synthesis of 1,3,5-triaza-7-phosphaadamantane...

282
SYNTHESIS OF 1,3,5-TRIAZA-7-PHOSPHAADAMANTANE (PTA) AND 3,7- DIACETYL-1,3,7-TRIAZA-5-PHOSPHABICYCLO[3.3.1]NONANE (DAPTA) COMPLEXES AND THE DEVELOPMENT OF CHROMIUM SALEN CATALYSTS FOR THE COPOLYMERIZATION OF CO 2 AND EPOXIDES A Dissertation by CESAR GABRIEL ORTIZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2004 Major Subject: Chemistry

Upload: others

Post on 24-Dec-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

SYNTHESIS OF 1,3,5-TRIAZA-7-PHOSPHAADAMANTANE (PTA) AND 3,7-

DIACETYL-1,3,7-TRIAZA-5-PHOSPHABICYCLO[3.3.1]NONANE (DAPTA)

COMPLEXES AND THE DEVELOPMENT OF CHROMIUM SALEN

CATALYSTS FOR THE COPOLYMERIZATION OF CO2 AND EPOXIDES

A Dissertation

by

CESAR GABRIEL ORTIZ

Submitted to the Office of Graduate Studies of Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2004

Major Subject: Chemistry

SYNTHESIS OF 1,3,5-TRIAZA-7-PHOSPHAADAMANTANE (PTA) AND 3,7-

DIACETYL-1,3,7-TRIAZA-5-PHOSPHABICYCLO[3.3.1]NONANE (DAPTA)

COMPLEXES AND THE DEVELOPMENT OF CHROMIUM SALEN

CATALYSTS FOR THE COPOLYMERIZATION OF CO2 AND EPOXIDES

A Dissertation

by

CESAR GABRIEL ORTIZ

Submitted to Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by: ________________________ ________________________ Donald J. Darensbourg Marcetta Y. Darensbourg (Chair of Committee) (Member) ________________________ ________________________ Michael B. Hall Stephen A. Miller

(Member) (Member) ________________________ ________________________

Edward D. Harris Emile A. Schweikert (Member) (Head of Department)

May 2004

Major Subject: Chemistry

iii

ABSTRACT

Synthesis of 1,3,5-triaza-7-phosphaadamantane (PTA) and 3,7-diacetyl-1,3,7-triaza-5-

phosphabicyclo[3.3.1]nonane (DAPTA) Complexes and the Development of Chromium

Salen Catalysts for the Copolymerization of CO2 and Epoxides.

(May 2004)

Cesar Gabriel Ortiz, B.S., Baylor University

Chair of Advisory Committee: Dr. Donald J. Darensbourg

Two main areas are considered in this manuscript. The first describes the synthesis

of group 10 metal complexes incorporating the water-soluble 1,3,5-triaza-7-

phosphaadamantane (PTA) ligand and the second deals with the preparation of

Cr(salen)X catalysts for the copolymerization of CO2 and epoxides. In the first topic,

the synthesis of nickel(II) and palladium(II) salicylaldiminato complexes incorporating

PTA has been achieved employing two preparative routes. Upon reacting the original

ethylene polymerization catalyst developed by Grubbs and coworkers (Organometallics,

1998, 17, 3149), (salicylaldiminato)Ni(Ph)PPh3, with PTA using a homogeneous

methanol/toluene solvent system resulted in the formation of the PTA analogs in good

yields. Alternatively, complexes of this type may be synthesized via a direct approach

utilizing (TMEDA)M(CH3)2 (M = Ni, Pd), the corresponding salicylaldimine, and PTA.

Polymerization reactions were attempted using the nickel-PTA complexes in a biphasic

toluene/water mixture in an effort to initiate ethylene polymerization by trapping the

dissociated phosphine ligand in the water layer, thereby, eliminating the need for a

iv

phosphine scavenger. Unfortunately, because of the strong binding ability of the small,

donating phosphine (PTA) as compared to PPh3, dissociation did not occur at a

temperature where the complexes are not subjected to decomposition.

Additionally, the unexplored PTA derivative, 3,7-diacetyl-1,3,7-triaza-5-

phosphabicyclo[3.3.1]nonane (DAPTA), prepared by the literature procedure, was fully

characterized by NMR and X-ray analysis. DAPTA is found be similar to its parent

(PTA) in coordination mode and binding strength, as supported by its representative

group 6 and group 10 complexes

The second main topic involves the copolymerization of CO2 and epoxides (i.e.,

cyclohexene oxide (CHO)) for the formation of polycarbonate using Cr(salen)X (X = Br,

OPh) catalysts with one equivalent of PR3 as the co-catalyst. The use of these catalysts

and cocatalysts results in the most active chromium-based catalytic systems to date. The

highest activities observed are on the order of 109 mol CHO consumed . mol Cr-1 . hr-1

using PCy3 as the co-catalyst, and is clearly seen in the in situ monitoring of copolymer

formation. An advantage of these systems involves the lack of cyclic carbonate

production and high CO2 incorporation (>99%) within the polymer.

v

DEDICATION

This dissertation is dedicated to my wife, Diana Alicia Ortiz.

Durante el curso de mis estudios posgrado, solamente hay un recuerdo que me ha

hecho sentir sinceramente feliz y por el, he cumplido con mi carera. El evento se realizo

el 23 de Diciembre del año 2000. En esta fecha no unimos, casados para siempre. Tu

apoyo y mas que nada, tu fe en mi durante estos cinco años es lo que me ha impulsado

para lograr algo que nunca se hubiera realizado. Gracias corazon por tus consejos y fe

en tu esposo; por tus sonrisas, comentarios, amistad, y cariño durante los dias que se

hacian eternos en el laboratorio. Gracias Diana, mi amor.

vi

ACKNOWLEDGEMENTS

At the end of my undergraduate career at Baylor University, the most valuable

advice given to me concerned the balance between choosing the chemistry that I was to

undertake and selecting a graduate advisor in graduate school. Without a doubt, the

most important part of this advice is the latter since I have tremendously enjoyed

working under the direction of Dr. Donald J. Darensbourg. He has provided me with the

opportunity to develop the thoughts and skills necessary for the next step in my career.

Thank you, Don, not only for the chemistry related dialogues, but also for the everyday

conversations that have contributed to a great stay at Texas A&M University. I would

also like to thank Dr. Denise T. Magnuson for her wonderful introduction of chemistry

at Baylor University, which I tremendously enjoyed and still remember. I would like to

thank Dr. Carlos Manzanares at Baylor University, who taught me invaluable concepts

and provided a rewarding laboratory experience. In addition, I would also like to thank

Dr. Kevin Burgess for providing me with my first research graduate experience and Dr.

Armin A. Burghart for his mentoring during this 1999 summer period. To be thanked as

well are my committee members, Dr. Marcetta Darensbourg, Dr. Michael Hall, Dr.

Stephen Miller, Dr. Edward Harris, and Dr. Siegfried Musser (for serving as my GCR

during preliminary exams) for their time and suggestions.

I would also like to thank Dr. Joseph Reibenspies for his assistance with crystal

structure data, and his willingness to help with any data acquisition question. Further

people to thank are the MYD and DJD group members. Specifically, I would like to

thank Jody Rodgers for the good times spent in and out of the lab: thanks bud. Other

vii

people that I would like to thank are Dr. Jacob Wildeson, Dr. Jason Yarbrough, Dr.

Jason Adams, Dr. Sam Lewis, Ryan Mackiewicz, Damon Billodeaux, Andrea Phelps,

and Sue Winters: All of you "rock out." I sincerely enjoyed all the great conversations,

and will always remember all of you. Thank you, Sue, for all of your help with

everyday questions. Work was never a dull moment with all of you guys.

Finally, I would like to thank my parents, Gabriel and Hermelinda Ortiz, for their

support during my undergraduate and graduate studies. Thank you for showing us the

way to success heavily depends on hard work, loyalty, and respect. What you have

instilled in me will always be remembered and passed on.

viii

TABLE OF CONTENTS

Page

ABSTRACT .............................................................................................................. iii DEDICATION .......................................................................................................... v ACKNOWLEDGEMENTS ...................................................................................... vi TABLE OF CONTENTS .......................................................................................... viii LIST OF FIGURES................................................................................................... xi LIST OF TABLES .................................................................................................... xv CHAPTER I INTRODUCTION............................................................................. 1 II SYNTHESIS OF NICKEL AND PALLADIUM SALICYLALDIMINATO 1,3,5-TRIAZA-7- PHOSPHAADAMANTANE (PTA)COMPLEXES ......................... 17 Introduction ........................................................................... 17 Experimental ......................................................................... 22 Results and Discussion.......................................................... 30 Concluding Remarks ............................................................. 53 III SYNTHESIS AND CHARACTERIZATION OF 3,7-DIACETYL-1,3,7-TRIAZA-5-PHOSPHABICYCLO[3.3.1] NONANE (DAPTA) AND ITS GROUP 6 AND GROUP 10 COMPLEXES ................................................................................... 57 Introduction ........................................................................... 57 Experimental ......................................................................... 60 Results and Discussion.......................................................... 65 Concluding Remarks ............................................................. 85

ix

TABLE OF CONTENTS (CONTINUED)

CHAPTER Page

IV DEVELOPMENT OF NOVEL CHROMIUM SALEN CATALYSTS FOR THE COPOLYMERIZATION OF CO2 AND EPOXIDES................................................................ 87 Introduction ........................................................................... 87 Experimental ......................................................................... 90 Results and Discussion.......................................................... 95 Concluding Remarks ............................................................. 117 V SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF IRON(III) SALEN COMPLEXES POSSESSING ANIONIC OXYGEN DONOR LIGANDS ........................................................ 121 Introduction ........................................................................... 121 Experimental ......................................................................... 124 Results and Discussion.......................................................... 126 Concluding Remarks ............................................................. 138 VI METHYLATION REACTIONS OF GROUP 10 1,3,5-TRIAZA-7-PHOSPHOAADAMANTANE COMPLEXES USING CH3OSO2F AND SYNTHESIS OF NOVEL PALLADIUM-NICKEL DACO TRIMERS ...................... 140 Introduction ........................................................................... 140 Experimental ......................................................................... 143 Results and Discussion.......................................................... 146 Concluding Remarks ............................................................. 161 VII CONCLUSIONS............................................................................... 166 REFERENCES.......................................................................................................... 172 APPENDIX A ........................................................................................................... 182 APPENDIX B ........................................................................................................... 213

x

TABLE OF CONTENTS (CONTINUED)

Page APPENDIX C ........................................................................................................... 220 APPENDIX D ........................................................................................................... 244 APPENDIX E............................................................................................................ 255 VITA ......................................................................................................................... 268

xi

LIST OF FIGURES

FIGURE Page

1.1 Late-transition metal catalysts for the polymerization of olefins in aqueous media.................................................................. 3

1.2 Representative examples of WSP for use in aqueous organometallic catalysis ....................................................................... 6 1.3 Homogeneous zinc-based catalysts for the copolymerization of CO2 and epoxides............................................................................. 10 1.4 Chromium-based catalysts for the copolymerization of CO2 and epoxides ......................................................................................... 14 1.5 Spacial orientation of nucleophile relative to substrate binding site ........................................................................................... 15 2.1 Salicylaldiminato nickel(II) catalyst .................................................... 19 2.2 Examples of WSP used in aqueous catalysis ....................................... 21 2.3 Thermal ellipsoid representation of trans-(PPh3)2NiCl(Ph) showing 50% probability ..................................................................... 32 2.4 Representative 1H NMR spectrum of Pd(1/2Sal-Cl)PTA, 4d.............. 35 2.5 Thermal ellipsoid representation of Ni(1/2Sal-NO2)PPh3, 1a, showing 50% probability ............................................................... 41 2.6 Thermal ellipsoid representation of Ni(1/2Sal-NO2)PTA, 2a, showing 50% probability ............................................................... 43 2.7 Thermal ellipsoid representation of Pd(1/2Sal-NO2)PTA, 4a, showing 50% probability ............................................................... 44 2.8 Thermal ellipsoid representation of Pd(1/2Sal-OMe)PTA, 4b, showing 50% probability ............................................................... 46

xii

LIST OF FIGURES (CONTINUED) FIGURE Page

2.9 Thermal ellipsoid representation of Ni(1/2Sal-OMe)PTA, 3b, showing 50% probability ............................................................... 47 2.10 Thermal ellipsoid representation of Ni(1/2Sal-Cl)PTA, 3d, showing 50% probability ............................................................... 48 2.11 Thermal ellipsoid representation of Pd(1/2Sal-Ben)PTA, 4c, showing 50% probability................................................................ 49 2.12 Thermal ellipsoid representation of Pd(1/2Sal-Cl)PTA, 4d, showing 50% probability ............................................................... 50 2.13 Thermal ellipsoid representation of Ni(1/2Sal-OMe)2, 3b', showing 50% probability .............................................................. 51 2.14 Polymerization of ethylene using 3/4 in a biphasic toluene/water solvent system ...................................................................................... 52 2.15 Thermal ellipsoid representation of Pd(1/2Sal-Cl)DAPTA, 4d-DAPTA, showing 50% probability ................................................ 56 3.1 Examples of water-soluble phosphines ................................................ 59 3.2 Molar water-solubility of selected tertiary water-soluble phosphines............................................................................................ 67 3.3 Thermal ellipsoid representation of DAPTA (1) showing 50% probability ............................................................................................ 72 3.4 Space filling model of DAPTA (1) showing (a) front and (b) side view......................................................................................... 74 3.5 Shielding effects on geminal protons by acyl groups in DATPA oxide (2) ................................................................................. 75 3.6 Thermal ellipsoid representation of DAPTA oxide (2) showing 50% probability ..................................................................... 76

xiii

LIST OF FIGURES (CONTINUED)

FIGURE Page

3.7 Space filling model of DAPTA oxide (2) showing (a) front and (b) side view .................................................................................. 78 3.8 Thermal ellipsoid representation of W(CO)5(DAPTA) (5) showing 50% probability................................................................ 83 3.9 Thermal ellipsoid representation of Cr(CO)5(DAPTA) (6) showing 50% probability................................................................ 84 4.1 Jacobsen's initiation step ...................................................................... 89 4.2 Cr(salen)X catalysts for the copolymerization of CO2 and epoxides ......................................................................................... 91 4.3 Thermal ellipsoid representation of Cr(salen)(Br)(THF), 2.THF, showing 50% probability......................................................... 102 4.4 Thermal ellipsoid representation of Cr(salen)(Br)(CH3CN), 2.CH3CN, showing 50% probability.................................................... 103 4.5 Thermal ellipsoid representation of [Cr(salen)(OPBu3)]+[Br]-, 2.2OPBu3, showing 50% probability ................................................... 104 4.6 Three dimensional plot of copolymer growth at 1750 cm-1 using Cr(salen)Br, 1, with one equivalent of PCy3 .............................. 107 4.7 Trace of 1750 cm-1 copolymer growth using several different phosphines with Cr(salen)Br, 1, as the cocatalyst................................ 109 4.8 1H NMR of CO2/PO/TMSO terpolymer using Cr(salen)Br, 1, as the catalyst with one equivalent of PCy3 ......................... 112 4.9 Thermal ellipsoid representation of Cr(1/2Sal)2(CH3CN)(Cl), 7a, showing 50% probability .............................................................. 115

xiv

LIST OF FIGURES (CONTINUED) FIGURE Page

4.10 Ball and stick representation of Cr(1/2Sal)2(Cl)(N-MeIm).................. 116 4.11 Thermal ellipsoid representation of [Cr(1/2Sal)2(Cl)]2, 8, showing 50% probability ................................................................. 118 4.12 Initiation step involving Cr(salen)X catalysts, 1-4, with PR3 activation ....................................................................... 119 5.1 Fe(salen)X complexes incorporating monodentate and bidentate anionic ligands...................................................................... 123 5.2 Thermal ellipsoid representation of Fe(salen)(OPh) (1) showing 50% probability .................................................................................... 132 5.3 Thermal ellipsoid representation of Fe(salen)(acac) (2) showing 50% probability .................................................................................... 135 5.4 Thermal ellipsoid representation of µ-[Fe(salen)]2O (3) showing 50% probability .................................................................................... 137 6.1 Active site in the A cluster of Acetyl CoA Synthase ........................... 140 6.2 Thermal ellipsoid representation of Pt[(PTA-CH3

+)(OSO2F-)]4

(5) showing 50% probability................................................................ 152 6.3 Thermal ellipsoid representation of Pt[(PTA-CH3

+)(I-)]4

(7) showing 50% probability................................................................ 154 6.4 Thermal ellipsoid representation of (BME-DACO)Ni-Pd(CH3)(Cl) (8') showing 50% probability............................................................... 158 6.5 Thermal ellipsoid representation of [(BME-DACH)Ni]2-[Pd(CH3)]2(OPh) (9) showing 50% probability ............................................................................................ 160 6.6 Selected plane angles of complex [(BME-DACH)Ni]2-[Pd(CH3)]2(OPh) (9) ........................................... 162 6.7 Holm's Ni(bpy)(CH3)(SR) complex ..................................................... 164

xv

LIST OF TABLES

TABLE Page

2.1 Crystallographic data for complex trans-(PPh3)2NiCl(Ph)................. 30 2.2 Selected bond distances (Å) and angles for complex trans-(PPh3)2Ni(Cl)(Ph)...................................................................... 31 2.3 Crystallographic data for complexes 1a, 2a, 4a, 4b, 3b', 3b, 3d, 4c, 4d, and 4d-DAPTA........................................................................ 37 2.4 Selected bond distances (Å) and angles of complexes 1a, 2a, 4a, 4b, 3b', 3b, 3d, 4c, 4d, and 4d-DAPTA ........................................ 39 3.1 Crystallographic data for compounds 1, 2, 5, and 6............................. 69 3.2 Selected bond distances (Å) and angles for compounds 1, 2, 5, and 6 ......................................................................................... 70 4.1 Crystallographic data and data collection parameters for 2.THF, 2.CH3CN, 2.2OPBu3, 7a, and 8 .............................................. 97 4.2 Selected bond distances (Å) and angles for complexes 2.THF, 2.CH3CN, 2.2OPBu3, 7a, and 8 .............................................. 98 4.3 Activities associated with the use of catalysts 1-4 along with one equivalent of cocatalyst ................................................................. 105 4.4 Maximum rates and induction periods in the copolymerization of CO2 and epoxides using 1 as the catalyst......................................... 108 5.1 Crystallographic data and data collection parameters for complexes 1, 2, and 3 ........................................................................... 129 5.2 Selected bond distances (Å) and angles for complexes 1, 2, and 3 ............................................................................................. 130 6.1 Crystallographic data and data collection parameters for compounds 5, 7, 8', and 9..................................................................... 149 6.2 Selected bond distances (Å) and angles for compounds 5, 7, 8', and 9 ........................................................................................ 150

1

CHAPTER I

INTRODUCTION

The use of water as a suitable medium for catalysis has received much attention

in recent years.1 The increasing interest in this field stems from obvious economic and

safety considerations. That is, or specifically, replacing flammable, carcinogenic, and

explosive organic solvents with water leads to a safer working environment. From an

industrial point of view, an aqueous medium translates into waste reduction costs as well

as potentially recovering the catalysts via a biphasic process. The latter process is the

foundation of the Ruhrchemie-Rhône Poulenc hydroformylation of alkenes, where in

1998, it was reported to produce approximately 10% of the world’s C4-C5 aldehyde

capacity.1,2

Catalytic processes taking advantage of this benign medium include carbon-

carbon coupling (e.g., Heck, Suzuki, and Sonagoshira coupling), hydroformylation, and

hydrogenation reactions.1 However, only a small amount of work has been conducted in

the area of transition metal mediated polymerization of olefins in water.3 Currently, the

polymerization of most α-olefins depends heavily on Ziegler-Natta and metallocene

catalysts which are usually based on early transition metals to afford high molecular

weight polymer.4 Although very effective, they are extremely oxophilic and monomer

feeds must be purified prior to usage. Consequently, increasing attention is being given

_______________

This dissertation follows the style of the Journal of the American Chemical Society.

2

to late transition metals due to their lower oxophilicity and their ability to tolerate

functionalized olefins such as acrylates.5 The polymerization of such functionalized

monomers is of great interest due to the potential of producing adhesive polymeric

materials. Recently, several systems have appeared which utilize water as the solvent.

