and Manufacture, 2013

    50Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    26/68

    2014-0

    51

    0 2 4 6 8 10 12

    Contribution to variation (%)

    ADACEEDDAB

    E:SpeedBDAEBE

    B:ToolCE

    C:DepthA:Material

    DECD

    D:FeedBC

    Sig. at 5%Not sig.

     

    0 10 20 30 40 50

    Contribution to variation (%)

    CDACCEDDBEAD

    A:MaterialABDEEEAE

    E:SpeedBDBC

    B:ToolC:DepthD:Feed

    Sig. at 5%Not sig.

     Very sensitive to

    cutting parameters

    B1 Height  B1 Thickness 

    Exit up milling side burr (B1)

    © Niknam and Songmene,  Journal of Engineering and Manufacture, 2013

    51Niknam, Seyed Ali –  June 3rd  2014

    52

    Similar Procedure has been used when analyzing the top and entrance burrs

    Interaction effect plots

    © Niknam and Songmene,  Journal of Engineering and Manufacture, 2013

    52Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    27/68

    2014-0

    53

    3D Surface Plot of optimum conditions

    © Niknam and Songmene,  Journal of Engineering and Manufacture, 2013

    53Niknam, Seyed Ali –  June 3rd  2014

    54

    3D Surface Plot of optimum conditions

    © Niknam and Songmene,  Journal of Engineering and Manufacture, 2013

    54Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    28/68

    2014-0

    55

    Burr size can be reduced significantly by selecting appropriatecutting parameters and cutting tools.

    Depth of cut, feed per tooth and tool (insert nose radius andcoating) were found as the dominant process parameters onmost of the burrs.

    For the most of the burrs studied, the dominant process

    parameters on burr height have the opposite effect on burr

    thickness.

    Dislike few reported works in literature, burr size in slot milling

    have no linear relationship to others.

    Partial conclusion

    55Niknam, Seyed Ali –  June 3rd  2014

    56

    1. Burr size minimization/optimization

    2. Burr formation/size modeling

    3. Burr size detection and estimation

    4. Burr removal (Deburring)

    Prof D. Dornfeld in 2009 has pointed out the mostimportant research Problematic on burr

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    56Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    29/68

    2014-0

    4. Burr size minimization/optimization

    Design & Process integration

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    58Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    30/68

    2014-0

    Burr minimization design

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    59Niknam, Seyed Ali –  June 3rd  2014

    Burr minimization in macro-planing 

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    60Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    31/68

    2014-0

    Burr minimization in micro-planing 

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    61Niknam, Seyed Ali –  June 3rd  2014

    Exit Order Sequence (EOS)

    Orientation of insert intool holder

    Orientation of material beingdeformed which constructs

    the burr

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    62Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    32/68

    2014-0

    EOS Fundamentals

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    63Niknam, Seyed Ali –  June 3rd  2014

    EOS : Tool & workpiece interaction 

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    64Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    33/68

    2014-0

    The exit order of the cutting tool has important effects on burr formation andinfluences burr position and burr dimensions

    Orientation of the material

    being pushed out orbroken (depending on

    ductility of the material)

    Process parameters

    Insert geometry Feed direction Workpiece edge orientation

    EOS mechanism

    Source:(Hashimuraet al., ASME Manufacturing Journal , 1999)

    65Niknam, Seyed Ali –  June 3rd  2014

    EOS vs Burr Size

    6 different EOS modes

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    66Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    34/68

    2014-0

    EOS vs Burr Size Depending upon cutting edge orientation,exit burrs form preferentially on the:

    machined surface or the transition surface

    Rigid workpiece

    Sharp cutting edges and negligible nose radius

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    67Niknam, Seyed Ali –  June 3rd  2014

    EOS as a Process Planning Tool

    EOS helps

    - Choose a suitable tool insert geometry (axial, radial rake

    angles, lead angle)

    - Select suitable cutting parameters (feed, speed, DoC etc)