For example, Brookhart’s cationic β-diimine palladium catalyst was found to produce

high molecular weight, branched polyethylene in water (Figure 1.1).6 Furthermore,

activities are similar to those observed utilizing organic solvents (e.g., CH2Cl2). The

stable nature of the catalysts during polymerization is due to an “encapsulation” of the

hydrophobic catalyst by the growing polymer chain. Attempts to produce a truly

homogeneous water-soluble catalysts by the addition of sulfonated groups to the ligand

framework resulted in decomposition upon the introduction of ethylene.7 Other catalytic

systems include Mecking’s SHOP analog, which was found to produce polyethylene

with turnover numbers (TON) and polydispersities (PDI) on the order of 103 and 2-3,

respectively, in an aqueous medium (Figure 1.1).8

Of prime interest to our research is the nickel (II) salicylaldiminato catalyst,

developed by Grubbs and coworkers in 1998 (Figure 1.1).9 One of the major

advantages of this system involves the neutral nature of the active species, as no bulky

counterions are present during polymerization. In typical organic solvents (i.e., toluene),

the catalyst’s activity is comparable to traditional Ziegler-Natta and metallocene

catalysts. For example, activities as high as 6.40 x 106 g PE . mol Ni-1 . hr-1 were

obtained in the polymerization of ethylene. Using functionalized alkenes incorporating

3

Figure 1.1. Late-transition metal catalysts for the polymerization of olefins in aqueous media.

N

N

Pd

CH3

NCCH3

+SbF6

-

O

-O3S P

Ni

Ph

PPh3

Ph Ph

R1R2

R3

R4

O

Ni

N

L

R i-Pr

i-Pr

R = AlkylL = PR3, Pyridine, CH3CN

M+

Brookhart Mecking Grubbs

4

ketone, ether, and hydroxyl groups in the copolymerization with ethylene led to no

appreciable decrease in activity when compared to homopolymerization. To further

illustrate the stability of the catalysts, water was added to the reaction mixture and was

found to only slightly affect the production of polyethylene. The polymerization of

ethylene in water as the solvent using this catalyst has been reported.8 High molecular

weight polymer was obtained with TON’s on the order of 9.22 x 103 mol ethylene

consumed . mol Ni-1. Furthermore, using surfactants to create miniemulsions resulted in

the production of stable polyethylene latex particles.10

In order to achieve high TON’s, electron withdrawing groups on the

salicylaldimine ligand framework are necessary, rendering a more electron deficient

metal center. The drawback, however, as is the case for many other catalytic systems,

involves the need for a phosphine scavenger ([PS]) or a co-catalyst to allow the

formation of the active species for many of these derivatives (Scheme 1.1).

Scheme 1.1

O

Ni

N

L

R

[PS]

[PS]- L

O

Ni

N R

O

Ni

N R

Typically, these [PS] are highly air sensitive and are not economically feasible, making

them impractical from an industrial point of view.

Utilization of a biphasic organic/water medium in conjunction with replacing the

hydrophobic triphenylphosphine (L) with a water soluble phosphine (WSP) may lead to

5

the irreversible dissociation of the WSP into the aqueous phase. Through the years,

many WSP’s have appeared, from sulfonated aryl derivatives to carboxylic or nitrogen-

containing species. A prime example is the use of the tri-sulfonated triphenylphosphine

derivative, TPPTS, in the aforementioned Ruhrchemie-Rhône Poulenc process (Figure

1.2).1,2 However, of interest to this work is the heterocyclic aliphatic 1,3,5-triaza-7-

phosphaadamantane (PTA) ligand (Figure 1.2).11 Much research has been conducted in

the area of hydrogenation of unsaturated substrates using rhodium and ruthenium

complexes of PTA, but little attention has been given to the catalytic properties of group

10 PTA complexes.12 Catalysts employing TPPTS as the WSP have appeared through

the years for carbon-carbon coupling reactions1, but the use of Pd(PTA)413 in the Heck

reaction of terminal alkenes with aryl iodides has yet to be studied (eq. 1.1).

(1.1)

Additionally, there is considerable interest in the derivitation of PTA to afford other

WSP’s and their respective water-soluble group 10 complexes. For example,

methylation and acylation of PTA affords 1-methyl-1-azonia-3,5-diaza-7-

phosphaadamantane (PTA-CH3+)(I-)11a and 3,7-diacetyl-1,3,7-triaza-5-

phosphabicyclo[3.3.1]nonane (DAPTA)11d, respectively (Figure 1.2). The former

R

X

+

R'

R

R'

[catalyst]

6

Figure 1.2. Representative examples of WSP for use in aqueous organometallic catalysis.

N NN

P

N NN

P

O

O

P

SO3- M+SO3

- M+

SO3- M+

PTA

DAPTA

TPPTS

N NN

P

H3C I-

(PTA-CH3+)(I-)

M=Na+, K+,...

7

derivative has been studied to a greater extent, as rhodium complexes have been found to

be moderate catalysts in the hydrogenation of unsaturated substrates14. However, the

physical properties of DAPTA and its complexes remain unexplored.

It is the purpose of the studies presented herein to address the following issues: (1)

Can a WSP’s, such as PTA, be incorporated into group 10 (M = Ni, Pd)

salicylaldiminato complexes, and (2) will these derivatives be active towards the

polymerization of ethylene utilizing a biphasic aqueous/organic medium? (3) Can other

derivatives be made using the same synthetic methodology bearing different WSP’s

(e.g., DAPTA)? This work and their findings should create a new avenue for the

formation of active catalytic species without the need of a co-catalyst for this and other

related polymerization processes.

Furthermore, other issues related to aqueous organometallic catalysis are addressed:

(4) What are the physical properties of the acylated PTA analog, DAPTA? (5) How does

the electron donating ability of DAPTA compare to PTA by examining crystal data and

v(CO) stretching frequencies of group 6 carbonyl derivatives? (6) Can methylation at

the metal center of group 10 metal PTA complexes (e.g., Ni(PTA)4) with a strong

methylating agent be achieved? The findings of these studies should provide insight into

bioinorganic catalytic systems and add another potential ligand to the array of WSPs

available for possible use in aqueous organometallic chemistry.

Apart from aqueous polymerization and carbon-carbon bond formation reactions

using WSP’s, there has been great interest in the area of transition metal mediated

copolymerization of CO2 and epoxides for the production of polycarbonates.15 Through

8

the years, the need for new polymeric materials to suit a variety of applications has been

on the rise. With this in mind, polycarbonates exhibit many favorable physical

properties such as toughness, clarity, and thermal stability.16 These favorable attributes

make the copolymer ideal for applications such as optical lenses, CD’s, DVD’s,

automotive parts, along with many others.

Currently, the copolymer is made by the interfacial condensation of diols, such as

bisphenol-A, and phosgene in an aqueous/chlorinated hydrocarbon reaction medium

(e.g., methylene chloride). The reaction is carried out by introducing phosgene to an

aqueous alkali solution of bisphenol-A (eq. 1.2).

OHHO

+

Cl

O

Cl

NaOHCH2Cl2

O

O

O n

+ 2n NaCl

(1.2) The major disadvantage associated with this process concerns the high toxicity of both

monomers, which translates into higher production costs, and is the impetus for the

development of an alternate environmentally benign process.

9

The synthesis of polycarbonates via a transition metal catalyzed route was first

envisioned by Shohei Inoue in Japan.17 In 1969, he reported the copolymerization of

CO2 with aliphatic epoxides. The utilization of CO2 as a C1 feedstock is of great

importance in chemical transformations, and many reactions have been developed for

the specific use of this small stable molecule.18 Inoue’s catalytic system was prepared

by the reaction of diethyl zinc with one equivalent of water, forming an insoluble zinc

aggregate (eq. 1.3).

(1.3) Although the production of high molecular weight polycarbonate was achieved, the yield

was poor, and the reaction was plagued by reproducibility issues and required large

catalyst loadings.

In the following years, other heterogeneous catalytic systems were developed using

this methodology by reacting a variety of protonated substrates (e.g., primary amines,

diols, dicarboxylic acids) with diethyl zinc.19 The metal center was also varied as

aluminum, chromium, cobalt, and nickel were used with limited success.20 The

heterogeneous nature of these early catalysts prompted the need for a more well-

characterized catalyst.

The most active system was first developed by Darensbourg and co-workers with

the use of a zinc-based catalyst, Zn(OAr)2, where OAr represents a variety of sterically

encumbered phenoxides (Figure 1.3).21 Depending on the exact nature of the phenoxide,

n Zn(C2H5)2 + n H2O C2H5__Zn__O_Zn__

n-1__OH

- (2n-1) C2H6

10

Darensbourg Coates

Figure 1.3. Homogeneous zinc-based catalysts for the copolymerization of CO2 and epoxides.

11

it was demonstrated to be a suitable nucleophile to either insert CO2 or ring open the

epoxide in the initiation step. TON’s and TOF’s were on the order of 1441 g polymer . g

Zn-1 and 21 g polymer . g Zn-1 . hr-1 (24 hr reaction), respectively, for the most active

species in the copolymerization of CO2 and cyclohexene oxide (CHO). In the late

1990’s, however, Coates and coworkers developed a series of zinc catalysts

incorporating a β-diimine ligand framework (Figure 1.3).22 This system is currently the

most attractive catalytic system for this process as high TON and TOF are obtained

under very mild reaction conditions. For example, in the copolymerization of CO2 and

CHO, one of the most active derivatives demonstrated a TON and TOF of 382 mol CHO

consumed . mol Zn-1 and 2290 mol CHO consumed . mol Zn-1 . hr-1 , respectively, under

a CO2 pressure of 100 psi at 50 ºC for a 10 minute reaction period. The copolymer

exhibited 90% carbonate linkages, but can be increased by raising the CO2 pressure to

800 psi.

The copolymerization of CO2 and epoxides using the aforementioned catalysts is

thought to occur via a coordinative anionic insertion process, and although Coates has

recently proposed a dimeric process for the β-diimine zinc catalyst, a simplified version

of his mechanism that may apply to the zinc phenoxide work is presented (Scheme

1.2).15b Step 1 involves the coordination of the epoxide to zinc (at an open site

accessible to the nucleophile) followed by nucleophilic ring opening at the least

sterically encumbering and/or more positively charged carbon on the epoxide. This is

followed by CO2 insertion (step 2) which generates the carbonate functionality. A

12

Scheme 1.2

LnZn OR +O

R1 R2 LnZn OR

O

R1R2

: :

STEP 1

LnZn O

R2R1

OR

CO2 Insertion

LnZnO

O

O

R2R1

OR

STEP 2

CO2 Insertion

O

R1 R2

[Zn]O

O

O

R2R1n

[Zn]

O

O

OP

O

R2

R1: :

[Zn] OP +OO

O

R2R1

STEP 3

Cyclic Carbonate

Polycarbonate

Accessible Site for Substrate Binding

13

repetition of this process leads to the production of polycarbonate. An impurity within

the polymer involves the consecutive ring opening of the epoxide leading to ether

linkages which greatly diminish the copolymer’s physical and thermal properties.

Another side reaction in this process involves the production of cyclic carbonate

resulting from the backbiting mechanism proposed by Kuran, in which the copolymer

weakly interacts with the metal center allowing the alkoxy oxygen to attack the

carbonyl carbon in a nucleophilic acyl substitution (Step 3).19b

Recently, Darensbourg has utilized the active (salen)CrCl catalyst23, developed

by Jacobsen and co-workers24 for the asymmetric ring opening (ARO) of epoxides

(Figure 1.4). In the copolymerization CO2 and CHO, an initial TON and TOF of 250

mol CHO consumed . mol Cr-1 and 10.4 mol CHO consumed . mol Cr-1 . hr-1 were

obtained, respectively, for a 24 hr reaction at 800 psi CO2 pressure and 80ºC. A key

difference between these chromium based catalyst and the aforementioned zinc catalyst

(e.g., zinc phenoxide) lies in the spacial location of the nucleophile relative to the

substrate binding site. Such geometrical orientation is analogous to the

tetraphenylporphinato aluminum and chromium chloride systems developed by Inoue25,

and Kruper and Dellar26, respectively, in which the square pyramidal nature of the

complex renders the nucleophile trans to the open site for substrate binding and

activation (Figure 1.5).

14

Figure 1.4. Chromium-based catalysts for the copolymerization of CO2 and epoxides.

N N

O O

Cr

Cl

N

N N

N

Cr

Cl

Jacobsen's Catalyst

Chromium Porphyrin Catalyst

15

Figure 1.5. Spacial orientation of nucleophile relative to substrate binding site.

A conceivable ring-opening step in the initiation process is difficult to envision due to

this trans orientation. Fortunately, Jacobsen and workers have discovered a second

order dependence with respect to the metal center for the ARO of epoxides, suggesting a

bimetallic intermediate (Scheme 1.3).24a,b

Scheme 1.3

In this step, the nucleophile of one chromium center effectively attacks the epoxide

bound to a second chromium center.

The use of neutral nitrogen donors as co-catalysts has been found to greatly enhance

catalytic activity. With the use of 2.25 equivalents of N-methyl imidazole, the catalyst

initially exhibited TON’s of TOF’s on the order of 404 mol CHO consumed . mol Cr-1

and 16.8 mol CHO consumed . mol Cr-1 hr-1, respectively. That is, increasing electron

density at the metal center creates a better nucleophile, and enhances the rate of

Cr Cl O

R1

R2

Cr Cl

Cr

Cl

Substrate Binding Sitetrans to Nucleophile

16

copolymer production. The main drawback of using neutral donors (i.e., Lewis bases) is

the long induction period associated with initiation, as these auxiliary ligands effectively

compete with epoxide and decrease the concentration of the epoxide bound species

(Scheme 1.3). Furthermore, studying the propagation step (polymer growth) by

monitoring the v(CO2) stretching frequency in situ, revealed a first order dependence on

metal center. Assuming a Jacobsen initiation step, propagation is presumed to take place

via nucleophilic attack of the alkoxy oxygen to a weakly interacting epoxide on one face

of the salen ligand (Scheme 1.4).

Scheme 1.4

It is the purpose of these studies presented in this dissertation to address several

issues: (1) Will the development of (salen)CrX (X = Br, OPh) catalysts bearing better

leaving groups eliminate the induction periods using N-MeIm? (2) What is the effect of

utilizing stronger donor auxiliaries such as tertiary phosphines? (3) What is the

importance of having the chromium complex adopting a square pyramidal geometry

where the initiating species is trans to the open site for epoxide binding? (4) What is the

effect on catalytic activity if the metal is varied (e.g., Fe)? The finding of these issues

should aid in the development of better catalytic salen systems.

Cr

OPO

R1

R2

L

L = Neutral DonorP = Polymer Chain

17

CHAPTER II

SYNTHESIS OF NICKEL AND PALLADIUM SALICYLALDIMINATO

1,3,5-TRIAZA-7-PHOSPHAADAMANTANE (PTA) COMPLEXES*

INTRODUCTION

Presently, most α-olefins are polymerized through the use of heterogeneous Ziegler-

Natta catalysts or metallocene catalysts in order to achieve high molecular weight

polymers.4 Both of these systems are based on early transition metals, and although

these catalysts are very active, they are highly oxophilic and vulnerable to

decomposition. Therefore, extra purification costs must be added to the industrial

polymerization process in order to assure high conversions and high molecular weight

polymers. Consequently, attention has been turned to late transition metals which are

less oxophilic and therefore able to tolerate functional-containing monomers.5 The

copolymerization of functionalized monomers with ethylene has led to new polymeric

materials with enhanced adhesive properties. In addition, catalytic activities and

polymer molecular weights obtained employing these catalysts rival those achieved by

Ziegler-Natta and metallocene catalytic systems. A drawback of these systems involves

competing β-elimination which leads to low molecular weight polymers. This is the

premise of the SHOP (Shell Higher Olefin Polymerization) process using the

_______________

* Reproduced in part with permission from Darensbourg, D. J.; Ortiz, C. G.; Yarbrough, J. C. Inorg. Chem. 2003, 42, 6915. Copyright 2003 American Chemical Society.

18

[(OCH(R1)CH(R2)PPh2)Ni(L)(R)] catalyst developed in the late 1960’s by Keim and co-

workers.27 This latter process is currently used to produce higher molecular weight

α−olefins which may be later converted to other useful products (e.g., detergents).

One of the most notable and well understood ethylene polymerization systems

utilizes Brookhart’s cationic β-diimine catalysts [(ArN=C(R)C(R’)=NAr)M(L)(CH3)]+

(M = Ni, Pd).5,28 Optimization of the catalyst’s activity over the years by ligand

modification has led to the industrial implementation of the catalyst for the

polymerization of ethylene.29 Of primary interest to this study is the catalyst developed

by Grubbs and co-workers which is based on the salicylaldimine ligand framework

(Figure 2.1).9 Similar to the SHOP catalyst, the ligand is mono-anionic, rendering a

neutral catalyst which is devoid of bulky counterions. However, unlike the SHOP

catalyst, the incorporation of sterically demanding groups on the ligand effectively

shields the axial sites of the metal center thereby allowing enchainment to predominate

over β-hydride elimination processes. As with most olefin polymerization catalysts, a

co-catalyst is usually needed to initiate polymerization. In the case of metallocene4d or

Brookhart’s28 catalysts, an excess of an aluminum co-catalyst such as methyl

aluminoxane (MAO) must be used. For 1, a phosphine scavenger such as Ni(COD)2

(COD = 1,5-cyclooctadiene) is needed to remove the phosphine from the metal center

and allow alkene coordination.9 An obvious drawback to this latter process is that this

co-catalyst is highly air-sensitive and prone to autocatalytic decomposition.

19

R3

i-Pr

O

N

Ni

PPh3

Ph

i-Pr

1a-f

R1R2

R4

a. R3 = NO2, R1 = R2 = R4 = Hb. R1 = OMe, R2 = R3 = R4 = Hc. R3 = CH(CH)2CH = R4, R1 = R2 = Hd. R1 = R3 = Cl, R2 = R4 = He. R1 = C6H5, R2 = R3 = R4 = Hf. R1 = 9-anthra, R2 = R3 = R4 = H

Figure 2.1. Salicylaldiminato nickel(II) catalyst.

The purpose of this study is to explore the effect of incorporating a water-soluble

phosphine (WSP) into 1 and using a biphasic toluene/water solvent mixture to allow

irreversible phosphine dissociation, thereby eliminating the need for a phosphine

scavenger. Although it has been shown in Grubbs’ system that initiation can take place

without the need of a co-catalyst by using a more sterically demanding group in the R1

position of the ligand, many of the active derivatives require co-catalysts.9a The

polymerization of various olefins has been achieved in water; however, to our

knowledge, this is the first attempt to use a biphasic solvent system to generate the active

20

catalyst in the organic phase while allowing the WSP to enter and remain in the aqueous

phase.3

The use of WSP in catalysis was first commercialized by Ruhrchemie in 1984 for

the hydroformylation of higher molecular weight α-olefins to predominantly form

terminal aldehydes.30 The system uses the tri-sulfonated triphenylphosphine ligand,

meta-TPPTS (Figure 2.2),31 coordinated to rhodium to form the active

RhH(CO)(TPPTS)3 catalyst. Another WSP, which is of main interest to this study, is the

heterocyclic, aliphatic 1,3,5-triaza-7-phosphaadamantane (PTA)11, and its acylated

derivative, 3,7-Diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA)11d. Many

complexes incorporating this ligand have been prepared, and the ruthenium and rhodium

derivatives have been found to be effective catalysts in the hydrogenation of various

unsaturated hydrocarbons.12a-c, 32 Herein, we wish to report the synthesis of various PTA

derivatives of 1 by two routes, (a) ligand exchange reaction and (b) direct synthesis, as

well as the solid state characterization of many of these derivatives.

21

Figure 2.2. Examples of WSP used in aqueous catalysis.

N NN

P

N NN

P

O

O

P

SO3- M+SO3

- M+

SO3- M+

PTA DAPTA

meta-TPPTS

P

para-TPPTS

SO3- M+

SO3- M+

+M -O3S

22

EXPERIMENTAL

Materials and Methods

Unless otherwise indicated, all reactions were carried out under an inert argon

atmosphere using standard Schlenk and drybox techniques. Prior to their use, all

solvents were distilled using standard techniques. 2-hydroxy-3-phenylbenzaldehyde was

prepared from the corresponding phenol33, and all other benzaldehydes were purchased

from Aldrich Chemicals. Ligands a-g were prepared by the condensation reaction of the

corresponding aldehyde with commercially available 2,6-diisopropyl aniline. PTA11b,

DAPTA11d, (TMEDA)Ni(CH3)234a, (TMEDA)Pd(CH3)2

34b, and 1a9a were prepared

according to literature procedures.

1H, 13C, and 31P NMR data were obtained using a Varian Unity+ 300 MHz NMR

instrument. 1H and 13C chemical shifts were referenced according to the deuterated

solvent used. The 31P chemical shifts were referenced using an external 85% H3PO4

sample. Elemental Analysis was conducted by Canadian Microanalytical Inc.

Preparation of Nickel Salicylaldiminato PTA Complexes by Ligand Exchange with

1 (2a)

To a 50 mL Schlenk flask containing 1a (100 mg, 0.138 mmol) in 3 mL of toluene

was added a concentrated methanol solution of PTA (23.7 mg, 0.152 mmol, in 5 mL of

MeOH). A yellow precipitate immediately formed, and the reaction was stirred

overnight. After filtration and washing with pentane, the solid was re-dissolved in

CH2Cl2 and filtered. After removal of the solvent under vacuum, 2a was obtained.

23

2a (R3=NO2, R1=R2=R4=H): 1H NMR (300 MHz, CD2Cl2, δ): 1.00 (d, 3JHH=6.60

Hz, 6H, CH(CH3)2), 1.29 (d, 3JHH=6.90 Hz, 6H, CH(CH3)2), 3.52 (sept, 3JHH=6.90 Hz,

2H, CH(CH3)2), 3.91 (s, 6 H, NCH2N), 4.313 (dd, 2JHP=19.79 Hz, 2JHH=12.90 Hz, 6H,

PCH2N), 6.50-6.59 (m, 3H, Ar), 6.79-6.85 (m, 3H, Ar), 6.89-6.94 (m, 3H, Ar), 7.17-7.25

(m, 1H, Ar), 8.00 (d, 4JHP=8.10 Hz, 1H, HC=N), 8.11-8.17 (m, 2H, Ar). 13C NMR (75

MHz, CD2Cl2, δ): 22.23, 25.61, 28.74, 50.46 (d, 1JCP=14.86 Hz, P-C-N), 73.20 (d,

3JCP=6.26 Hz, N-C-N), 118.03, 122.68, 122.74, 126.10, 126.19, 128.67, 132.33, 136.02,

137.18, 137.23, 139.97, 142.49, 143.23, 148.73, 165.82, 171.03. 31P NMR (121 MHz,

CD2Cl2, δ): -57.76. Yield: 58.3%. Elem. Anal. Calcd. for C31H38N5O3PNi: C, 60.22%;

H, 6.19%; N, 11.33%; Exp.: C, 61.32%; H, 6.07%; N, 10.70%.

Direct Synthetic Approach for the Preparation of Nickel and Palladium

Salicylaldiminato PTA Complexes (3a-f and 4a-f)

To a 50 mL Schlenk flask containing (TMEDA)Ni(CH3)2 (200 mg, 0.976 mmol) in

10mL of toluene at –300C, PTA (170 mg, 1.07 mmol) in 5mL of methanol was

introduced via cannula. To this mixture, Ha (318 mg, 0.976 mmol) in 10mL of toluene

at –30ºC was slowly cannulated into the flask, and the solution was stirred for 30

minutes. Subsequently, the temperature was raised to room temperature, and the light

red solution was further stirred overnight. After stirring overnight, the solvent was

removed in vacuo until approximately 5mL remained, and 20mL of cold (-780C) pentane

was added, resulting in the formation of a yellow precipitate. The solid was collected by

cold cannula filtration and washed (3 x 5mL) with cold (-780C) pentane, affording 3a in

60% yield (350 mg). The other salicylaldiminato nickel and palladium

24

((TMEDA)Pd(CH3)2 was used as the palladium source) PTA complexes were prepared

in an analogous fashion. Complexes 3a-e and 4a-e were all obtained as yellow solids in

good yields.

3a (R3=NO2, R1=R2=R4=H): 1H NMR (300 MHz, C6D6, δ): -1.33 (s, 3H, Ni-CH3),

0.98 (d, 3JHH=6.60 Hz, 6H, CH(CH3)2), 1.35 (d, 3JHH=6.90 Hz, 6H, CH(CH3)2), 3.58

(sept, 3JHH=6.90 Hz, 2H, CH(CH3)2), 3.73 (s, 6H, NCH2N), 4.09 (dd, 2JHP=32.69 Hz,

2JHH=12.90 Hz, 6H, PCH2N), 6.41 (t, 3JHH=9.60 Hz, 1H, Ar), 7.05-7.13 (m, 3H, Ar), 7.46

(s, 1H, HN=C), 7.98 (d, 3JHH=2.94, 1H, Ar), 8.11 (dd, 3JHH=2.94 Hz, 3JHH=9.60 Hz, 1H,

Ar). 13C NMR (75 MHz, C6D6, δ): –15.84 (d, 2JCP=4.25 Hz, Ni-CH3), 23.47, 25.09,

29.00, 50.85 (d, 1JCP=5.93 Hz, P-C-N), 73.93 (d, 3JCP=4.85 Hz, N-C-N), 122.93, 124.14,

127.36, 129.18, 132.84, 141.01, 165.92. 31P NMR (121 MHz, C6D6, δ): -47.10.

3b (R1=OMe, R2=R3=R4=H): 1H NMR (300 MHz, C6D6, δ): -1.26 (s, 3H, Ni-CH3),

1.04 (d, 3JHH=6.30 Hz, 6H, CH(CH3)2), 1.40 (d, 3JHH=6.60 Hz, 6H, CH(CH3)2), 3.42 (s,

3H, OCH3), 3.82 (sept, 3JHH=6.60 Hz, 2H, CH(CH3)2), 4.00 (s, 6H, NCH2N), 4.08 (dd,

2JHP=22.79 Hz, 2JHH=13.20 Hz, 6H, PCH2N), 6.46 (t, 3JHH=7.80 Hz, 1H, Ar), 6.59 (d,

3JHH=7.50 Hz, 1H, Ar), 6.67 (d, 3JHH=7.20 Hz, 1H, Ar), 6.94-7.48 (m, 3H, Ar), 7.90 (s,

1H, HC=N). 13C NMR (75 MHz, C6D6, δ): –19.71 (d, 2JCP=4.36 Hz, Ni-CH3), 21.10,

22.82, 26.50, 48.38 (d, 1JCP=6.03 Hz, P-C-N), 53.46 (d, 3JCP=4.90 Hz, N-C-N), 71.29

(OCH3), 111.10, 116.88, 121.58, 123.80, 124.48, 128.34, 132.51, 139.29, 147.16,

151.42, 156.86, 163.32. 31P NMR (121 MHz, C6D6, δ): -54.56. Yield 51.1%. Elem.

Anal. Calcd. for C27H39N4OPNi: C, 59.91%; H, 7.26%; N, 10.35%; Exp.: C, 59.86%; H,

7.10%; N, 10.55%.

25

3c (R3=CH(CH)2CH=R4, R1=R2=H): 1H NMR (300 MHz, C6D6, δ): -1.26 (s, 3H,

Ni-CH3), 1.06 (d, 3JHH=6.60 Hz, 6H, CH(CH3)2), 1.39 (d, 3JHH=6.60 Hz, 6H, CH(CH3)2),

3.83 (s, 6H, NCH2N), 3.90 (sept, 3JHH=6.90 Hz, 2H, CH(CH3)2), 4.02 (dd, 2JHP=34.19

Hz, 2JHH=13.20 Hz, 6H, PCH2N), 6.96-7.14 (m, 6H, Ar), 7.46-7.52 (m, 3H, Ar), 8.87 (s,

1H, HC=N). 13C NMR (75 MHz, C6D6, δ): -18.68 (d, 2JCP=4.30 Hz, Ni-CH3), 21.14,

23.03, 26.51, 48.33 (P-C-N), 71.39 (N-C-N), 107.33, 116.44, 120.09, 121.67, 123.70,

124.52, 125.05, 127.41, 132.99, 133.52, 139.67, 148.00, 157.31, 165.72. 31P NMR (121

MHz, C6D6, δ): -60.88. Yield: 55.0%. Elem. Anal. Calcd. for C30H39N4OPNi: C,

62.41%; H, 6.81%; N, 9.70%; Exp.: C, 62.83%; H, 6.74%; N, 10.48%.

3d (R1=R3=Cl, R2=R4=H): 1H NMR (300 MHz, C6D6, δ): -1.29 (s, 3H, Ni-CH3),

0.99 (d, 3JHH=6.60 Hz, 6H, CH(CH3)2), 1.38 (d, 3JHH=6.60 Hz, 6H, CH(CH3)2), 3.66

(sept, 3JHH=6.60 Hz, 2H, CH(CH3)2), 3.93 (s, 6H, NCH2N), 4.04 (dd, 2JHP=22.79 Hz,

2JHH=13.20 Hz, 6H, PCH2N), 6.71 (d, 3JHH=2.70 Hz, 1H, Ar), 7.07-7.13 (m, 3H, Ar),

7.38 (d, 3JHH=2.70 Hz, 1H, Ar), 7.54 (s, 1H, HC=N). 13C NMR (75 MHz, C6D6, δ): -

18.65 (d, 2JCP=3.62 Hz, Ni-CH3), 21.06, 22.77, 26.56, 48.61 (d, 1JCP=8.90 Hz, P-C-N),

71.40 (d, 3JCP=5.50 Hz, N-C-N), 115.47, 117.90, 121.69, 124.87, 126.47, 129.58,

131.53, 138.81, 146.38, 158.35, 162.81. 31P NMR (121 MHz, C6D6, δ): -59.36. Yield:

72.4%.

3e (R1=C6H5, R2=R3=R4=H): 1H NMR (300 MHz, C6D6, δ): -1.27 (s, 3H, Ni-CH3),

1.04 (d, 3JHH=6.60 Hz, 6H, CH(CH3)2), 1.37 (d, 3JHH=6.60 Hz, 6H, CH(CH3)2), 3.66 (s,

6H, NCH2N), 3.82 (t, 3JHH=6.90 Hz, 2H, CH(CH3)2), 3.91 (dd, 2JHP=42.29 Hz,

2JHH=13.20 Hz, 6 H, PCH2N), 6.54 (t, 3JHH=7.50 Hz, 1H, Ar), 6.94 (d, 3JHH=7.80 Hz, 1H,

26

Ar), 7.07-7.22 (m, 6H, Ar), 7.29 (d, 3JHH=6.90 Hz, 1H, Ar), 7.48 (d, 3JHH=6.90 Hz, 2H,

Ar), 7.90 (s, 1H, HC=N). 13C NMR (75 MHz, C6D6, δ): –19.43 (d, 2JCP=4.22 Hz, Ni-

CH3), 21.08, 22.87, 26.51, 48.08 (d, 1JCP=12.22 Hz, P-C-N), 71.12 (d, 3JCP=4.60 Hz, N-

C-N), 112.14, 117.81, 121.63, 124.64, 126.21, 128.35, 132.51, 133.10, 133.67, 139.31,

139.86, 147.01, 162.98, 163.90. 31P NMR (121 MHz, C6D6, δ): -55.34. Yield: 69.7%.

Elem. Anal. Calcd. for C32H41N4OPNi: C, 65.47%; H, 6.98%; N, 9.55%; Exp.: C,

65.49%; H, 6.95%; N, 9.42%.

4a (R3=NO2, R1=R2=R4=H): 1H NMR (300 MHz, C6D6, δ): –0.19 (d, 3JHP=3.28 Hz,

3H, Pd-CH3), 1.00 (d, 3JHH=6.90 Hz, 6H, CH(CH3)2), 1.32 (d, 3JHH=6.90 Hz, 6H,

CH(CH3)2), 3.29 (sept, 3JHH=6.90 Hz, 2H, CH(CH3)2), 3.83 (s, 6H, NCH2N), 3.99 (dd,

2JHP=30.59 Hz, 2JHH=13.50 Hz, 6H, PCH2N), 6.65 (d, 3JHH=9.60 Hz, 1H, Ar), 7.14 (d,

3JHH=3.00 Hz, 1H, Ar), 7.21-7.17 (m, 2H, Ar), 7.53 (d, 4JHP=10.20 Hz, 1H, HC=N), 8.11

(d, 3JHH=2.70 Hz, 1H, Ar), 8.22 (dd, 3JHH=3.00 Hz, 3JHH=9.60 Hz, 1H, Ar). 13C NMR (75

MHz, C6D6, δ): –7.88 (d, 2JCP=17.73 Hz, Pd-CH3), 23.32, 25.00, 28.73, 50.95 (d,

1JCP=16.74 Hz, P-C-N), 73.60 (d, 3JCP=6.11 Hz, N-C-N), 118.54, 123.90, 127.44, 130.15,

135.21, 136.30, 141.02, 147.35, 166.63, 173.39. 31P NMR (121 MHz, C6D6, δ): -46.18.

Yield: 95.7%. Elem. Anal. Calcd. for C26H36N5O3PPd: C, 51.71%; H, 5.96%; N,

11.60%; Exp.: C, 52.16%; H, 6.30%; N, 11.63%.

4b (R1=OCH3, R2=R3=R4=H): 1H NMR (300 MHz, C6D6, δ): –0.18 (d, 3JHP=3.60

Hz , 3H, Pd-CH3), 1.01 (d, 3JHH=6.90 Hz, 6H, CH(CH3)2), 1.32 (d, 3JHH=6.60 Hz, 6H,

CH(CH3)2), 3.47 (sept, 3JHH=6.90 Hz, 2H, CH(CH3)2), 3.54 (s, 3H, OCH3), 3.98-4.08

(m, 12H, PCH2N, NCH2N), 6.43 (t, 3JHH=7.21 Hz, 1H, Ar), 6.71 (m, 2H, Ar), 7.92 (d,

27

4JHH=11.43 Hz, 1H, HC=N). 13C NMR (75 MHz, C6D6, δ): –9.33 (d, 2JCP=13.80 Hz, Pd-

CH3), 23.36, 25.14, 28.62 51.28 (d, 1JCP=15.24 Hz, P-C-N), 56.46 (OCH3), 73.83 (d,

3JCP=7.62 Hz, N-C-N), 112.57, 115.46, 119.49, 123.94, 126.93, 128.61, 141.70, 148.46,

154.17, 161.82, 166.45. 31P NMR (121 MHz, C6D6, δ): -44.74. Yield: 91.2%. Elem.

Anal. Calcd. for C27H39N4O2PPd: C, 54.97%; H, 6.61%; N, 9.50%; Exp.: C, 55.21%; H,

6.50%; N, 9.41%.

4c (R3=CH(CH)2CH=R4, R1=R2=H): 1H NMR (300 MHz, C6D6, δ): –0.20 (d,

3JHP=3.90 Hz, 3H, Pd-CH3), 1.02 (d, 3JHH=6.90 Hz, 6H, CH(CH3)2), 1.30 (d, 3JHH=6.90

Hz, 6Hz, CH(CH3)2), 3.54 (sept, 3JHH=7.20 Hz, 2H, CH(CH3)2), 3.85 (s, 6H, N-C-N),

3.93 (dd, 2JHP= 29.39 Hz, 2JHH=13.20 Hz, 6H, PCH2N), 6.95-7.13 (m, 5H, Ar), 7.45(d,

3JHH=8.10 Hz, 1H, Ar), 7.52 (d, 3JHH=9.30 Hz, 1H, Ar), 7.57 (d, 3JHH=8.70 Hz, 1H, Ar),

8.95 (d, 4JHP=11.95 Hz, 1H, HC=N). 13C NMR (75 MHz, C6D6, δ): –8.88 (d, 2JCP=15.31

Hz, Pd-CH3), 23.45, 25.37, 28.63, 51.05 (d, 1JCP=15.31 Hz, P-C-N), 73.74 (d, 3JCP=7.62

Hz, N-C-N), 119.23, 122.10, 124.04, 126.95, 127.38, 127.46, 128.92, 129.69, 129.89,

136.38, 137.29, 142.13, 149.39, 160.09. 31P NMR (121 MHz, C6D6, δ): -47.18. Yield:

98.5%. Elem. Anal. Calcd. for C30H39N4OPPd: C, 59.20%; H, 6.41%; N, 9.21%; Exp.:

C, 60.01%; H, 6.48%; N, 8.81%.

4d (R1=R3=Cl, R2=R4=H): 1H NMR (300 MHz, C6D6, δ): –0.19 (d, 3JHP=3.30 Hz,

3H, Pd-CH3), 1.00 (d, 3JHH=6.90 Hz, 6H, CH(CH3)2), 1.34 (d, 3JHH=6.90 Hz, 6H,

CH(CH3)2), 3.34 (sept, 3JHH=6.60 Hz, 2H, CH(CH3)2), 3.98 (s, 6H, NCH2N), 3.99 (d,

2JHP=20.39 Hz, 2JHH=12.90 Hz, 6H, PCH2N), 6.77 (d, 3JHH=2.70 Hz, 1H, Ar), 7.13-7.18

(m, 3H, Ar), 7.51 (d, 3JHH=3.00 Hz, 1H, Ar), 7.57 (d, 4JHP=10.50 Hz, 1H, HC=N). 13C

28

NMR (75 MHz, C6D6, δ): –8.40 (d, 2JCP=13.73 Hz, Pd-CH3), 23.33, 25.07, 28.67, 51.24

(d, 1JCP=16.82 Hz, P-C-N), 73.66 (d, 3JCP=7.62 Hz, N-C-N), 116.66, 120.34, 124.04,

127.32, 129.40, 133.93, 134.72, 141.16, 147.69, 162.56, 166.02. 31P NMR (121 MHz,

C6D6, δ): -44.54. Yield: 82.8%. Elem. Anal. Calcd. for C26H35N4OPCl2Pd: C, 49.69%;

H, 5.57; N, 8.92%; Exp.: C, 50.49%; H, 5.59%; N, 8.92%.

4e (R1=C6H5, R2=R3=R4=H): 1H NMR (300 MHz, C6D6, δ): -0.17 (d, 3JHP=3.60 Hz,

3H, Pd-CH3), 1.02 (d, 3JHH=6.90 Hz, 6H, CH(CH3)2), 1.31 (d, 3JHH=6.90 Hz, 6H,

CH(CH3)2), 3.47 (sept, 3JHH=7.20 Hz, 2H, CH(CH3)2), 3.70 (s, 6H, NCH2N), 3.91 (dd,

2JHP=20.09 Hz, 2JHH=13.50 Hz, 6H, PCH2N), 6.54 (t, 3JHH=6.90 Hz, 1H, Ar), 6.93 (m,

1H, Ar), 7.12 (m, 1H, Ar), 7.24 (t, 3JHH=7.20 Hz, 2H, Ar), 7.40 (m, 1H, Ar), 7.59-7.62

(m, 2H, Ar), 7.93 (d, 4JHP=11.70 Hz, 1H, HC=N). 13C NMR (75 MHz, C6D6, δ): -7.88

(d, 2JCP=54.59 Hz, Pd-CH3), 23.98, 25.82, 29.22, 51.50 (d, 1JCP=15.23 Hz, P-C-N),

73.70(d, 3JCP=7.62 Hz, N-C-N), 113.53, 120.07, 123.61, 126.42, 126.64, 130.45, 135.83,

136.56, 141.17, 142.02, 147.67, 166.53, 166.34. 31P NMR (121 MHz, C6D6, δ): -46.16.

Yield: 67.6%.

Preparation of Palladium Salicylaldiminato DAPTA Complex (4d-DAPTA)

The complex was prepared in the same manner as all other PTA complexes. As with

the PTA complexes, this derivative is yellow in color and obtained in excellent yield.