    - Select suitable tool radius

    - Calculate optimum offset from w/p edge in case of a

    shoulder or other machining constraints

    68Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    35/68

    2014-0

    Tool Path Planning for BurrMinimization

    Planar milling operation tool diameter D, workpiece characteristic size M 

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    69Niknam, Seyed Ali –  June 3rd  2014

    Burr Minimization Tool Path Planning

    Minimize burr formation by changingtool path (tool engagement)

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    70Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    36/68

    2014-0

    Burr Minimization Tool Path Planning 

    Burr minimization tool path  zigzag tool path for clean up 

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    71Niknam, Seyed Ali –  June 3rd  2014

    Machined with burr minimizationtool path 

    Machined with regular tool path

    Burr Minimization Tool Path Planning 

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    72Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    37/68

    2014-0

    5. Burr formation/size modeling

    Analytical models

    Certain levels of assumption is required

    Requires the experimental observation of burr formation process [Toropov et al, 2005]

    Consistent results can not be always obtained

    Simulation models : Results are dependent to [Toropov , 2000]:

    Exactness of input boundary conditions (usually simplified)

    Software applied (ABAQUS, DEFORM, LS-DYNA, etc)

    Additional experimental data (e.g. Flow stress coefficients)

    Empirical models

    Applicable only for a narrow range of process parameters

    Varies based on a change in tool and material

    Costly and time consuming

    Burr prediction models

    74Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    38/68

    2014-0

    FEM- simulation of burr formation

    Source: (Sartkulvanich, Ph.D Thesis, Ohio state university, 2007)

    75Niknam, Seyed Ali –  June 3rd  2014

    FEM- simulation of burr formation 

    Source: (Deng et al., Int. J. of Advanced Manuf acturing Technology, 2009)

    76Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    39/68

    2014-0

    FEM- simulation of burr formation 

    Burr formation process in

    simple orthogonal cutting

    Source: (Deng et al., Int. J. of Advanced Manuf acturing Technology, 2009)

    77Niknam, Seyed Ali –  June 3rd  2014

    Orthogonal cutting with positive rake angle

    78Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    40/68

    2014-0

    Orthogonal cutting with large chip load 

    79Niknam, Seyed Ali –  June 3rd  2014

    Orthogonal cutting with negative rake angle 

    80Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    41/68

    2014-0

    81

    • Mostly use Johnson & Cook stress flow rule

    • Rarely 3D simulations models are reported for milling

    • The principle of Hydrostatic bowl on burr formation is still unclear.

    Sartkulvanich, 20 07

    FEM- simulation of burr formation

    Source: (Leopold and Wohlgemuth ,Springer , 2010)

    81Niknam, Seyed Ali –  June 3rd  2014

    FEM- simulation of drilling burr formation 

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    82Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    42/68

    2014-0

    FEM- simulation of drilling burr formation 

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    83Niknam, Seyed Ali –  June 3rd  2014

    FE Mesh

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    84Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    43/68

    2014-0

    Meshed Drill

    Meshed in AbaqusModel Meshed in DEFORM

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    85Niknam, Seyed Ali –  June 3rd  2014

    FEM- simulation of drilling burr formation 

    Drilling Simulation In DEFORM Drilling Simulation in Abaqus

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    86Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    44/68

    2014-0

    FEM- simulation of drilling burr formation 

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    87Niknam, Seyed Ali –  June 3rd  2014

    Case study 2

    Modeling of Burr Thickness in

    Milling of Ductile Materials

    By

    Seyed Ali Niknam and Victor Songmene

    Published in

    Int. J. of Advanced Manufacturing Technology in 2013

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    45/68

    2014-0

    B1 thickness is the longest and thickest milling bur.

    It could be controlled by process parameters

    89

    To develop the predictive model of exit up milling side burr (B1)thickness as a function of cutting parameters.

    Objective:

    © Niknam and Songmene,  Int. J. of Advanced Manufa cturing Technology,2013

    89Niknam, Seyed Ali –  June 3rd  2014

    90

    The assumptions used:

    1. Burr formation in the exit zone is

    modeled as an orthogonal process.