4d-DAPTA (R1=R3=Cl; R2=R4=H): 1H NMR (300 MHz, C6D6, δ): -0.14 (d,

3JHP=3.60 Hz, 3H, Pd-CH3), 0.97 (dd, 3JHH=6.60 Hz, 3JHH=2.70 Hz, 6H, CH(CH3)2), 1.29

(dd, 3JHH=6.60 Hz, 3JHH=6.00 Hz, 6H, -C(O)CH3), 1.80 (d, 3JHH=6.60 Hz, 6H,

CH(CH3)2), 2.97 – 3.02 (m, 1H, DAPTA), 3.24 – 3.34 (m, 5H, DAPTA), 3.51 (d,

29

3JHH=14.10, 1H, DAPTA), 3.62 – 3.67 (m, 1H, DAPTA), 4.21 (d, 3JHH=13.80 Hz, 1H,

DAPTA), 4.23 – 4.51 (m, 1H, DAPTA), 6.75 (d, 3JHH=2.7 Hz, 1H, Ar), 7.11 – 7.15 (m,

2H, Ar), 7.48 (d, 3JHH=2.7 Hz, 1H, Ar), 7.55 (d, 4JHP=11.40 Hz, 1H, HC=N). 13C NMR

(75 MHz, C6H6, δ): -7.65 (d, 2JCP=12.15 Hz, Pd-CH3), 21.09, 22.78, 24.56, 28.23, 37.28

(d, 1JCP=22.05 Hz, P-C-N), 41.97 (d, 1JCP=19.73 Hz, P-C-N), 47.13 (d, 1JCP=24.30 Hz, P-

C-N), 61.50 (d, 4JCP=4.50 Hz, C(O)CH3), 66.61 (d, 4JCP=4.50 Hz, C(O)CH3), 116.63,

119.75, 123.60, 123.68, 125.53, 127.06, 128.40, 128.74, 129.17, 133.49, 134.44, 140.69

(d, 3JCP=9.15 Hz, C=N), 146.91, 168.46 (C=O), 169.23(C=O). 31P NMR (121 MHz,

C6D6, δ): -24.12. IR (CH2Cl2): v(C=O)=1605 cm-1. Yield: 96.8%. Elem. Anal. Calcd.

for C29H39N4O3PCl2Pd: C, 49.79%; H, 5.57; N, 8.01%; Exp.: C, 51.96%; H, 5.81%; N,

7.66%.

Polymerization of Ethylene Using 2a

To a 100 mL glass miniclave reactor was added approximately 10 mL of degassed

water, followed by the addition of 2a (100 mg, 0.162 mmol) in 10 mL of toluene.

Ethylene was added until the total pressure was 8 atm. The mixture was stirred for

approximately 5 hr at ambient temperature. Subsequent to venting the system, the

toluene layer was separated and toluene was removed by roto-evaporation leaving

behind no polyethylene.

30

RESULTS AND DISCUSSION

The preparation of 1 was achieved by using the trans-(PPh3)2NiCl(Ph) precursor

and one equivalent of the Na+a-f salts as previously described.9 An advantage to using

trans-(PPh3)2NiCl(Ph) is its air-stable nature, as perfect, large, maroon crystals are

formed in air. Surprisingly, the solid-state structure of the complex has never been

published, and herein, we wish to highlight some of its physical data. Crystal data, and

selected bond distances and angles are tabulated in Table 2.1 and Table 2.2, respectively.

A thermal ellipsoid representation of the complex is provided in Figure 2.3 showing

50% probability. Typical of Ni(II) complexes, the metal center adopts a slightly

distorted square planar geometry in which the two phosphines lie trans to one another.

The P(1)-Ni(1)-P(2) and C(1)-Ni(1)-Cl(1) bond angles were found to be 175.33(3) and

169.76(6)˚, respectively. The phenyl ring is also positioned in a manner to decrease

electronic repulsions, as the C6H5 plane is perpendicular to that formed by the complex.

The Ni(1)-C(1), Ni(1)-Cl(1), Ni(1)-P(1), and Ni(1)-P(2) bond distances were found to be

1.887(2), 2.2327(6), 2.2114(6), and 2.2155(6) Å, respectively.

Table 2.1. Crystallographic data for complex, trans-(PPh3)2NiCl(Ph). crystal system triclinic V, Å3 1727.4(4) space group P/1 Z 2 a, Å 11.0038(13) T, K 110 b, Å 11.8570(14) d(calcd), g/cm3 1.397 c, Å 13.9008(16) Abs, coeff, mm-1 0.808 α, deg 96.462(2) R,a %[I>2σ(I)] 3.44 β, deg 94.075(2) Rw

a %[I>2σ(I)] 5.97 γ, deg 105.442(2)

31

Table 2.2. Selected bond distances (Ǻ) and angles for complex trans-(PPh3)2NiCl(Ph). Ni(1)-C(1) 1.887(2) Ni(1)-P(1) 2.2114(6) Ni(1)-Cl(1) 2.2327(6) Ni(1)-P(2) 2.2155(6) C(1)-Ni(1)-Cl(1) 169.76(6) P(1)-Ni(1)-Cl(1) 90.05(2) P(1)-Ni(1)-P(2) 175.33(3) P(2)-Ni(1)-Cl(1) 94.13(2) C(1)-Ni(1)-P(1) 89.20(6) C(1)-Ni(1)-P(2) 87.04(6) Initially, we attempted the synthesis of the PTA derivatives of nickel

salicylaldiminato complexes using the commonly employed protocol of rapidly stirring a

biphasic mixture consisting of the PPh3 analog complex (e.g., 1a) in toluene with excess

PTA in water at ambient temperature. However, under these reaction conditions no

ligand substitution occurred. This procedure is generally successful since PTA has

smaller steric requirements and is a more donating ligand than PPh3.35, 36 Evidently, in

this instance there is little PTA in the organic phase and vice versa. This conclusion is

supported upon carrying out the reaction in a homogeneous toluene/methanol mixture in

which 1a and PTA were first dissolved in toluene and methanol, respectively (Scheme

2.1). That is, upon addition of the concentrated PTA solution to a solution of 1a in

toluene, a yellow precipitate formed immediately. The identity of this yellow derivative

(2a) was confirmed to be the PTA analog of 1a by NMR spectroscopy, elemental

analysis, and X-ray crystallography.

32

Figure 2.3. Thermal ellipsoid representation of trans-(PPh3)2NiCl(Ph) showing 50% probability.

33

Scheme 2.1

R3

i-Pr

O

N

Ni

PPh3

Ph

i-Pr

+ N NN

P

Toluene/ MeOHr.t., overnight-PPh3

R3

i-Pr

O

N

Ni

Ph

i-Pr

N

N

N

P

1a-e

PTA

R1R2

R4

R1R2

R4

2a-e

The 1H NMR spectrum of 2a in CD2Cl2 displayed many characteristic resonances.

Importantly, the signals corresponding to the terminal isopropyl groups (CH(CH3)2)

were split into two sets of doublets indicating a rotation barrier of the aniline moiety

upon ligand coordination, consistent with what is observed for other salicylaldiminato

complexes.37, 38 Hydrogen resonances due to the PTA ligand are located between 3.7-4.2

ppm, with the NCH2N hydrogens appearing as singlets. The resonance due to the

PCH2N hydrogen is observed as a doublet of doublets as a result of coupling to

phosphorus and the geminal proton (2JHP~25 Hz and 2JHH~13 Hz). The aldimine

(HC=N) hydrogen is displayed as a doublet near 8.0 ppm with phosphorus coupling on

the order of 8.1 Hz, as previously reported for the PPh3 derivatives (e.g., 1).9 The 31P

NMR resonance in 2a (-57.76 ppm) is shifted in CD2Cl2 40.5 ppm downfield from free

PTA at -98.3 ppm in water.

Alternatively, salicylaldiminato PTA complexes may be prepared via a direct

synthetic approach in which (TMEDA)M(CH3)2 (M = Ni, Pd) is used as the metal

34

precursor.34 Liberating methane in the process, the metal precursor is reacted with PTA

and the corresponding salicylaldimine at -30ºC to yield the nickel and palladium

complexes (3 and 4) in moderate to quantitative yields (Scheme 2.2). The 1H NMR

resonance of the aldimine hydrogen in 4 displays phosphorus coupling (JHP ~ 11 Hz)

with chemical shift values similar to those observed for 1.9 Resonances due to the M-

CH3 protons are consistent with other group 10 complexes, occurring in the 0 to -1 ppm

range.38, 39 Interestingly, the nickel derivatives, 3, do not exhibit 31P coupling of the

methyl and aldimine hydrogen atoms to PTA. This is in contrast to the SHOP catalyst

developed by Keim and co-workers where 31P coupling to the methyl hydrogens was

observed (JHP ~7.4 Hz).39a Complex 4, however, does exhibit 31P coupling (JHP ~ 5 Hz)

of the Pd-CH3 hydrogen atoms to PTA. A representative 1H NMR spectrum of 4d is

presented in Figure 2.4.

Scheme 2.2

N NN

P

N

N

M

i-Pr

i-PrN

HO

R1 R2

R3

R4R3

i-Pr

O

N

M

CH3

i-Pr

N

NN

P

R1R2

R4

+ +

M = Ni (3a-f) Pd (4a-f)

Toluene/MeOH1. -30ºC, 30 min2. r.t., overnight-CH4, TMEDA

M = Ni Pd

a-f

PTA

35

Figure 2.4. Representative 1H NMR spectrum of Pd(1/2Sal-Cl)PTA, 4d.

1.5 1.0 0.5 0.0

7.55

7.58

Pd-CH3

CH(CH3)

CH(CH3) HN=C, JHP=10.5 Hz

7.59 7.58 7.57 7.56 7.55 7.54 7.53 7.52

JHP = 3.3 Hz

1.5 1.0 0.5 0.0

7.55

7.58

Pd-CH3

CH(CH3)

CH(CH3) HN=C, JHP=10.5 Hz

7.59 7.58 7.57 7.56 7.55 7.54 7.53 7.52

JHP = 3.3 Hz

36

The 13C NMR spectra of complexes 3 and 4 also display unique resonances. The

Ni-CH3 carbon resonances are observed in the -15 to -20 ppm range with 31P coupling on

the order of 4 Hz. In contrast, the Pd-CH3 carbon resonances are displayed further

downfield (-7 to -9 ppm) with a larger 31P coupling (JCP~ 15 Hz). The NCH2N and

PCH2N carbons of the PTA ligand are observed in the 50 and 70 ppm region,

respectively. 31P coupling is also observed for the PCH2N carbons with approximate

values of 8 and 15 Hz for 3 and 4, respectively. As expected, a smaller 31P coupling

constant is associated with the NCH2N carbon, with JCP values on the order of 5 to 7 Hz

for 3 and 4, respectively. The 31P NMR resonances for these complexes are observed at

approximately -60 ppm and -45 ppm for 3 and 4, respectively.

The solid-state structure of the nickel(II) salicylaldimato derivative containing

the PPh3 ligand (complex 1e in Figure 2.1) has been reported by Grubbs and

coworkers.9a Herein, we describe the solid-state structure of an analogous complex, 1a,

for comparative purposes. Crystals of 1a suitable for X-ray analysis were obtained from

a solution of 1a in toluene maintained at -20ºC for approximately two weeks. Tables 2.3

and 2.4 contain the crystallographic data, and selected bond distances and angles,

respectively; whereas a thermal ellipsoid representation of complex 1a may be found in

Figure 2.5. As expected for four-coordinate d8 metal complexes, the structure of 1a

adopts a nearly ideal square planar geometry with N–Ni–P and C–Ni–O bond angles of

176.61(7) and 171.64(10)º, respectively. The isopropyl groups on the 2,6-

diisopropylbenzimine lie perpendicular to the plane created by the N, P, O, C atoms.

37

Table 2.3. Crystallographic data for complexes 1a, 2a, 4a, 4b, 3b', 3b, 3d, 4c, 4d, and 4d-DAPTA. 1a 2a 4a 4b 3b'

Cryst syst triclinic monoclinic triclinic orthorhombic monoclinic

space group P-1 P2(1)/n P-1 Pbca P2(1)/n

V, Å3 1780.6(4) 3169.3(5) 1336.4(18) 5384(4) 3947.3(8)

Z 2 4 2 8 4

a, Å 9.5718(12) 10.1182(9) 9.127(7) 12.249(6) 8.9737(11)

b, Å 12.0581(16) 20.5266(18) 10.888(8) 18.457(8) 20.255(3)

c, Å 15.784(2) 15.5267(13) 15.293(14) 23.812(11) 21.720(3)

α, deg 90.158(2) — 69.195(14) — —

β, deg 99.214(3) 100.643(2) 76.151(19) — 90.919(3)

γ, deg 97.906(3) — 71.950(12) — —

T, K 110 110 110 110 110

d(calc), g/cm3 1.349 1.474 1.501 1.453 1.286

Abs coeff, mm-1 0.633 0.874 0.791 0.780 0.669 R,a % [I > 2σ (I)] 4.79 8.10 8.00 3.43 6.11

Rw,a % 8.79 19.85 9.41 5.23 14.62

38

Table 2.3 (Continued). 3b 3d 4c 4d 4d-DAPTA

Cryst syst monoclinic monoclinic triclinic monoclinic triclinic

space group P2(1)/n P2(1)/n P-1 P2(1)/n P-1

V, Å3 2846.9(19) 2742.9(5) 1380.9(3) 2752(2) 3350.3(16)

Z 4 4 2 4 4

a, Å 11.366(4) 12.1482(15) 9.8304(11) 10.703(4) 12.530(4)

b, Å 23.445(9) 15.4883(19) 12.8719(13) 12.059(5) 15.620(4)

c, Å 11.875(5) 15.3461(14) 13.2710(14) 21.326(11) 17.576(5)

α, deg — — 115.773(2) — 77.533(5)

β, deg 115.888(7) 108.203(11) 102.892(2) 91.03(3) 85.937(5)

γ, deg — — 102.128(2) — 88.832(5)

T, K 110 110 110 110 110

d(calc), g/cm3 1.374 1.405 1.465 1.515 1.570

Abs coeff, mm-1 0.864 0.987 0.761 0.953 0.960 R,a % [I > 2σ (I)] 7.21 5.73 3.12 5.69 7.93

Rw,a % 23.43 10.72 3.85 11.45 10.24 a R = Σ || Fo | – | Fc || / ΣFo and RwF = {[Σw(Fo – Fc)2] / ΣwFo

2}½

39

Table 2.4. Selected bond distances (Å) and angles of complexes 1a, 2a, 4a, 4b, 3b', 3b, 3d, 4c, 4d and 4d-DAPTA.a

1a 2a 4a 4b 3b'

Bond Distance

M(1)-C(1) 1.893(3) 1.893(6) 2.024(9) 2.036(4) ----------

M(1)-P(1) 2.1754(8) 2.1345(18) 2.199(3) 2.1995(12) ----------

M(1)-O(1) 1.9141(19) 1.888(4) 2.094(5) 2.068(2) 1.827(3)

M(1)-N(1) 1.947(2) 1.964(5) 2.097(6) 2.087(3) 1.907(3)

Bond Angle

C(1)-M(1)-O(1) 171.64(10) 169.7(2) 176.1(3) 177.13(13) ----------

P(1)-M(1)-C(1) 84.86(8) 83.85(18) 87.7(3) 86.26(11) ----------

O(1)-M(1)-N(1) 92.86(4) 87.68(13) 88.6(2) 89.67(11) 93.37(12)

P(1)-M(1)-O(1) 89.65(6) 92.99(18) 90.44(17) 90.98(8) ----------

P(1)-M(1)-N(1) 176.61(7) 173.33(15) 175.82(19) 173.27(8) ----------

N(1)-M(1)-N(2) -------- -------- -------- -------- 178.04(12)

40

Table 2.4 (Continued).

3b 3d 4c 4d 4d-DAPTA

Bond Distance

M(1)-C(1) 1.926(8) 1.923(4) 2.026(3) 2.045(12) 2.029(8)

M(1)-P(1) 2.119(2) 2.1381(14) 2.2080(10) 2.211(3) 2.209(2)

M(1)-O(1) 1.881(5) 1.907(3) 2.072(2) 2.068(9) 2.077(5)

M(1)-N(1) 1.931(6) 1.936(4) 2.074(3) 2.117(8) 2.080(6)

Bond Angle

C(1)-M(1)-O(1) 172.7(3) 171.03(17) 177.06(13) 176.4(3) 175.4(3)

P(1)-M(1)-C(1) 86.7(2) 88.65(15) 88.23(11) 90.0(3) 88.5(3)

O(1)-M(1)-N(1) 94.2(2) 93.71(13) 88.47(10) 89.6(3) 90.9(2)

P(1)-M(1)-O(1) 86.50(15) 82.38(10) 89.18(7) 86.4(2) 86.91(16)

P(1)-M(1)-N(1) 178.20(18) 172.58(12) 177.27(8) 174.2(2) 177.82(17) a Estimated standard deviations are given in parentheses.

41

Figure 2.5. Thermal ellipsoid representation of Ni(1/2Sal-NO2)PPh3, 1a, showing 50% probability.

42

Such positioning allows these groups to effectively shield the axial faces of the metal

center to enhance the rate of enchainment relative to chain transfer.9, 28 The positioning

is also in accord with the solution spectroscopic data where two sets of doublets are

observed for the terminal isopropyl hydrogens in the 1H NMR spectrum. The Ni-C bond

distance was found to be nearly identical to that observed in 1e, having a value of

1.893(3) Å. Consistent with the Ni-P bond distance of 1e (i.e., 2.172(2) Å) in 1a, the

distance associated with this bond was found to be 2.1754(8) Å, indicating little steric

interaction of large groups in the R1 position with PPh3.

Using the same crystal growth technique as described for 1a, suitable crystals for

X-ray analysis of several of the other derivatives were obtained. The thermal ellipsoid

drawings of two such complexes (2a and 4a) are shown in Figures 2.6 and 2.7,

respectively. Crystallographic data, and selected bond lengths and angles are tabulated

in Table 2.3 and Table 2.4, respectively. Similar to the solid state structure of 1a and 1e,

these complexes adopt the typical square planar geometry (e.g., N–M–P angles in 2a and

4a were found to be 173.33(15) and 173.27(8)º). The nickel-carbon bond distance to the

phenyl ligand in 2a at 1.893(6) Å is identical to that seen in complex 1a. Comparing the

Ni–P bond distances in 1a of 2.1754(8) Å to that seen in 2a of 2.1345(18) Å, we notice a

shortening of the bond distance in 2a of approximately 0.05 Å. This decrease in Ni–P

bond length upon going from PPh3 to PTA is consistent with the smaller cone angle

(103º) and more basic nature of PTA as compared to PPh3. The Pd-P bond distance in

4a was found to be 2.199(3) Å, which is slightly shorter than that observed in cis-

43

Figure 2.6. Thermal ellipsoid representation of Ni(1/2Sal-NO2)PTA, 2a, showing 50% probability.

44

Figure 2.7. Thermal ellipsoid representation of Pd(1/2Sal-NO2)PTA, 4a, showing 50% probability.

45

PdCl2(PTA)2 of 2.226(5) Å13. The difference in the Pd-P bond length in 4a vs the

corresponding Ni-P bond distance in 2a of 0.07 Å is less than the covalent radii

difference in nickel and palladium of 0.11 Å. The Pd-C(methyl) bond length was

determined to be 2.024(9) Å in 4a. The solid-state structure of the methoxy derivative,

complex 4b, was also determined and its structure is depicted in the thermal ellipsoid

representation in Figure 2.8. In this instance, the electron donating ability of the OCH3

group is not reflected in the Pd-P bond distance of 2.1995(12) Å, which is the same as

that observed in 4a (Table 2.4). However, the Pd-C bond distance increases by

approximately 0.025 Å. Nevertheless, electron donating effects have been shown to

greatly decreases the activity of the catalyst as evident in a decrease in the reported

turnover number from 253 kg polyethylene . mol Ni for 1a to 13.3 kg polyethylene . mol

Ni for 1b.9a X-ray structural data and thermal ellipsoids representations for the other

closely related (salicylaldiminato)M(methyl)(PTA) derivatives, 3b, 3d, 4c, and 4d are

provided in Table 2.3 Table 2.4, and Figures 2.9, 2.10, 2.11, and 2.12, respectively.

In a few cases during crystal growth over extended periods of time, ligand

redistribution occurred with concomitant formation of the thermodynamically stable

bis(salicylaldiminato) complexes. These crystals are black in color and appear to be

relatively stable in air. The solid-state structure of one such isolated species, 3b', has

been determined by X-ray crystallography. A thermal ellipsoid drawing of 3b' is shown

in Figure 2.13. The Ni-N and Ni-O bond distances observed in complex 3b' of 1.907(3)

and 1.827(3)Å are slightly shorter than the corresponding parameters found in the parent

46

Figure 2.8. Thermal ellipsoid representation of Pd(1/2Sal-OMe)PTA, 4b, showing 50% probability.

47

Figure 2.9. Thermal ellipsoid representation of Ni(1/2Sal-OMe)PTA, 3b, showing 50% probability.

48

Figure 2.10. Thermal ellipsoid representation of Ni(1/2Sal-Cl)PTA, 3d, showing 50% probability.

49

Figure 2.11. Thermal ellipsoid representation of Pd(1/2Sal-Ben)PTA, 4c, showing 50% probability.

50

Figure 2.12. Thermal ellipsoid representation of Pd(1/2Sal-Cl)PTA, 4d, showing 50% probability.

51

Figure 2.13. Thermal ellipsoid representation of Ni(1/2Sal-OMe)2, 3b’, showing 50% probability.

52

(salicylaldiminato)Ni(methyl)(PTA) derivative, 3b, of 1.931(6) and 1.881(5) Å,

respectively. These decreases in bond lengths are anticipated upon loss of the electron

donating phosphine ligand. The formation of such bis complexes is clearly undesirable

in polymerization processes, and has been an issue for SHOP-type systems which utilize

higher temperatures and pressure to produce high molecular weight polyethylene.40

Ethylene Polymerization

The polymerization of ethylene using 1 was first reported in 1998.9 Although

derivatives incorporating large groups in the R1 position of the salicylaldimine (e.g., 1e)

did not require a phosphine scavenger, other active derivatives such as 1a did in fact

necessitate the use of the air-sensitive co-catalyst, Ni(COD)2. Our approach to by-pass

the need for a co-catalyst involves the use of water-soluble phosphines to facilitate the

dissociation process illustrated in Figure 2.14.

[M]-PTA + ethylene

TOLUENE PHASE

WATER PHASE

M = Ni, Pd

TOLUENE PHASE

WATER PHASE

[M]

PTA

Polyethylene

Phosphine Dissociation

Figure 2.14. Polymerization of ethylene using 3/4 in a biphasic toluene/water solvent system.

53

The dissociation of PTA into the aqueous phase would effectively allow the formation of

the active catalyst in the organic phase, initiating the polymerization. Furthermore, upon

PTA dissociation, re-entering of this phosphine into the organic phase would not occur,

since PTA is not soluble in toluene. This was previously quite evident upon failing to

synthesize 2 via a biphasic toluene/water ligand replacement process (vide supra).

Upon attempting to polymerize ethylene at ambient temperature using 2a as

catalysts utilizing a biphasic toluene/water (1/1) solvent system under 8 atm of ethylene

pressure no polymer formation was observed. Raising the temperature to 70ºC resulted

in Ni(0) formation, and analysis of the water phase revealed the presence of the

phosphine oxide, PTA=O. The formation of phosphine oxide has also been observed in

other rhodium and ruthenium catalytic systems.12b

CONCLUDING REMARKS

Herein, we have reported the synthesis of methyl- and phenyl- derivatives of nickel

and palladium salicylaldiminato complexes containing the water-soluble phosphine

(PTA) in excellent yields. These complexes have all been structurally characterized in

the solid-state by X-ray crystallography. Thus far, we have been unproductive in

catalyzing the polymerization of ethylene with (salicylaldiminato)Ni(Ph)(PTA) in a

biphasic medium. This is undoubtedly due to the stability of the Ni-PTA bond, i.e., the

high temperature required to effect phosphine dissociation in this instance.

With regard to this latter point, we have attempted to determine the rate of Ni–PTA

bond dissociation in 2a initially utilizing a large excess (10 equivalents) of PPh3 as

54

incoming ligand. At ambient temperature, as well as at 35ºC, the 31P signal of PTA in 2a

at -57.8 ppm was unaffected over an extended reaction period. On the other hand, a

similar experiment involving the use of the more basic and less sterically hindered

phosphine, PMe3, as entering ligand resulted in immediate displacement of the PTA

ligand at ambient temperature. This latter process is evidently taking place via an

associative mechanism, a common occurrence in square-planar nickel(II) complexes.

Hence, qualitatively it is apparent that the dissociation of PTA from 2a is not a facile

process at modest reaction temperatures.

The slow initiation step when employing complex 2a as catalyst precursor for the

polymerization of ethylene might be overcome by preparing nickel(II) derivatives

bearing other water-soluble phosphines. For example, the water-soluble meta-TPPTS

ligand, which is electronically almost identical to PPh3 and thereby expected to have

similar or enhanced Ni–PR3 dissociation rates, would seem to be quite appropriate.41

Unfortunately, we have thus far been unsuccessful at preparing the meta-TPPTS analog

of complex 2a. This is most likely due to the significantly larger cone angle in meta-

TPPTS of 170º 42 vs that of PPh3 (145º).36 With this in mind, the palladium DAPTA

derivative, 4d-DAPTA, was successfully synthesized by using the same synthetic

methodology. Unfortunately, the 1H NMR spectrum indicates a slightly larger 3JHP

coupling constant of the Pd-CH3 protons to DAPTA when compared to 4d, and is

presumably due to a stronger Pd-P bond in 4d-DAPTA. Suitable crystals of this

complex were obtained by using the same technique employed for all other complexes,

and the crystallographic data is provided in Table 2.3 and 2.4. A thermal ellipsoid

55

representation is shown in Figure 2.15. In the solid state, the Pd-P bond distance found

to be nearly identical to 4d, as is the case for many of the other bond lengths. As is the

case for free DAPTA, the 1H and 13C NMR displays two shifts associated with the

C(O)CH3 protons, indicating a rotation barrier with respect to the N-C(O)CH3 bond.

Furthermore, the bound DAPTA in 4d-DAPTA results in a slight weakening of the

v(C=O) stretch, as is evident by an approximate 50 cm-1 shift to 1605 cm-1 for the

complex.

In principle the approach outlined in Figure 2.14 appears to be fundamentally

sound if a set of suitable conditions can be found. It is probable that employing less

sterically encumbered water-soluble triphenyl phosphine derivatives as ligands will lead

to metal complexes which have similar metal-PR3 bond dissociation energies as metal-

PPh3, thereby making them effective catalysts for this polymerization process.43

56

Figure 2.15. Thermal ellipsoid representation of Pd(1/2Sal-Cl)DAPTA, 4d-DAPTA, showing 50% probability.

57

CHAPTER III

SYNTHESIS AND CHARACTERIZATION OF 3,7-DIACETYL-1,3,7-TRIAZA-5-

PHOSPHABICYCLO[3.3.1]NONANE (DAPTA) AND ITS GROUP 6 AND

GROUP 10 COMPLEXES*

INTRODUCTION Aqueous organometallic chemistry has received much attention in recent years due

to the many advantages an aqueous medium presents to stoichiometric and catalytic

reactions.1 Water's copious and non-toxic nature, along with its distinct physical

properties, makes it an ideal solvent for numerous processes from an industrial point of

view. With regards to its physical properties, its high heat capacity enables it to

effectively distribute heat from exothermic reactions, and its immiscibility with many

organic compounds allows it to serve as part of a biphasic system where products can be

easily separated from water soluble catalysts by a simple extraction process. The latter

procedure is the foundation of the Ruhrchemie-Rhône Poulenc hydroformylation process

of lower molecular weight olefins, in which the triply meta-sulfonated triphenyl

phosphine ligand, TPPTS, is used with rhodium as the active metal center.1,2 This and

other tertiary water-soluble phosphines (WSP) have been the most widely used class of

water-soluble ligands in aqueous catalysis due to their neutral donating ability which can

_______________

* Reproduced in part with permission from Darensbourg, D. J.; Ortiz, C. G.; Kamplain, J. W. Organometallics, 2004, In Press. Copyright 2004 American Chemical Society.

58

Effectively stabilize the metal center throughout the catalytic cycles (Figure 3.1).

Furthermore, these phosphines can participate in the reduction of the metal center in

such processes as carbon-carbon bond formation reactions, where group 10 metals, M2+,

are reduced to the active M0 species. Apart from TPPTS, a variety of WSP's have

appeared through the years and their catalytic potential has been investigated. Of main

importance to our work is the water-soluble and air-stable 1,3,5-triaza-7-

phosphaadamantane (PTA) ligand which owes its water-solubility to hydrogen bonding

of the nitrogen atoms to water (Figure 3.1).11 Due to its small cone angle (102º) and

excellent donating ability (comparable to PMe3), it has received much attention as a

potential ligand for catalytic reactions such as in the monophasic412c, d and biphasic512a-

b,32d hydrogenation of alkenes and aldehydes.

In addition, various other derivatives of PTA have also been synthesized but remain

relatively unexplored. For example, the sulfone derivative of PTA, 2-thia-1,3,5-triaza-7-

phosphaadamantane-2,2-dioxide (PASO2) was previously prepared by Daigle44 and its

binding to group 6 metals45 was illustrated in our laboratories. However, to our surprise,

the PASO2 derivative possesses very limited water solubility. Shortly after Daigle’s

initial synthesis of PTA, a series of reactions of PTA similar to those observed for its

hexamethylenetetramine analog were carried out by Siele. These included nitration,46

nitosation,47 and acetylation.48 At that time, it was noted that PTA reacts with acetic

anhydride to provide the acetylated product 3,7-diacetyl-1,3,7-triaza-5-

phosphabicyclo[3.3.1]nonane (1).11d Nevertheless, no other studies of this phosphine,

which we will call DAPTA, have been reported. Due to the need for a larger variety of

59

Ph3-nP

SO3Na

n

Ph3-nPn

N NN

P

O

O

N NN

P

COOH

n = 1 (TPPMS), 2 (TPPDS), 3 (TPPTS) n = 1-3, ortho, meta, or para

PTA DAPTA (1)

Figure 3.1. Examples of water-soluble phosphines.

60

water-soluble phosphines to serve as ligands to low valent metal complexes rendering

them soluble in water, we have chosen to investigate DAPTA for this purpose. Herein,

we report the complete characterization of 1 and its corresponding oxide (2). In

addition, several metal complexes were prepared and characterized in solution by

IR/NMR spectroscopy, and in the solid-state via X-ray crystallography, to assess the

nature of the metal-phosphorus bond. The water-solubility of 1 was measured and

compared with other commonly utilized water-soluble phosphines, including its PTA

analog.

EXPERIMENTAL

Materials and Methods

Unless otherwise indicated, all reactions were carried out under an inert argon

atmosphere using standard Schlenk and drybox techniques. Prior to their use, all organic

solvents were distilled from sodium benzophenone ketyl. In the preparation of 1 and 2,

deionized water was used. Cr(CO)6 and W(CO)6 precursors were purchased from

Aldrich Chemical Co., with the latter being sublimed prior to use. Ni(COD)2 was

purchased from Strem Chemical Co. and used without further purification. PTA and its

oxide were prepared following the literature method.11 Although the preparations of 1

and 2 have been previously described by Siele, the syntheses are included herein for

completeness purposes.11d The salicylaldimine used in the preparation of 4 was prepared

according to the literature procedure.9

61

X-ray data were collected on a Bruker CCD diffractometer and covered more

than a hemisphere of reciprocal space by a combination of three sets of exposures; each

exposure set had a different φ angle for the crystal orientation, and each exposure

covered 0.3º in ω. The structures were solved by direct methods. 1H, 13C, and 31P NMR

data were obtained using a Varian Unity+ 300 MHz NMR instrument. 1H and 13C

chemical shifts were referenced according to the deuterated solvent used. The 31P

chemical shifts were referenced using an external 85% H3PO4 sample. Elemental

analyses were conducted by Canadian Microanalytical Inc.

Preparation of 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA)

(1)11d

In a 250 mL round bottom flask equipped with a dropping funnel, PTA (6.25 g,

39.6 mmol) was dissolved in 80 mL of water. To this solution, maintained at 0˚C, acetic

anhydride (12.1 g, 119 mmol) was added dropwise with stirring over a period of 20

minutes. The solution was allowed to stand for 30 minutes and the solvent was removed

under vacuum, leaving behind a white solid. The product was purified by

recrystallization from acetone and obtained in 47% yield. 1H NMR (300 MHz, CDCl3,

δ): 1.96 (s, 6H, C(O)CH3), 4.12 (d, 4JCP = 9.3 Hz, 4H, NCH2N), 4.67 (d, 2JCP = 13.2 Hz,

2H, PCH2N), 4.85 (d, 2JCP = 13.2 Hz, 2H, PCH2N), 5.63 (d, 2JCP = 13.8 Hz, 2H, PCH2N).

13C NMR (75 MHz, CDCl3, δ): 20.9 (C(O)C), 62.03 (N-C-N), 67.0 (P-C-N), 70.1 (P-C-

N), 169.0 (C(O)). 31P (121 MHz, CDCl3, δ): -78.5. IR(νC=O): 1642 cm-1 (CH2Cl2), and

1608 cm-1 (H2O).

62

Preparation of 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane 5-oxide

(2)11d

The preparation of 2 was achieved by the acylation of PTA oxide using an

analogous synthetic protocol as employed for the synthesis of 1, in a 41% yield. Similar

to 1, the ligand readily dissolves in water and polar organic media such as methylene

chloride and THF. 1H NMR (300 MHz, CDCl3, δ): 2.11 (s, 6H, C(O)CH3), 3.27 (m,

2JHH=16.2 Hz, 4JHP=6.60 Hz, JHH=3.22 Hz, 1H), 3.74 (d, 2JHH=7.20 Hz, 2H), 3.81 (dd,

JHP=7.50 Hz, JHH=3.00 Hz, 1H), 3.87 (d, 2JHH=14.4 Hz, 1H), 4.40 (t, 2JHH=14.4 Hz, 1H),

4.87 (d, 2JHH=14.1 Hz, 1H), 5.50 (t, 2JHH=16.2 Hz, 1H), 5.71 (d, 2JHH=14.4 Hz, 1H). 13C

NMR (75 MHz, D2O, δ): 21.7 (d, 3JCP=22.9 Hz, N-C-N), 42.0 (d, 1JCP=67.1 Hz, P-C-N),

46.7 (d, 1JCP=64.1 Hz, P-C-N), 53.4 (d, 1JCP=62.2 Hz, P-C-N), 62.0 (d, 4JCP=6.86 Hz,

C(O)CH3), 66.9 (d, 4JCP=6.49 Hz, C(O)CH3), 169.5 (C(O)), 170.1 (C(O)). 31P NMR

(121 MHz, CDCl3, δ): 2.20.

Preparation of Ni(DAPTA)4 (3)

To a Schlenk flask containing Ni(COD)2 (0.120 g, 0.436 mmol), in approximately

20 mL of toluene, was added 1 (0.400 g, 1.75 mmol), in 5 mL of methanol, via cannula.

The resulting clear solution was stirred for 3 hrs, leading to the formation of a white

precipitate. The white solid was collected by filtration, washed with 2 x 5 mL of ether,

and dried under vacuum. Yield: 94.1%. 1H NMR (300 MHz, CD2Cl2, δ): 2.09 (s, 12 H,

C(O)CH3), 2.13 (s, 12 H, C(O)CH3), 3.11 (d, 1JHH=14.4 Hz, 4H, NCHN), 3.48 (s, 8H,

PCH2N), 3.69 (d, 1JHH=15.3 Hz, 4H, PCHNC(O)), 4.06 (d, 1JHH=13.8 Hz, 4H,

PCHNC(O)), 4.28 (d, 1JHH=15.0 Hz, 4H, NCHN), 4.65 (d, 1JHH=14.1 Hz, 4H,

63

PCHNC(O)), 4.99 (d, 1JHH=14.1 Hz, 4H, PCHNC(O)), 5.25 (d, 1JHH=15.0 Hz, 4H,

NCHN), 5.82 (d, 1JHH=14.4 Hz, 4H, NCHN). 13C NMR (75 MHz, CD2Cl2, δ): 21.5

(C(O)CH3), 22.2 (C(O)CH3), 46.4 (N-C-N), 51.3 (N-C-N), 56.4 (P-C-N), 62.4 (P-C-

NC(O)), 67.7 (P-C-NC(O)), 169.4 (C(O)), 169.8 (C(O)). 31P NMR (121 MHz, CD2Cl2,

δ): -28.3. IR(CH2Cl2): 1643 cm-1 (v(C=O)). Elem. Anal. Calcd. for C36H64N12O8P4Ni:

C, 44.34%; H, 6.56; N, 17.24%; Found: C, 44.77%; H, 6.57%; N, 16.65%.

Preparation of Palladium Salicylaldiminato DAPTA Complex (4)

To a 50 mL Schlenk flask containing (TMEDA)Pd(CH3)2 (150 mg, 0.594 mmol) in

10 mL of toluene at –30ºC, DAPTA (136 mg, 0.594 mmol) in 5 mL of methanol was

introduced via cannula. To this mixture, the salicylaldimine (208 mg, 0.594 mmol) in

10mL of toluene at -30ºC was slowly cannulated into the flask, and the solution was

stirred for 30 minutes. The temperature was raised to room temperature, and the light

red solution was further stirred overnight. Subsequently, the solvent was removed in

vacuo until approximately 5 mL remained, and 20 mL of cold

(-78ºC) pentane was added, resulting in the formation of a yellow precipitate. The solid

was collected by cold cannula filtration and washed (3 x 5 mL) with cold (-78ºC)

pentane, affording 4 in 96.8% yield. 1H NMR (300 MHz, C6D6, δ): -0.14 (d, 3JHP=3.60

Hz, 3H, Pd-CH3), 0.97 (dd, 3JHH=6.60 Hz, 3JHH=2.70 Hz, 6H, CH(CH3)2), 1.29 (dd,

3JHH=6.60 Hz, 3JHH=6.00 Hz, 6H, -C(O)CH3), 1.80 (d, 3JHH=6.60 Hz, 6H, CH(CH3)2),

2.97 – 3.02 (m, 1H, DAPTA), 3.24 – 3.34 (m, 5H, DAPTA), 3.51 (d, 3JHH=14.10, 1H,

DAPTA), 3.62 – 3.67 (m, 1H, DAPTA), 4.21 (d, 3JHH=13.80 Hz, 1H, DAPTA), 4.23 –

4.51 (m, 1H, DAPTA), 6.75 (d, 3JHH=2.7 Hz, 1H, Ar), 7.11 – 7.15 (m, 2H, Ar), 7.48 (d,

64

3JHH=2.7 Hz, 1H, Ar), 7.55 (d, 4JHP=11.4 Hz, 1H, HC=N). 13C NMR (75 MHz, C6H6, δ):

-7.65 (d, 2JCP=12.2 Hz, Pd-CH3), 21.09, 22.78, 24.56, 28.23, 37.28 (d, 1JCP=22.05 Hz, P-

C-N), 41.97 (d, 1JCP=19.73 Hz, P-C-N), 47.13 (d, 1JCP=24.30 Hz, P-C-N), 61.50 (d,

4JCP=4.50 Hz, C(O)CH3), 66.61 (d, 4JCP=4.50 Hz, C(O)CH3), 116.63, 119.75, 123.60,

123.68, 125.53, 127.06, 128.40, 128.74, 129.17, 133.49, 134.44, 140.69 (d, 3JCP=9.15

Hz, C=N), 146.91, 168.46 (C=O), 169.23(C=O). 31P NMR (121 MHz, C6D6, δ): -24.12.

IR (CH2Cl2): v(C=O)=1605 cm-1. Elem. Anal. Calcd. for C29H39N4O3PCl2Pd: C,

49.79%; H, 5.57; N, 8.01%; Found: C, 51.96%; H, 5.81%; N, 7.66%.

Preparation of M(CO)5(DAPTA) (M = W (5), Cr (6)) Complexes

The replacement of a single CO molecule was achieved by the photochemical

reaction of M(CO)6 in THF. After photolyzing W(CO)6 (0.200 g, 0.57 mmol), in 100

mL of THF, this solution was cannulated over to a flask containing 1 (0.130 g, 0.57

mmol), in 10 mL of THF. The resulting solution was stirred for 1 hr followed by

removal of the solvent in vacuo. The solid was sublimed to remove any excess W(CO)6.

The synthesis of 6 was achieved in an analogous manner. Both complexes are colorless

and were cystallized and isolated by the slow evaporation of THF from the

corresponding solution, resulting in good yields (>80%). Complexes 5 and 6 are

insoluble in water and non-polar organic solvents (e.g., hexane, pentane), but readily

dissolve in polar media (e.g., chloroform, THF).

(5) 13C NMR (75 MHz, CD2Cl2, δ): 195.19 (t, dd, 1JCW=127.75 Hz, 2JCP=7.16

Hz, CO (trans)), 199.07 (d, 2JCP=21.19 Hz, CO (eq)). 31P NMR (121 MHz, CD2Cl2, δ): -

47.7 (t, 1JPW=228.52 Hz). Elem. Anal. Calcd. for C14H16N3O7PW: C, 30.40%; H, 2.92%;

65

N, 7.60%; Exp.: C, 30.30%; H, 2.94%; N, 7.57%. IR(CHCl3, cm-1): 1650 (νC=O,

DAPTA), 1944 (E), 2076 (A1).