    2. The model is based on the burr

    formation geometry.

    3. The transition from chip formation to

    burr formation occurs at the transition

    point.

    4. The work done for chip formation is

    equal to that done for burr formation.

    © Niknam and Songmene,  Int. J. of Advanced Manufa cturing Technology,2013

    90Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    46/68

    2014-0

    91

    Analytical Modeling

    Where:

    Symbol  Units  Description Bt   (mm or μm)  Burr thickness

     f t  mm/z Feed per tooth

    β0  (deg) Initial negative shear angle

    a p  mm Axial depth of cut

    σe  (N/mm2) Yield strength

    k 0 (N/mm2) Yield shear strength

    F t  N Tangential force

    0

    00

    20

    tan

    tan4

    1

    cos2  

          et  pt 

     Ba F 

    According to (Lauderbaugh, 2009), yield strength is the only  statistically significant

    material properties on exit burr formation amongst young modulus, thermal diffusivity,

    and ultimate strength.

    Bt ≈

    Material properties (σe & k 0)

     f  (Cutting parameters)

     f  (Cutting tool)

    © Niknam and Songmene,  Int. J. of Advanced Manufa cturing Technology,2013

    91Niknam, Seyed Ali –  June 3rd  2014

    92

    0

    00

    20

    tan

    tan4

    1cos

    2

      

         e

    t  pt 

     Ba F 

    0 0

    0

    ( + )

    =

    212 1cos tan

    12 4 Atan

       

      

    According to Von misses criteria:

    The β0 = 20○ under various cutting conditions and material studied [Ko and Dornfeld, 1991].

    30

    ek    

    = - t t e p

     F  B

    a A 

    0 0

    0

    ( + ) =

    2

    t e p t  

    12 1

    cos tan12 4 F - a Btan

        

      

    Analytical Modeling

    © Niknam and Songmene,  Int. J. of Advanced Manufa cturing Technology,2013

    92Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    47/68

    2014-0

    93

    Experimental parameters

    Level

    1 2 3

    A: Depth of cut (mm) 1 - 2

    B: Feed per tooth (mm/z) 0.01 0.055 0.1

    C: Cutting speed (m/min) 300 750 1200

    Lubrication condition: Dry ; Tool diameter (D : 19.05 mm) 

    Experimental verification

    18 tests were conducted in total for verifications

    © Niknam and Songmene,  Int. J. of Advanced Manufa cturing Technology,2013

    93Niknam, Seyed Ali –  June 3rd  2014

    94

    Correlation rate

    97.22%

    Correlation rate

    98%

    AA 2024-T351  AA 6061-T6 

    © Niknam and Songmene,  Int. J. of Advanced Manufa cturing Technology,2013

    94Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    48/68

    2014-0

    95

    The only unknown parameter in model is F t 

    The F t  can be computationally measured

    = -t 

    e p

     F  B

    a A  

     paeaca

     prercr 

     ptetct 

    a K ah K  F 

    a K ah K  F 

    a K ah K  F 

    )()(

    )()(

    )()(

      

      

      

    1. Mechanistic force model [Altintas , 2000]

    t

    d = × ( ( )) + × ( )

    d = × ( ( )) + × ( )

    tc j j p te p

    rc j j p re p

     F K h a K d a

     F K h a K d a

     

     

    Computational Modeling

    © Niknam and Songmene,  Int. J. of Advanced Manufa cturing Technology,2013

    95Niknam, Seyed Ali –  June 3rd  2014

    96

    The effect of cutting speed on milling and drilling burrs size is statistically

    insignificant (Lauderbaugh, 2009; Mian et al , 2011.

    The effect of cutting speed on resultant force can be considered negligible

    Computational Modeling

    © Niknam and Songmene,  Int. J. of Advanced Manufa cturing Technology,2013

    96Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    49/68

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    50/68

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    51/68

    2014-0

    Partial conclusion

    101

    The burr formation in exit zone

    was modeled.

    B1 thickness was analytically and computationally modeled.