(6) 31P NMR (121 MHz, CD2Cl2, δ): -5.79. Elem. Anal. Calcd. for

C14H16N3O7PCr: C, 39.92%; H, 3.83%; N, 9.97%; Exp.: C, 40.09%; H, 3.85%; N,

9.98%. %. IR(CHCl3, cm-1): 1658 (νC=O, DAPTA), 1940 (E).

Water-Solubility of 1

The extent of water solubility of 1 was assessed by placing a small, accurately

weighed quantity of the ligand in a vial followed by the slow addition of water via a

100µL syringe with stirring. In a typical experiment, 75 µL of water was needed to

completely dissolve 100 mg of 1. Solubility measurements were repeated several times

to yield an average value for the molar solubility of 1 in water of 7.4 M.

RESULTS AND DISCUSSION

The synthesis of DAPTA and other PTA derivatives was first reported by Siele in

1977.11d The ligand is easily prepared by direct acylation of PTA in water with acetic

anhydride at 0˚C (eq. 3.1).

NN

N

P

+

O

O OH2O, r.t.20 min N

NN

PO

O

(1)

(3.1)

66

Surprisingly, the water-solubility of DAPTA was found to be approximately 7.4 M,

making it one of the most water-soluble phosphile ligands thusfar reported.1 A

comparison of the water solubility of 1 to its parent, PTA, and the sulfonated

triphenylphosphine derivatives (i.e., TPPMS and TPPTS)31 illustrates its superior water-

solubility characteristic (Figure 3.2). Additionally, the ligand readily dissolves in

common organic solvents such as methylene chloride, acetone, and alcohols (e.g.,

methanol and ethanol), making it a very versatile ligand which may be used in a variety

of solvents.

The previously reported NMR data for 1 by Siele were obtained on a 60 MHz

instrument, and therefore, no detailed splitting patterns or coupling constants were

provided. Here, we wish to point out some of these key features by examining the 1H,

13C, and 31P spectra of the phosphine. All of the 1H NMR resonances associated with the

methylene carbons exhibit phosphorus coupling (xJHP, x = 2,4) on the order of 13 Hz.

The methyl hydrogens on the acyl functionality (C(O)CH3) are observed as a singlet at

1.96 ppm. In the 13C NMR spectrum, the acyl carbons NC(O)CH3 are displayed by a

single resonance at 168.96 ppm, which is contrary to what is expected. That is, the two

acyl groups adopt an anti conformation in the solid-state (vide infra) with the barrier to

rotation of the N-C(O) bond generally ascribed to the π electronic resonance model of an

amide(A and B in Scheme 3.1).49a This experimental rotational barrier is expected to be

about 18-19 kcal/mol.49b-d More recent ab initio computations assign a large part of the

67

Figure 3.2. Molar water-solubility of selected tertiary water-soluble phosphines.

7.4

1.941.5

0.22

0

1

2

3

4

5

6

7

8

DAPTA TPPTS PTA TPPMS

Water-Soluble Phosphines

Mol

arity

(mol

/L)

68

Scheme 3.1

rotational stability of the N–C bond to a coulombic interaction via the σ system between

the N and carbonyl C atoms(C in Scheme 3.1).4e Further upfield are the resonances

pertaining to the P-C-N carbons, which fall at 67.0 and 70.1 ppm, respectively. Those

associated with the N-C-N carbons are found at 62.0 ppm.

Upon dissolving 1 in CH2Cl2 and allowing the slow diffusion of pentane into the

solution over several days at -20ºC, resulted in quality crystals for X-ray diffraction.

The crystallographic data and selected bond distances and angles are presented in Table

3.1 and Table 3.2, respectively. A thermal ellipsoid representation of 1 is shown in

Figure 3.3. In the solid state, the C(O)CH3 groups are anti with respect to each other.

The N(2)-C(6) and N(3)-C(7) bond distances were found to be short when compared to

other N-C bond distances with values of 1.373(18) and 1.377(18) Ả, respectively, and

resembles a Schiff base (N=C) double bond (Scheme 3.1). The P(1)- C(1) bond distance

was found to be approximately 0.03 Å longer than the P(1)-C(2) counterpart, but is

nevertheless significantly shorter than that found in the P-C bond lengths of PTA (i.e.,

1.857(3) Ả).11c

N

O

N

O

N-C+

O

A B C

69

Table 3.1. Crystallographic data for compounds 1, 2, 5, and 6.

1 2 5 6

Cryst syst monoclinic orthorhombic monoclinic orthorhombic

space group P2(1) Pbca P2(1)/c Pbca

V, Å3 535.3(11) 2224(4) 1843.8(7) 3633(7)

Z 2 8 4 8

a, Å 6.191(7) 8.506(10) 12.000(2) 11.836(13)

b, Å 10.431(12) 11.121(13) 12.922(3) 13.693(14)

c, Å 8.407(10) 23.51(3) 13.238(3) 22.41(2)

β, deg 99.59(2) — 116.076(4) —

T, K 110 110 110 110

d(calc), g/cm3 1.422 1.465 1.993 1.541

Abs coeff, mm-1 0.242 0.245 6.393 0.759 R,a % [I > 2σ (I)] 10.59 6.17 5.26 3.09

Rw,a % 19.23 6.86 6.49 4.66 a R = Σ || Fo | – | Fc || / ΣFo and RwF = {[Σw(Fo – Fc)2] / ΣwFo

2}½

70

Table 3.2. Selected bond distances (Å) and angles for compounds 1, 2, 5, and 6.a

Compound 1

P(1)-C(1) 1.736(15) N(2)-C(6) 1.373(18) N(3)-C(7) 1.377(18) P(1)-C(2) 1.707(14) C(6)-O(1) 1.224(15) C(7)-O(2) 1.258(14) P(1)-C(3) 1.742(14) C(6)-C(8) 1.524(19) C(7)-C(9) 1.483(19) P(1)-C(1)-N(2) 118.5(9) C(1)-N(2)-C(6) 116.0(10) P(1)-C(2)-N(3) 119.9(10) C(2)-N(3)-C(7) 124.7(11) P(1)-C(3)-N(1) 115.0(10)

Compound 2 P(1)-C(1) 1.816(3) N(2)-C(6) 1.365(4) N(3)-C(7) 1.360(4) P(1)-C(2) 1.827(3) C(6)-O(1) 1.227(4) C(7)-O(2) 1.236(4) P(1)-C(3) 1.797(3) C(6)-C(8) 1.500(5) C(7)-C(9) 1.499(4) P(1)-O(3) 1.492(3) P(1)-C(1)-N(2) 111.80(18) C(1)-N(2)-C(6) 118.5(2) P(1)-C(2)-N(3) 114.57(19) C(2)-N(3)-C(7) 123.3(2) P(1)-C(3)-N(1) 106.19(18)

Complex 5 P(1)-C(1) 1.840(11) N(2)-C(6) 1.344(13) N(3)-C(7) 1.348(13) P(1)-C(2) 1.849(10) C(6)-O(1) 1.224(13) C(7)-O(2) 1.230(12) P(1)-C(3) 1.845(11) C(6)-C(8) 1.535(15) C(7)-C(9) 1.519(15) W(1)-P(1) 2.492(3) W(1)-C(11) 2.053(13) W(1)-C(13) 2.032(13) W(1)-C(10) 2.049(14) W(1)-C(12) 1.999(13) W(1)-C(14) 2.040(13)

71

Table 3.2 (Continued).

Compound 5 P(1)-C(1)-N(2) 117.6(7) C(1)-N(2)-C(6) 119.1(9) P(1)-C(2)-N(3) 112.4(7) C(2)-N(3)-C(7) 124.5(9) P(1)-C(3)-N(1) 109.8(7) C(10)-W(1)-P(1) 176.1(3) C(11)-W(1)-P(1) 90.0(3) C(10)-W(1)-C(11) 88.3(4) C(12)-W(1)-P(1) 92.7(4) C(10)-W(1)-C(12) 90.8(5)

Compound 6 P(1)-C(1) 1.853(3) N(2)-C(6) 1.359(4) N(3)-C(7) 1.359(4) P(1)-C(2) 1.839(3) C(6)-O(1) 1.233(4) C(7)-O(2) 1.227(4) P(1)-C(3) 1.836(3) C(6)-C(8) 1.504(5) C(7)-C(9) 1.512(5) Cr(1)-P(1) 2.3562(19) Cr(1)-C(11) 1.910(4) Cr(1)-C(13) 1.902(4) Cr(1)-C(10) 1.863(4) Cr(1)-C(12) 1.902(4) Cr(1)-C(14) 1.903(4) P(1)-C(1)-N(2) 113.8(2) C(1)-N(2)-C(6) 124.7(3) P(1)-C(2)-N(3) 114.93(19) C(2)-N(3)-C(7) 118.2(2) P(1)-C(3)-N(1) 109.9(2) C(10)-Cr(1)-P(1) 173.55(10) C(11)-Cr(1)-P(1) 89.31(12) C(10)-Cr(1)-C(11) 87.37(15) C(12)-Cr(1)-P(1) 94.56(11) C(10)-Cr(1)-C(12) 91.00(14) a Estimated standard deviations are given in parenthesis.

72

Figure 3.3. Thermal ellipsoid representation of DAPTA (1) showing 50% probability.

73

As evident from the space filling model, the rigid nature of the ligand creates a

cavity within the cage structure (Figure 3.4). The phosphorus atom is clearly exposed,

allowing for easy binding to a metal center. Additionally, the acyl-free nitrogen and

oxygen atoms are also exposed, which facilitates hydrogen bonding to the surrounding

aqueous environment. The calculated cone angle was found to be similar to that

reported for PTA, having a value of about 102º. The phosphine oxide species 2 was also

fully characterized in solution and in the solid state. This derivative is easily prepared

from PTA oxide employing the same synthetic strategy used in the synthesis of 1 (eq.

3.2).

N NN

P

O

+

O

O OH2O, r.t.20 min. N N

N

P

O

O

O

2

(3.2)

Spectroscopically, 2 is similar to its parent. Although difficult to interpret, the 1H NMR

spectrum displays coupling between geminal hydrogens. For example, the proton (HA),

associated with the N-CH-N framework and in the axial position, is shielded more by the

syn C=O group residing on the adjacent nitrogen and therefore is located further

downfield at 5.71 ppm. Meanwhile, its geminal hydrogen, residing in the equatorial

position, is less shielded and appears further upfield with a common 2JHH coupling

74

(a) (b)

Figure 3.4. Space filling model of DAPTA (1) showing (a) front and (b) side view.

75

constant (i.e., 14.4 Hz) (Figure 3.5).

Figure 3.5. Shielding effects on geminal protons by acyl group in DAPTA oxide (2).

31P coupling is observed for the P-CH2-N protons, located at 3.27 ppm, and is on the

order of 6.60 Hz. Similar to 1, the 13C NMR spectrum is also easy to interpret, and

displays several signals with 31P coupling. For example, the P-C-N carbons are located

at 41.99, 46.72, and 53.40 ppm with 1JCP constants of 62-67 Hz. The coupling between

these hydrogens and phosphorus illustrates the pronounced electronic effect of oxygen.

To further illustrate this effect, the C(O)CH3 carbons also exhibit phosphorus coupling,

four bonds away. This is not observed in 1. The two C=O signals reside at 169.45 and

170.09 ppm with an absence of 31P coupling.

Allowing a concentrated CH2Cl2 solution of 2 to stand at -20˚ C over a period of

two weeks resulted in the formation of large, colorless, single crystals. Using these

crystals for X-ray analysis, a solid state structure of 2 was obtained. Crystallographic

data, and selected bond distances and angles are provided in Table 3.1 and Table 3.2,

respectively. A thermal ellipsoid representation of 2 is shown in Figure 3.6. A key

N N

N

P

O

OHA

HB

More shieldedappears higher downfieldthan HB

O

76

Figure 3.6. Thermal ellipsoid representation of DAPTA oxide (2) showing 50% probability.

77

feature in the solid state, as was also observed in complexes 5 and 6, are the P(1)-C(Y)

(Y = 1-3) bond distances. Upon coordination of the ligand to a metal or in its oxidized

form, these bond lengths are approximately 0.09 Å longer than those observed in 1.

However, the N(2)-C(6) and N(3)-C(7) are nearly identical when compared to its parent,

as is the case for many of the other bond distances. The P(1)-O(3) bond distance is

found to have a value of 1.492(3) Å. In the space filling model, the ligand also

possesses the cavity observed in 1 with the oxygen atom coordinated to phosphorus fully

exposed for binding (Figure 3.7). The other oxygen atoms as well as the acyl-free

nitrogen is also exposed, similar to 1.

Several complexes incorporating 1 were synthesized to illustrate the binding

mode and strength of this phosphine. PTA complexes of group 10 metals have been

previously reported and were found to be readily soluble in water. Of main interest is

the nickel(0) PTA complex, Ni(PTA)4, which can be synthesized from Ni(COD)2 and

four equivalents of PTA in a toluene/methanol solution. Using this methodology, the

Ni(DAPTA)4 (3) derivative was prepared (eq. 3.3).

Ni(COD)2 + 4 DAPTA Ni(DAPTA)4 + 2 CODtoluene/methanol

2 hr, r.t. 3 (3.3)

The product was characterized by 1H, 13C, and 31P NMR as well as elemental analysis.

Unfortunately, 3 is not soluble in water or alcoholic solvents such as methanol or

ethanol, but is readily soluble in chlorinated organic solvents such as methylene

78

(a) (b)

Figure 3.7. Space filling model of DAPTA oxide (2) showing (a) front and (b) side view.

79

chloride. The insoluble nature of the complex in water is surprising due to the high

water-solubility of 1 and Ni(PTA)4 (0.291 M).13 The IR spectrum displays the v(C=O)

stretch at 1643 cm-1 which is nearly identical to the v(C=O) stretch of the free ligand in

CH2Cl2. The 13C NMR spectrum displays the two signals due to the acyl carbons at

169.8 and 169.4 ppm, respectively, while the 1H NMR contains many signals that are

split by phosphorus and geminal coupling. Attempts to grow suitable crystals in CH2Cl2

have failed due to the formation of spherical crystals, all of which did not diffract upon

exposure to X-ray radiation.

Another group 10 metal complex bearing 1 is the salicylaldiminato palladium

complex 4 (see Chapter II). This derivative was prepared using the synthetic

methodology employed for the synthesis of palladium salicylaldiminato PTA complexes

(eq. 3.4).

N

NPd

i-Pr

i-PrN

HO

Cl

Cl

++ DAPTA1. -30ºC, 30 min2. r.t., overnight-CH4, -TMEDA

O

Cl

Cl

N

i-Pr

i-Pr

PdDAPTA

CH3

Toluene/MeOH

(3.4)

In solution, the complex is very similar to its PTA analogue. For example, the aldimine

hydrogen, HC=N exhibits 4JHP coupling on the order of 11.4 Hz, which is slightly larger

than that reported for the PTA analogue (i.e., 10.5 Hz). The isopropyl groups on the

aniline moiety are perpendicular to the plane and exhibit a rotation barrier, as two sets of

signals are observed in the 1H NMR spectrum for the CH(CH3)2 hydrogens. The ν(C=O)

80

stretch was found to be located at 1605 cm-1, which is approximately a 50 cm-1 shift to

lower frequency from that of the free ligand. Additionally, a rotation barrier exists about

the N-C(O)CH3 bonds as two sets of signals are observed in the 13C NMR spectrum for

the C(O)CH3 groups.

Allowing the slow diffusion of pentane into a toluene solution of 4 at -20˚C resulted

in X-ray quality crystals. Crystallographic data and selected bond distances and angles

are tabulated in Table 2.2 and Table 2.3 (labeled as 4d-DAPTA in Chapter II),

respectively. A thermal ellipsoid representation of 4 is presented in Figure 2.15. The

solid state structure of the complex is nearly identical to its PTA analogue, with the

Pd(1)-P(1) bond distances being the same in both complexes (i.e., 2.209(2) and 2.211(3)

Å for 4 and the PTA analogue , respectively). The palladium metal center adopts the

standard square planar geometry as the C(1)-Pd(1)-O(1) and P(1)-Pd(1)-N(1) bond

angles are found to have values of 175.4(3) and 177.82(17)º, respectively.

Group 6 pentacarbonyl complexes of DAPTA were also prepared by the typical

reaction protocol of photolyzing a THF solution of M(CO)6 (M= W, Cr) to produce the

M(CO5)(THF) intermediate. Following the in situ formation of M(CO)5(THF), a THF

solution of 1 was added, yielding the M(CO)5(DAPTA) (M = W (5), Cr (6)) complexes

in good yields (eq. 3.5).

81

(3.5)

For the tungsten derivative, 5, the v(C=O) stretch associated with bound 1 was found to

be located at 1663 cm-1 in THF, a 10 cm-1 shift to higher energy when compared to the

free ligand. In the 195-200 ppm region of the 13C NMR, the two signals pertaining to

the M–CO carbons are observed with pronounced 31P and 183W coupling. The signal at

195.2 ppm, due to the equatorial carbonyls, has a 1JCW and 2JCP coupling of 127.8 and 7.3

Hz, respectively. The resonance at 199.1 ppm, derived from the axial carbonyl, exhibits

a 31P coupling of 21.2 Hz with no visible 183W coupling due to the lower signal intensity.

The 31P resonance is located at -47.7 ppm, an approximate 25 ppm upfield shift from the

free ligand, with 1JPW coupling of 228.5 Hz, which is similar to that observed for the

W(CO)5(PTA) (1JPW = 218.2 Hz) and W(CO)5(PASO2) (1JPW = 228.9 Hz) complexes.45a

Colorless crystals suitable for X-ray diffraction were isolated by the slow

evaporation of THF from a corresponding solution of the complex at room temperature.

Crystallographic data, and selected bond distances and angles for the complex is

presented in Table 3.1 and Table 3.2, respectively. A thermal ellipsoid representation of

M(CO)6(1) hv, THF(2) 1, THF, 1hr, r.t.

N NN

P

O

O

MOC COCOOC

CO

M=W (5) Cr (6)

82

the complex showing 50% probability is shown in Figure 3.8. The tungsten metal center

exhibits a slightly distorted octahedral coordination with the C(12)-W(1)-C(13), C(10)-

W(1)-P(1), and C(11)-W(1)-C(14) bond angles having values of 179.7(5), 176.1(3), and

177.3(5)˚ , respectively. The pronounced shorter W-Ceq bond distance observed for the

axial carbonyl in the W(CO)5(PTA) and W(CO)5(PASO2) complexes is not observed in

5.45a All W–C bond distances have an average value of 2.044 Å. The W(1)-P(1) bond

distance is very similar to the PTA analog with a value of 2.492(3) Å, and is shorter than

the W-P distance of 2.516 Å of the trimethylphosphine analogue, W(CO)5(PMe3).50a

Using the same crystal growth technique, crystals of 6 suitable for X-ray analysis

were obtained. Crystallographic data, and selected bond distances and angles are

presented in Table 3.1 and Table 3.2, respectively. A thermal ellipsoid representation

showing 50% probability of the complex is provided in Figure 3.9. The chromium metal

center exhibits a slightly distorted octahedral geometry with the C(12)-Cr(1)-

C(13),C(10)-Cr(1)-P(1), and C(11)-Cr(1)-C(14) bond angles having values of

175.55(14), 173.55(10), and 177.30(14)˚, respectively. Although not observed in 5, the

axial Cr(1)-C(10) distance is appreciably shorter than the equatorial Cr-CO with a value

of 1.863(4) Å. This is approximately 0.04 Å shorter than the average Cr-C bond

distance pertaining to the equatorial carbonyls. The Cr(1)-P(1) bond distance was found

to be 2.3562(19) Å, which is approximately 0.01Å shorter than that found in the

Cr(CO)5PMe3 analogue.50b,c Furthermore, the pronounced tilt associated with the

phosphine ligand and the equatorial carbonyl plane observed for the PTA and PASO2

tungsten pentacarbonyl derivatives is not present in complex 5 and 6.45a

83

Figure 3.8. Thermal ellipsoid representation of W(CO)5(DAPTA) (5) showing 50% probability.

84

Figure 3.9. Thermal ellipsoid representation of Cr(CO)5(DAPTA) (6) showing 50% probability.

85

CONCLUDING REMARKS

The cage-opening reaction of PTA and its oxide with acetic anhydride to provide

the corresponding acylated products 1 and 2, respectively, has been revisited. In this

report we have fully characterized these derivatives in solution by 1H/13C/31P NMR and

infrared spectroscopies, as well as in the solid-state by X-ray crystallography. As

anticipated, restricted rotation about the amide nitrogen–carbonyl carbon bond is

observed which is consistent with the short N–C(O) bond distances determined in these

derivatives. Phosphine 1 was shown to possess excellent solubility in water (7.4 M),

much greater than that of its PTA analog. In accordance with the water solubility of 1,

its νC=O vibration in water occurs at 1608 cm-1, some 34 cm-1 to lower energy than that

observed in weakly interacting organic solvents. This is indicative of a strong

interaction of the amide nitrogen–CO bond dipole with water.

The binding ability of DAPTA (1) toward a variety of metal centers was shown to

be very much comparable to that of the parent PTA ligand, which in turn compares

favorably with the air-sensitive PMe3 ligand. This is evident in the M–P bond distances

observed in corresponding metal complexes of 1 and PTA. For example, the W–P bond

distances in (CO)5W(PTA), (CO)5W(DAPTA), and (CO)5WPMe3 are 2.4976(15),

2.492(3), and 2.516(3) Å, respectively. Further evidence for the relative binding abilities

of 1 and PTA was provided by the similarities in the ν(CO) vibrational modes in

M(CO)5L derivatives, where M = Cr or W and L = 1 or PTA.51 Unexpectedly, the

Ni(DAPTA)4 (3) derivative, which is highly soluble in organic solvents, exhibits no

solubility in water, whereas its Ni(PTA)4 analog is very water soluble. We will continue

86

our efforts to obtain X-ray quality crystals of this derivative in hopes that its solid-state

structure will shed some light on this puzzling issue. Finally, it should be possible to

synthesize other phosphine ligands via this cage-opening reaction which possess a wide

range of solubility and metal-binding properties.45b

87

CHAPTER IV

DEVELOPMENT OF NOVEL CHROMIUM SALEN CATALYSTS FOR THE

COPOLYMERIZATION OF CO2 AND EPOXIDES*

INTRODUCTION

The search for alternate, more benign and cost effective processes which would

replace those dealing with hazardous substances or higher cost systems is of great

interest to many laboratories worldwide. A prime example is the industrial production

of polycarbonate which is currently produced by the interfacial condensation of

phosgene and diols (e.g., bisphenol-A).16 The inherit hazards associated with this

system has led to increased research in this area. An alternative is the transition metal-

mediated route involving the catalytic coupling of CO2 and aliphatic epoxides (e.g.,

cyclohexene oxide (CHO), propylene oxide (PO), and ethylene oxide). The obvious

advantage to this process is the handling of less toxic monomers via the elimination of

phosgene. In addition, the use of CO2 as a monomer is of great interest due to its

economic implications, copious nature, and non-toxic characteristic.18 The harboring of

this small molecule for this purpose was first envisioned by Inoue in 1969, whereby a

heterogeneous zinc system was employed to afford high molecular weight copolymers.17

However, large catalyst loadings, reproducibility issues, low yields, and its

heterogeneous nature were major drawbacks and improvements were necessary.

_______________

* Reproduced in part with permission from Darensbourg, D. J.; Yarbrough, J. C.; Ortiz, C. G.; Fang, C. C. J. Am. Chem. Soc. 2003, 125, 7586. Copyright 2003 American Chemical Society.

88

Following Inoue's discovery, several hetero- and homogeneous catalytic systems

have appeared that exhibit superior activities. The first and most active homogeneous

system to that date was realized by Darensbourg and workers in the late 1990's.21b Their

catalyst was comprised of a bulky phenoxide ligand framework coordinated to zinc. For

the most active derivative, TON's and TOF's were on the order of 1441 g polymer . g Zn-

1 and 21 g polymer . g Zn-1 . hr-1, respectively. Further improvements were later

achieved by Coates with the development of a β-diimine zinc catalyst.22 This system is

currently the most active with TOF's on the order of 2290 mol CHO consumed . mol Zn-1

. hr-1. One of the most attractive features involves the mild reaction conditions (e.g., 100

CO2 psi at room temperature) used during polymerization. Other systems that have

appeared are Inoue's25, and Kruper and Dellar's26 aluminum and chromium porphiryn

systems, respectively. In the former, the aluminum catalytic system was found to

effectively copolymerize CO2 and PO as a living polymer with substantial amounts of

ether linkages. The Kruper and Dellar system, on the other hand, predominantly affords

cyclic carbonate, but has the potential to produce copolymer at lower temperatures using

selected epoxides such as CHO. A similarity between both systems is the use of a Lewis

base cocatalyst to significantly enhance catalytic activity. Copolymerizations using

supercritical CO2 have also been carried out with CO2 acting as a solvent and monomer

using a soluble fluorinated chromium porphyrin catalyst.52

Recently, our laboratories reported the use of a Cr(salen)Cl catalyst for the

copolymerization of CO2 and CHO.23 The catalyst produces copolymer with activities

on the order of 28.5 g polymer . g Cr-1 . hr-1, and similar to the aluminum and chromium

89

porphyrin systems, is enhanced by the addition of a Lewis base (i.e., N-methyl

imidazole). By varying the amounts of the cocatalyst, activities as high as 88.2 g

polymer . g Cr-1 . hr-1 are observed. The reaction mixture consisted of predominantly

copolymer with only a small amount of cyclohexene carbonate. Furthermore, the

copolymer exhibited nearly 100% CO2 incorporation with only trace amounts of ether

linkages. Additionally, the catalyst is also effective in the copolymerization of other

epoxides such as [2-(3,4-epoxycyclohexyl)ethyl]trimethoxysilane (TMSO) to produce a

new type of polymeric material which has very distinct physical properties (e.g.,

Tg>180˚C) from the CHO copolymer.53 More importantly, however, is the completely

soluble nature of this epoxide in liquid CO2, providing a monophasic medium as

opposed to the biphasic medium found in the CHO/CO2 copolymerization, and thereby

making it an ideal system for mechanistic studies.54 The mechanism under which

polymer formation occurs is thought to take place via a bimetallic initiation step and first

order enchainment with respect to catalyst. In the former process, the mechanism

proposed by Jacobsen involves two chromium metal centers in which one effectively

delivers the nucleophile and thereby ring-opens the epoxide bound to a second metal

center (Figure 4.1).24

Figure 4.1. Jacobsen's initiation step.

Cr Cl O

R1

R2

Cr ClL

L = epoxide, Lewis Base

90

Propagation, on the other hand, is first order with respect to catalyst and is thought to

occur via the weak interaction of an oncoming epoxide to the metal center followed by

ring-opening by the bound alkoxy group.23 The use of a Lewis base creates a more

nucleophilic alkoxy group, resulting in a faster ring-opening step. The drawback,

however, involves an induction period associated with the Lewis base competing with

epoxide for the open site in the bimetallic initiation step.

Herein, we wish to report the synthesis of Cr(salen)X catalysts bearing different

initiators (Figure 4.2). The activities and induction periods associated with these

catalysts in the copolymerization of CO2 with CHO, PO, and TMSO in the presence of

strongly electron donating phosphines are described. The terpolymerization of

TMSO/CHO and TMSO/PO with CO2 system is also presented. A mechanism for the

copolymerization based on the aforementioned information is also proposed, and catalyst

design aspects are also considered by the synthesis of other related chromium Schiff

base complexes.

EXPERIMENTAL

Materials and Methods

Unless otherwise indicated, all reactions were carried out under an inert argon

atmosphere using standard Schlenk and drybox techniques. Prior to their use, all

solvents were distilled using standard techniques. All reagents, including CrCl3(THF)3,

were purchased from Aldrich Chemical Co. CrPh3(THF)3 was prepared according to the

91

Figure 4.2. Cr(salen)X catalysts for the copolymerization of CO2 and epoxides.

N N

O O

Cr

R1

R2 R2

R1

Y

X

Catalyst X Y R1 R2 1 Br H t-Bu t-Bu 2 Br C6H4 t-Bu t-Bu 3 Br C6H4 H Ph 4 H t-Bu t-BuO

92

literature procedure.55 All salen ligands were prepared from the condensation of the

corresponding commercially available diamine and salisaldehyde in methanol at reflux

conditions. The aldehyde pertaining to a was prepared according to the literature

procedure.33 The salicylaldimine ligands a-c were prepared by the condensation reaction

between the corresponding aldehyde and commercially available 2,6-diisopropyl aniline

(Aldrich Chemical Co.).

1H and 13C NMR data were obtained using a Varian Unity+ 300 MHz NMR

instrument. 1H and 13C chemical shifts were referenced according to the deuterated

solvent used. Infrared data was collected using a Mattson 6021 FTIR spectrometer with

DTGS and MCT detectors.

Copolymerization of CO2 and Epoxides: 24 Hour Reactions

A typical reaction was carried out using the following protocol. A 35 mL glass vial

with a septum was charged with 1 (50 mg, 0.087 mmol) and PCy3 (24.4 mg, 0.087

mmol) followed by the addition of 20 mL of CHO. The solution was then introduced

into a pre-dried (at 80˚C for 8 hr) stainless steel autoclave via an injection port followed

by pressurizing to approximately 550 psi CO2 pressure at room temperature. The

temperature was then raised to 80˚C, at which the CO2 pressure increased to 800 psi.

The reaction was carried out for 24 hr, after which the heat was turned off and the

reactor was allowed to reach room temperature. After venting the excess CO2, the

copolymer was removed from the reactor by dissolution in methylene chloride. The

excess solvent was allowed to slowly evaporate, after which the polymer was dried at

approximately 100˚C under vacuum.

93

The polymer's CO2 content was obtained by 1H NMR spectroscopy, focusing on the

protons adjacent to the carbonate linkages displayed at 4.6 ppm. The protons pertaining

to ether linkages are observed at 3.5 ppm, and an integration of the aforementioned

carbonate and ether linkages provides the percent CO2 incorporation. Additionally, 13C

NMR spectroscopy was used to verify the tacticity of the polymer. An IR spectrum of

the reaction mixture before drying was also obtained to detect any amounts of

cyclohexene carbonate produced during catalysis.

Copolymerization of CO2 and CHO Using 1-5 and Monitored by IR Spectroscopy

To illustrate the procedure used for carrying out a typical reaction, the

copolymerization of CO2 and CHO using 1 as the catalyst is used as an example: To a

35 mL glass vial sealed with a septum was added 10 mL of CHO under argon and

introduced into the high pressure ASI ReactIR 300mL autoclave reactor via an injection

port at 80˚C. A background spectrum was obtained using 128 scans. Next, to a separate

35 mL vial, 1 (75 mg, 0.131 mmol) and PCy3 (36.7 mg, 0.131 mmol) were combined

and dissolved in 10 mL of CHO, and the dark brown solution was subsequently injected

into the reactor at 80˚C. The autoclave was then charged with approximately 800 psi

CO2 pressure. Infrared spectral data was immediately collected every 3 minutes for 12

hr. The profiles associated with the peak at 1750 cm-1 (v(CO2) of copolymer) were

generated after data collection and initial rates were taken as the slope of these plots. The

resulting polymer was also collected and dried by the procedure mentioned above.

94

Synthesis of Cr(salen)X (X = Br, OPh) Complexes (1-4)

A typical procedure involving the synthesis of 1 follows: To a three-neck round

bottom flask, equipped with a nitrogen adapter and a graduated addition funnel and

maintained at -40˚C, using a dry ice/acetone bath, was added CrCl3(THF)3 (1.5 g, 4.00

mmol) which was dissolved in approximately 50mL of THF. To the addition funnel,

commercially available PhMgBr (2.18 g, 12.01 mmol) in THF was added and the

solution was was added dropwise over a 45 minute time period into the purple reaction

mixture. The solution was allowed to come to room temperature and an additional 15

mL of THF was added. The red-brown solution stirred for 4 hr and filtered, after which

the H2Salen (1.97 g, 4.00 mmol), in 10 mL of THF, was cannulated into the solution.

One equivalent of MeOH (0.128 g, 4.00 mmol) was then added via a microliter syringe,

and the dark brown solution was allowed to stir overnight. After this time period, the

solvent was removed and the brown solid was redissolved in 50 mL of benzene and

filtered. Upon removing the solvent, the solid was redissolved in 100 mL of pentane and

filtered. Removal of the solvent resulted in the isolation of 1 in good yields (>80%).

Synthesis of Bis(3-R-salicylaldimine) Chromium(III) Chloride Acetonitrile

Complex (7a)56

The synthesis of the analogous complex, 7b, bearing the 3,5-di-tert-butyl

salicylaldehyde unit has been previously prepared by Gibson.56 Due to the lack of

important details in the literature preparation, we wish to fully describe the synthesis of

7a. To a 50 mL Schlenk flask containing the salicylaldimine (0.40 g, 1.12 mmol), in 25

mL of ether, n-butyllithium (0.7 mL, 1.12 mmol) in hexanes (1.6 M) was added

95

dropwise at -78˚C. The resulting yellow solution was stirred for 2 hr. The solution was

then cannulated over to a 50 mL Schlenk flask containing CrCl3(THF)3 (0.21 g, 0.56

mmol) in 10 mL of THF, producing a green mixture which was allowed to stir overnight.

Purification was achieved by filtration to remove LiCl, and the solvent was then

removed, leaving 6a as a green-brown solid. To a flask containing 6a, approximately 30

mL of acetonitrile was added, and the solution was stirred for 4 hr. Filtration followed

by removal of the solvent yields 7a as a yellow-green solid. Characterization of 7a was

achieved by X-ray crystallography via the use of dark brown crystals formed by the slow

diffusion of pentane into a toluene solution of 7a.

RESULTS AND DISCUSSION

Initially, the synthesis of Cr(salen)(OR) derivatives bearing an alkoxy group as the

initiator was envisioned by reacting the Cr[N(SiMe3)2]357 precursor with one equivalent

of the H2salen ligand and ROH, respectively. However, Cr[N(SiMe3)2]3 is difficult to

isolate due to the presence of solvent after purification, and a search through literature

results in no report utilizing this complex as a reagent, presumably due to this problem.

The preparation of the catalyst by the in situ formation of this precursor was also not

feasible due to the non-intuitive CrCl3(THF)3 to Li+-N(SiMe3)2 ratio of 1:1.5 used in its

synthesis. Therefore, a different approach was utilized in the attempt to prepare these

chromium alkoxy derivatives.

The alternate synthetic route involved the synthesis of the CrPh3(THF)3 precursor

using CrCl3(THF)3 and PhMgBr.55 The disadvantage to this route is the difficulty in

96

removing the MgBrCl produced, as the product and this salt are readibly soluble in

common organic solvents. An unfortunate consequence of the inability to remove the

salt is the formation of the Cr(salen)Br complex (1-3), which may occur via the

exchange of the alkoxy group in Cr(salen)(OR) and the bromine in MgBrCl to form

Mg(OR)Cl (eq. 4.1).58

(4.1)

This reaction pathway is plausible due to the favored formation of the more

thermodynamically stable polymeric Mg(OR)Cl species. Although not the desired

product, these chromium complexes serve as effective catalysts for the copolymerization

process as will be described shortly. However, the use of a larger, more sterically

encumbering group in the form of ROH, such as 2,4,6-trimethylphenol, presumably

results in the desired phenoxy initiator, Cr(salen)(OPh), 4.

The solid state characterization of two of these derivatives was obtained by

growing large dark red crystals via the slow diffusion of pentane into a THF or CH3CN

solution of the complex at -20˚C over a period of several weeks for X-ray analysis. In

this manner, structures of the THF (2.THF) and CH3CN (2.CH3CN) adducts of 2 were

obtained. Crystallographic data, and selected bond distances and angles for both

complexes are tabulated in Table 4.1 and Table 4.2, respectively. Thermal ellipsoid

representations of complexes 2.THF and 2.CH3CN showing 50% probability is depicted

Cr(salen)(OR) + MgBrCl Cr(salen)Br + Mg(OR)Clpolymeric

97

Table 4.1. Crystallographic data and data collection parameters for 2.THF, 2.CH3CN, 2. 2OPBu3 , 7a, and 8.

2.THF 2.CH3CN 2.2OPBu3 7a 8

Cryst syst monoclinic monoclinic monoclinic monoclinic triclinic

space group P2(1)/c P2(1)/c P2(1)/c P2(1)/n P1

V, Å3 4978(4) 4578(3) 6493(2) 10577(4) 2236.3(14)

Z 4 6 6 8 2

a, Å 16.386(8) 15.034(5) 16.571(4) 22.370(5)(2) 12.425(5)

b, Å 26.178(12) 17.377(6) 16.999(4) 20.764(5) 14.183(5)

c, Å 11.722(5) 17.692(6) 23.081(5) 23.028(6) 14.481(5)

α, deg — — — — 107.537(5)

β, deg 98.123(9) 97.890(6) 93.053(5) 98.579(5) 91.162(5)

γ, deg — — — — 111.668(5)

T, K 110 110 110 110 110 d(calc), g/cm3 1.280 1.271 1.175 1.325 1.349

Abs coeff, mm-1 1.082 1.166 0.885 0.319 0.582

R,a % [I > 2σ (I)] 8.92 10.95 7.20 7.91 8.17

Rw,a % 13.26 14.85 10.99 17.63 9.58 a R = Σ || Fo | – | Fc || / ΣFo and RwF = {[Σw(Fo – Fc)2] / ΣwFo

2}½

98

Table 4.2. Selected bond distances (Å) and angles for compounds 2.THF, 2.CH3CN, 2.2OPBu3, 7a, and 8.a

Complex 2.THF Cr(1)-N(1) 2.006(5) Cr(1)-O(2) 1.898(4) N(1)-C(2) 1.284(18) Cr(1)-N(2) 2.019(5) Cr(1)-Br(1) 2.4320(16) N(2)-C(18) 1.286(8) Cr(1)-O(1) 1.927(4) Cr(1)-O(3) 2.117(5) N(1)-Cr(1)-O(2) 173.2(2) N(2)-Cr(1)-O(3) 87.1(2) N(2)-Cr(1)-O(1) 172.4(2) N(1)-Cr(1)-O(1) 91.3(2) N(1)-Cr(1)-Br(1) 91.31(16) N(2)-Cr(1)-O(2) 91.7(2) N(2)-Cr(1)-Br(1) 88.59(16) N(1)-Cr(1)-N(2) 82.4(2) N(1)-Cr(1)-O(3) 88.5(2) Br(1)-Cr(1)-O(3) 175.65(13)

Complex 2.CH3CN Cr(1)-N(1) 2.004(6) Cr(1)-O(2) 1.924(5) N(1)-C(2) 1.313(10) Cr(1)-N(2) 2.015(7) Cr(1)-Br(1) 2.4191(18) N(2)-C(18) 1.305(10) Cr(1)-O(1) 1.913(5) Cr(1)-O(3) 2.100(7) N(1)-Cr(1)-O(2) 173.3(2) N(2)-Cr(1)-O(3) 85.3(3) N(2)-Cr(1)-O(1) 172.1(2) N(1)-Cr(1)-O(1) 91.9(2) N(1)-Cr(1)-Br(1) 90.92(18) N(2)-Cr(1)-O(2) 92.2(2) N(2)-Cr(1)-Br(1) 90.18(18) N(1)-Cr(1)-N(2) 81.7(3) N(1)-Cr(1)-O(3) 85.5(2) Br(1)-Cr(1)-O(3) 174.62(18)

99

Table 4.2 (Continued).

Complex 2.2OPBu3

Cr(1)-N(1) 2.004(4) Cr(1)-O(2) 1.925(3) N(1)-C(2) 1.305(6) Cr(1)-N(2) 2.008(4) Cr(1)-O(3) 2.005(3) N(2)-C(18) 1.309(6) Cr(1)-O(1) 1.910(3) Cr(1)-O(4) 2.003(3) N(1)-Cr(1)-O(2) 174.46(16) N(2)-Cr(1)-O(4) 92.21(15) N(2)-Cr(1)-O(1) 173.73(16) N(1)-Cr(1)-O(1) 92.43(15) N(1)-Cr(1)-O(3) 88.70(15) N(2)-Cr(1)-O(2) 91.74(15) N(2)-Cr(1)-O(3) 87.31(15) N(1)-Cr(1)-N(2) 82.86(16) N(1)-Cr(1)-O(4) 85.09(15) O(3)-Cr(1)-O(4) 173.78(15)

Complex 7a Cr(1A)-O(1A) 1.916(7) Cr(1A)-N(3A) 2.082(8) Cr(1A)-N(2A) 2.115(9) Cr(1A)-N(1A) 2.113(10) Cr(1A)-O(2A) 1.948(6) Cr(1A)-Cl(1A) 2.314(3) O(1A)-Cr(1A)-O(2A) 87.9(3) O(2A)-Cr(1A)-N(1A) 91.3(3) O(2A)-Cr(1A)-N(2A) 90.9(3) O(2A)-Cr(1A)-N(3A) 87.3(3) O(1A)-Cr(1A)-N(2A) 91.1(3) O(1A)-Cr(1A)-N(3A) 88.9(3) O(1A)-Cr(1A)-N(1A) 178.9(3) N(2A)-Cr(1A)-N(3A) 178.2(3) N(1A)-Cr(1A)-N(2A) 89.7(3) N(1A)-Cr(1A)-N(3A) 90.4(3) O(2A)-Cr(1A)-Cl(1A) 177.6(2) O(1A)-Cr(1A)-Cl(1A) 94.5(2) N(1A)-Cr(1A)-Cl(1A) 86.3(2) N(2A)-Cr(1A)-Cl(1A) 88.9(2) N(3A)-Cr(1A)-Cl(1A) 92.9(3)

100

Table 4.2 (Continued).