    The models do not require the experimental measurements of shear

    angle (Φ), friction angle ( λ) and tool chip contact length (L).

    Bt ≈

    Material properties (σe , k 0 and K c)

     f  (ac , f t )

     f  (Tool geometry)

    © Niknam and Songmene,  Int. J. of Advanced Manufa cturing Technology,2013

    101Niknam, Seyed Ali –  June 3rd  2014

    6. Burr measurement and detectionmethods

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    52/68

    2014-0

    Burr detection and measurement methodsBurr detection and measurment

    methods

    In-processOut-process

    ContaclessWith contact

    Electro-MechancialOptical

    1. Optiocal microscope

    2. Broscope/endscope

    3. Scanning electron

    microscope (SEM)

    1. Light slit method

    2. Laser traiangulation

    3. Fring pattern projection

    4. Autofocus methods

    5. Confocal microscopy

    1. Eddy-current sensor 

    2. Inductive senor 

    3. Computer tomography

    1. Process monitoring

    2. Moment

    3. Force

    4. Sound emission

    analysis

    1. Styullus method

    2. Metallographical

    methods

    (Niknam and Songmene, Ph.D Thesis, ETS, 2013)

    103Niknam, Seyed Ali –  June 3rd  2014

    Burr detection and measurementmethods

    Three main burr size measurement systems:

    1. Mechanical systems

    2. Electrical systems

    3. Optical systems

    104Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    53/68

    2014-0

    Inductive Measurement Technique

    Source: Patent by Gratsensorik, Manfred Jagiella; 2002 -05-16

    105Niknam, Seyed Ali –  June 3rd  2014

    Burr sensors

    Source: Patent by Gratsensorik, Manfred Jagiella; 2002-05 -16

    106Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    54/68

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    55/68

    2014-0

    Burr detection and measurementmethods

    110Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    56/68

    2014-0

    7. Burr removal (deburring) andedge finishing

    Deburring Process

    Deburring includes all operations which are used toremove a produced burr from simple hand deburringto high tech surface finishing by NC controlled robots.As a result of years of research, vast numbers ofmethods have been developed. Some typical

    deburring methods are introduced here with someresearch efforts.

    112Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    57/68

    2014-0

    Deburring Technologies

    Objectives of deburring

    - Remove burr- Finish edge or otherwise condition the edge

    - Insure burr is “firmly attached” 

    - Reduce burr size

    - Facilitate handling/assembly

    - Protect workers from injury

    Facilitating deburring

    - Locate burrs

    - Predict burr size, shape and variation

    - Determine accessibility

    - Assist in deburring process set up (tool path, etc.)

    - Evaluate deburring approaches for burr condition

    113Niknam, Seyed Ali –  June 3rd  2014

    Classification of deburring operations

    1. Mechanical Deburring Operations

    2. Thermal Deburring Operations

    3. Electrical Deburring Operations

    4. Chemical Deburring Operations

    (Niknam and Songmene, Ph.D Thesis, ETS, 2013)

    114Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    58/68

    2014-0

    Deburring Technologies 

    The most frequently used deburring processes :

    No.  Deburring process  No.  Deburring process 

    Manual deburring 

    6 Barrel deburring 

    Brush deburring 

    7 Centrifugal barrel finishing 

    Bonded abrasive deburring 

    Robotic deburring 

    Abrasive jet deburring 

    Electro chemical deburring

    Mass finishing 10 

    Vibratory finishing 

    (Niknam and Songmene, Ph.D Thesis, ETS, 2013)

    115Niknam, Seyed Ali –  June 3rd  2014

    Mechanical Deburring Operations

    116Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    59/68

    2014-0

    Thermal Deburring Operations 

    Torch or flame melting

    Thermal energy method

    Plasma flame

    Plasma-glow deflashing

    Hot wire

    Resistance heating

    Laser deburring

    Electronic discharge machining (EDM)

    117Niknam, Seyed Ali –  June 3rd  2014

    Electrochemical barrel tumbling

    Electrochemical vibratory finishing

    Electrochemical roll flow finishing

    Electrochemical spindle finishing

    Electrochemical recipro finishing

    Electrochemical orboresonant finishing

    Electrical Deburring Operations 

    Electrochemical moving electrode

    Electrochemical mesh deburring

    Electrochemical brush deburring

    Electrochemical deburring

    Electropolish deburring

    118Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    60/68

    2014-0

    Chemical barrel finishing

    Chemical vibratory finishing

    Chemical roll flow finishing

    Chemical spindle finishing

    Chemical centrifugal finishing

    Chemical Deburring Operations 

    Chemical magnetic finishing

    Ultrasonic (chemical)

    Chemical fluidized bed

    Chlorine gas deburring

    119Niknam, Seyed Ali –  June 3rd  2014

    Manual deburring

    High flexibility than other methods;

    Does not take much time for small burr;

    Cheaper for small burrs;

    (Niknam, Ph.D Thesis, ETS, 2013)

    120Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    61/68

    2014-0

    Disadvantages: It generates a lot of surface scratches;

    Deburring time is high for large burr;

    It is difficult to attach the pieces (miniature pieces for example);

    It is difficult to define the manual deburring standards;

    There is a lack of manual deburring study;

    Does not show a great motivation for industrial workers;

    It is difficult to deburr some complex parts;

    The deburring result is sometimes inconsistent;

    Deburred edges are not uniform

    Manual deburring

    121Niknam, Seyed Ali –  June 3rd  2014

    Burrs around Hole on Plane

    Micro burr Drilling burr

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    122Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    62/68

    2014-0

    Magnetic abrasive deburring

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    123Niknam, Seyed Ali –  June 3rd  2014

    Experimental Deburring of Micro Burrs

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    124Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    63/68

    2014-0

    Deburring by Permanent Inductor

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    125Niknam, Seyed Ali –  June 3rd  2014

    Brush Deburring 

    Deburring and Finishing with Brushes 

    (Niknam, Ph.D Thesis, ETS, 2013)

    126Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    64/68

    2014-0

    Brush Deburring 

    Benefits of NAF Brushes:● Deburr and finish in one step

    ● Highly compliant on complex part geometry

    ● Ideal for automated deburring in CNC centers

    ● Do not alter part dimensions

    Operating Information:

    ● “Flexible file” filaments provide deburring action

    through abrasion

    ● Surface speeds are slow, generally below 3,500 SFPM

    ● Penetration of the brush face is required

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    127Niknam, Seyed Ali –  June 3rd  2014

    Brush Deburring 

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    128Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    65/68

    2014-0

    Brush Deburring 

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    129Niknam, Seyed Ali –  June 3rd  2014

    Brush Deburring 

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    130Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    66/68

    2014-0

    Brush Deburring 

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    131Niknam, Seyed Ali –  June 3rd  2014

    Brush Deburring 

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    132Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    67/68

    2014-0

    Robotic deburring

    Fast

    Cheaper than CNC deburring

    High consistency and repeatability

    Can work in noisy and dirty conditions

    require minimal intervention human

    Can remove most of the type of burrs

    Can be worked in automation

    (Niknam, Ph.D Thesis, ETS, 2013)

    133Niknam, Seyed Ali –  June 3rd  2014

    Bonded-abrasive Deburring Low price;

    Large variety of choices;

    some varieties may improve the surface condition;

    Adaptable to manual or automatic equipment;

    Sometimes affects the surface quality;

    Effects on residual stresses;

    Dust emission;

    Changes the part dimensions;

    Sometimes generate new burrs;

    Changes the color of the part;

    Lack of access to certain sides of part;

    Low life; 

    Disadvantages

    Advantages

    Source: Laboratory for Manufacturing and Sustainability, UC-Berekley

    134Niknam, Seyed Ali –  June 3rd  2014

  • 8/17/2019 SYS 849 5 Lecture Burr Deburring and Edge Finishing

    68/68

    2014-0

     Thank you