Complex 8 Cr(1)-O(1) 1.921(2) Cr(1)-Cl(1) 2.002(2) Cr(1)-N(2) 2.089(3) Cr(1)-N(1) 2.106(3) Cr(1)-O(2) 1.938(2) Cr(1)-Cl(1A) 1.999(3) O(1)-Cr(1)-O(2) 176.73(10) Cl(1)-Cr(1)-N(1) 167.87(11) O(1)-Cr(1)-N(1) 87.96(11) Cl(1)-Cr(1)-N(2) 90.85(11) O(1)-Cr(1)-N(2) 90.85(11) Cl(1)-Cr(1)-O(1) 85.52(10) Cl(1A)-Cr(1)-N(2) 170.45(11) Cl(1)-Cr(1)-O(2) 97.15(10) Cl(1A)-Cr(1)-Cl(1) 79.74(11) a Estimated standard deviations are shown in parenthesis.

101

in Figures 4.3 and 4.4, respectively. The chromium metal center in both complexes

exhibits octahedral geometry and lies perfectly within the plane formed by the N(1),

N(2), O(1), and O(2) atoms. Such planarity is similarly observed in aluminum and

chromium porphyrin complexes where the metal is pulled toward the plane upon

coordination of a Lewis base to the axial open site. The C(1)-Br(1) bond distance vary

slightly in the two complexes, with values of 2.4319(16) and 2.4190(18) Ǻ for

complexes 2.THF and 2.CH3CN, respectively. Another dissimilarity between the

complexes involves the bond length associated with the Schiff base (N=C) functionality,

with 2.THF having an average value (i.e., 1.286 Å) that is 0.026 Å shorter than that

found in 2.CH3CN. The Cr(1)-O(1), Cr(1)-O(2), Cr(1)-N(1), and Cr(1)-N(2) were also

found to be slightly longer in 2.CH3CN than in 2.THF.

Several attempts to obtain crystals with the relevant variety of phosphines (i.e.,

PCy3, PPh3, and PTA) bound to the chromium metal center were unsuccessful.

However, using the very air-sensitive PBu3 did prove effective, and although the oxide

was formed in the process, a suitable crystal was obtained of the bound O=PBu3 species,

2.2OPBu3. Dark, red crystals of 2.2OPBu3 were used to obtain a solid state structure.

Crystallographic data, and selected bond distances and angles of 2.2OPBu3 are tabulated

in Table 4.1 and Table 4.2, respectively. A thermal ellipsoid representation showing

50% probability is shown in Figure 4.5. The ease in displacing bromine by an excess of

a neutral ligand, such as O=PBu3, is clearly shown in the solid state, as the free Br- anion

is located in close proximity to the metal center on one face of the salen ligand. The

102

Figure 4.3. Thermal ellipsoid representation of Cr(salen)(Br)(THF), 2.THF, showing 50% probability.

103

Figure 4.4. Thermal ellipsoid representation of Cr(salen)(Br)(CH3CN), 2.CH3CN, showing 50% probability.

104

Figure 4.5. Thermal ellipsoid representation of [Cr(salen)(OPBu3)2]+[Br]-, 2.2OPBu3, showing 50% probability.

105

chromium metal center adopts a slightly distorted octahedral geometry with a N(1)-

Cr(1)-O(2) and O(1)-Cr(1)-N(2) bond angle of 174.46(16) and 173.73(16)˚, respectively.

The O(3)-Cr(1)-O(4) angle is nearly linear with a value of 173.78(15)˚. The Cr(1)-O(3)

and C(1)-O(4) bond distances were found to be 2.005(3) and 2.003(3) Å, respectively.

All other distances, including those pertaining to the N=C functionality are nearly

identical to that found in 2.THF.

Complexes 1-4 have been found to be effective catalysts in the copolymerization

of CO2 and epoxides with the aid of a phosphine cocatalyst. Catalytic activities

corresponding to these catalysts under varying conditions and with the use of different

phosphines are tabulated in Table 4.3.

Table 4.3. Activities associated with the use of catalysts 1-4 along with one equivalent of cocatalysta. Entry Catalyst Co-

catalyst Time (hr)

Polymer Yield (g)

TON (g poly. g Cr-1)b

TOF (g poly . g Cr-1 . hr-1)c

1 1d PCy3 12 20.85 3061 (1310) 255 (109)2 1 P(p-toly)3 12 18.90 2775 (1187) 231 (99)3 1 PPh3 12 8.98 1318(564) 110 (47)4 1 PTA 12 2.90 425 (182) 36 (15)5 1e PCy3 24 22.90 5055 (2158) 210 (90)6 1e PPh3 24 13.34 2944 (1257) 123 (52)7 2e PCy3 24 11.15 119 (47) 119 (47)8 3e PCy3 24 Trace ----------- -----------9 4e PCy3 24 15.09 3935 (1440) 164 (60)

a All copolymerizations were carried out at 80˚C under 800 Psi CO2 pressure using a 75 mg catalyst loading. b Values in parenthesis are in units of moles CHO consumed . mol Cr-1. c Values in parenthesis are in units of moles CHO consumed . mol Cr-1 . hr-1. d MW and Mn of the resulting polymer was found to be 6692 and 8397, respectively, translating into a PDI of 1.25. e A lower catalyst loading of 50 mg was used and the reaction carried out for 24 hr.

106

The use of very donating phosphines such as PTA resulted in low activities

which was contrary to what was expected. A possible explanation for the low activity

may be the low solubility of PTA in the CHO/liquid CO2 medium. Alternatively, the

phosphine may be interacting with the epoxide, in much the same manner PBu3 interacts

with epoxides and aziridines to ring open these substrates.59 Using other good electron

donors that are presumably unreactive toward epoxides such as PCy3 resulted in an

increase in activity by more than a factor of ten in only 12 hours when compared to the

N-MeIm system.23 The utilization of less electron donating phosphines such as PPh3 or

P(p-toly)3 resulted in a slight drop in activity as well as in the percent CO2 incorporation.

Lowering the catalyst loading and carrying the reaction for 24 hrs (entry 5 and 6) results

in an increase in TON, but decreases the TOF due to the longer reaction period. Catalyst

bearing the phenyl backbone, 2 and 3, are found to be less active and is presumably due

to a less electron rich metal center, as most of the electron density is likely contained

within the pi system of the ligand framework (entry 7 and 8). This is especially true for 3

as only trace amounts of copolymer was produced with the major product being

cyclohexene carbonate. Such changes in activity create the potential to maximize

polymer formation by tuning the ligand framework.

Induction periods and maximum rates associated with the use of 1 were obtained

by the monitoring of the v(CO2) stretch of the polymer peak in situ using an ASI 1000

ReactIR probe fitted with a modified stainless steel Parr reactor. A typical 3-D reaction

profile using PCy3 as the cocatalyst is provided in Figure 4.6. The peak traces

107

Figure 4.6. Three-dimensional plot of copolymer growth at 1750 cm-1 using Cr(salen)Br, 1, with one equivalent of PCy3.

108

corresponding to the growing polymer chain at 1750 cm-1 using different phosphines is

presented in Figure 4.7. The maximum rate obtained using the strongly donating PCy3

was found to be 2.3 x 10-4 Abs/min, and as expected, is the largest when compared to the

use of other phosphines (Table 4.4).

Table 4.4. Maximum rates and induction periods in the copolymerization of CO2 and epoxides using 1 as the catalyst. Entry Catalyst Co-catalyst Induction Period (min) Max Rate (10-4) (abs/min)

1 1 PCy3 None 2.3 2 1 P(p-toly)3 None 2.0 3 1 PPh3 None 0.9 5 1 PTA None 0.2 6 2 PCy3 None 0.8 7 4 PCy3 30 0.9

More importantly, however, is the lack of an induction period, indicating a deviation

from the Jacobsen initiation process, and presumably points toward a first order

initiation. In addition, no cyclic carbonate (appears at 1817 cm-1 for the trans species)

was ever detected using the strongly donating cocatalysts. Using 4 as the catalyst, the

reaction profile reveals an induction period of 30 minutes, and is consistent with either a

slow CO2 insertion into the Cr-OPh bond (insertion into M-OPh bonds are orders of

magnitude slower than in typical M-OR bonds) or a slow ring opening of the epoxide by

the OPh functionality.60

The copolymerization of CO2 and PO was carried out using 1 as the catalyst. At

40˚C under 610 psi CO2 pressure using 50 mg of 1 with one equivalent of PCy3 as the

cocatalyst, resulted in predominantly propylene carbonate with minor amounts of

copolymer after 24 hr. Surprisingly, carrying out the reaction at room temperature under

109

-0.010

0.090

0.190

0.290

0.390

0.490

0.590

0.690

0.790

0.890

0.990

0 100 200 300 400 500 600 700 800

Time (min)

Abs

orba

nce

PCy3

P(p-tol)3

PPh3

PTA

Figure 4.7. Trace of 1750 cm-1 copolymer growth using several different phosphines with Cr(salen)Br, 1, as the catalyst.

110

the same conditions resulted in all propylene carbonate production. The high amounts

of cyclic carbonate may be explained by a highly active system in which the very

electron rich metal center creates a more nucleophilic -OP group, which can back-bite

through the mechanism proposed by Kuran (see Chapter I), and release the cyclic

carbonate product.19b It is surprising, however, that the production of polycarbonate,

although low, occurs at higher temperatures and not at room temperature. Such a trend

is typically not observed with transition metal coupling reactions of CO2 and epoxides

due to the higher activation barrier for cyclic carbonate formation.23

Two terpolymerization reactions were carried out using TMSO and CHO as well as

TMSO and PO as monomers. In the former, using a 1:1 TMSO to CHO ratio by volume

(30.4% TMSO by mole) under 800 psi CO2 pressure for 24 hr using 50 mg of 1 with one

equivalent of PCy3 as the cocatalyst, a TON of 4893 g polymer . g Cr-1 was obtained and

translates in a TOF of 204 g polymer . g Cr-1 . hr-1. Only trace amounts of cyclic

carbonate was observed as indicated by IR spectroscopy of the reaction mixture. The

percent CO2 incorporation within the polymer was not determined due to the -Si(OCH3)3

resonance falling in the same range as the polyether signals in the 1H NMR spectrum.

The 1H NMR spectrum does, however, present one interesting feature . In the

polycarbonate range (~4.6 ppm), one broad signal is clearly visible consisting of a

shaper, well defined peak with a shoulder. Presumably, two signals are present

corresponding to the carbonate linkages of the CHO and TMSO linkages, respectively.

The point of coalescence may be due to the alternating TMSO/CHO carbonate units. In

the terpolymerization of CO2, PO, and TMSO (62.3% PO by mole), using the same

111

reaction conditions, the resulting reaction mixture was found to consist of a large amount

of propylene carbonate and is supported by the 1H and 13C NMR spectrum of the

polymer. In the 1H NMR, however, the two broad signals at 4.86 and 4.06 ppm

correspond to the propylene carbonate linkages, while the resonance at 3.64 ppm

belongs to the propylene ether linkages (Figure 4.8). The broad signal at 4.62 is most

likely due to the TMSO carbonate linkages. An important feature of the polymer is the

ability to crosslink with propylene carbonate being absorbed within the network, giving

a soft and pliable polymeric material.

The planar geometry and trans nature of the nucleophile relative to the open site

created by the salen ligand framework is an essential feature for an active catalytic

system. This is supported by the synthesis of an analogous chromium complex bearing

two salicylaldimine units, creating the bis complex, 6 (Scheme 4.1).56 The synthesis of

6 is achieved by the reaction between CrCl3(THF)3 and two equivalents of the

salicylaldimine lithium salt. Although not isolated, 6 presumably adopts a square

pyramidal geometry, similar to Cr(salen)Cl complexes. However, the addition of a

Lewis base, such as CH3CN, results in the formation of the octahedral complex 7, where

the labile CH3CN molecule coordinates in a manner cis to the nucleophile (i.e.,

chloride). In addition, coordination is also accompanied by a color change of the

solution from brown to green. Such coordination is illustrated in the solid state structure

of 7a. Crystallographic data, and selected bond distances and angles are presented in

Table 4.1 and Table 4.2, respectively. A thermal ellipsoid representation showing 50%

112

Figure 4.8. 1H NMR of CO2/PO/TMSO terpolymer using Cr(salen)Br, 1, as the catalyst with one equivalent of PCy3.

5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6

4.85

4.70

4.62

4.43

4.06

3.89

3.64

OO

O

CH3

Propylene Carbonate (PC)

PC PC

PC

ab

c

d

OO*

O

O O

O

O

Si(OCH3)3

x y zab c

d

113

Scheme 4.1

N

Ph

HO

1. n-BuLi, -780C, THF2. CrCl3(THF)3, -780C, THF Cr

N

O

O

NCl

2

6a,b

LCr

N

O

L

NCl

O

7a,b

a. R1=Ph, R2=R3=Hb. R1=R2=tert-Bu, R3=Hc. R1=H, R3=CH(CH)2CH=R4

No sterically demandinggroup in R1 position(i.e., c)

1. n-BuLi, -780C, THF2. CrCl3(THF)3, -780C, THF

CrN

N

Cl

ClO

O

CrN

NO

O

8

114

probability is shown in Figure 4.9. The Cr(1)-N(3A) bond distance is found to have a

value of 2.082(8) Å, and is nearly identical to that found in 7b. More importantly,

however, is the cis orientation adopted upon exposure of 6 to a Lewis base (e.g.

epoxide). The copolymerization, with 6 as the catalysts, was carried out using 20 mL of

CHO and 800 psi CO2 pressure at 80 ˚C for a 24 hr reaction period, resulting in a far

inferior catalytic system when compared to 1-4. Copolymer was produced in low yield

and its composition consisted of 50% ether linkages, indicating subsequent epoxide ring

opening steps. Furthermore, substantial amounts of cyclohexene carbonate was also

produced. Upon carrying out the same copolymerization in the presence of 2.25

equivalents of N-MeIm, a further reduction in polymer yield resulted with the polymer

being composed of approximately 50% ether linkages. The coordination of this stronger

Lewis base to the metal center can be viewed in Figure 4.10. The almost complete loss

in activity associated with these types of catalysts clearly illustrates the need for a planar

ligand framework. Perhaps the use of a more electron donating salicylaldimine can

result in a more active catalytic system, but due to the cis nature of the open site relative

to the binding site of the epoxide, consecutive epoxide ring opening processes may

occur, leading to high ether linkages within the polymer. The attempt to synthesize a

series of these salicylaldimine complexes bearing less sterically encumbering groups on

the salicylaldimine was unsuccessful, and resulted in the formation of chromium dimers.

For example, using the salicylaldimine with substitution facing away from the

115

Figure 4.9. Thermal ellipsoid representation of Cr(1/2Sal)2(CH3CN)(Cl), 7a, showing 50% probability.

116

Figure 4.10. Ball and stick representation of Cr(1/2Sal)2(Cl)(N-MeIm).

117

hydroxyl aromatic ring (e.g., salicylaldimine c), resulted in the formation of the dimer, 8

(Scheme 4.1). The solid state structure of 8 was obtained by growing suitable crystals of

this compound by the slow diffusion of pentane into an acetonitrile solution of 8 at -20

˚C. Crystallographic data, and selected bond distances and angles for this species are

found in Table 4.1 and Table 4.2, respectively. A thermal ellipsoid representation

showing 50% probability is presented in Figure 4.11. As shown, the dimer is bridged by

two chloride atoms, and the two salicylaldimine units are oriented away from each other

to facilitate the formation of the complex. The C(1)-Cl(1) and Cr(2)-Cl(2) bond

distances were found to have a value of 2.002(2) and 1.999(3) Å, and are approximately

0.30 Å shorter than that found in 7. Attempts to grow crystals of the epoxide-bound

analogue to 7 using a variety of epoxides such as α-pinene oxide, norbornene oxide, and

limonene oxide, all of which are less prone to being ring-opened, were unsuccessful.

CONCLUDING REMARKS

The synthesis of Cr(salen)X (X = Br, OPh) catalysts for the copolymerization of

CO2 and epoxides was successful employing the CrPh3(THF)3 precursor. Although the

brominated species was not the initial target complex, they were found to be effective

catalysts for the copolymerization of CO2 and CHO. Characterization of several of these

derivatives was achieved by X-ray crystallography. The chromium metal center in the

solid state adopts an octahedral geometry in the presence of bound solvent or phosphine

118

Figure 4.11. Thermal ellipsoid representation of [Cr(1/2Sal)2(Cl)]2, 8, showing 50% probability.

119

oxide. An important observation involves the facile dissociation of the bromide ion in

the presence of phosphine, and supports the lack of an induction period in the initiation

step. Potentially, initiation can be envisioned to take place via a first order route where

the phosphine effectively activates the nucleophile (i.e., Br-) to ring open the epoxide

(Figure 4.12).

Cr

BrO

PR3

Figure 4.12. Initiation step involving Cr(salen)X catalysts, 1-4, with PR3 activation.

Productivity as a function of PR3 was found to increase using the more electron donating

phosphines: PCy3>P(p-tol)3>PPh3. However, using the most electron donating PTA

species (or other similar phosphines) results in a far inferior system due to, a

presumably, less soluble nature of PTA in CHO/liquid CO2 or the potential interaction

with epoxide. TON's and TOF's were found to be as high as 2158 mol CHO consumed .

mol Cr-1 and 90 mol CHO consumed . mol Cr-1 . hr-1, respectively, and are much higher

than those previously reported for the Cr(salen)Cl/N-MeIm system.23

The importance of the trigonal pyramidal geometry of the catalyst was illustrated by

the synthesis of other Schiff base analogues (i.e., 7a). These systems are far less active

and only afford polyether due to the consecutive ring-opening of the epoxide as a result

120

of the cis coordination of the epoxide relative to the nucleophile. Additionally, the

synthesis of other derivative not having sterically encumbering groups next to the

oxygen on the phenoxy ring affords bimetallic derivatives.

121

CHAPTER V

SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF IRON(III)

SALEN COMPLEXES POSSESSING ANIONIC OXYGEN DONOR LIGANDS*

INTRODUCTION

Optimization of catalytic activities for a given process is typically achieved through

the methodical tailoring of the metal’s ligand environment. Therefore, ligand

frameworks such as the Schiff base containing salen ligand, that can be sterically and

electronically modified with ease, are very attractive.61 The use of the salen ligand

framework in catalytic reactions has been receiving increasing interest due to the

aforementioned advantage and its success in many newly discovered processes. Most

notable is the asymmetric ring opening (ARO) of epoxides by a Cr(salen)Cl catalyst

which was developed by Jacobsen and workers in the mid-1990's.24 Additionally, the

oxidation of alkenes via M(salen)Cl (M = Mn, Cr) catalysts in the presence of an oxygen

donor also spurred intense research in the area of Schiff base chemistry.62 A very

important reaction in organic synthesis which involves the use of predominantly

chromium based salen complexes is the Diels-Alder reaction. Indeed, there are

numerous reports where these catalysts have been employed as part of a long synthetic

strategy to afford complex natural products.63

_______________ * Reproduced in part with permission from Darensbourg, D. J.; J. C.; Ortiz, C. G.; Billodeaux, D. R. Inorg. Chim. Acta. In Press.

122

One of the most widely used and applicable synthetic methodologies is the

carbon-carbon coupling reaction, which is dominated by palladium based catalysts.64

Although unprecedented results have been obtained using this metal through the years,

the high cost of many of these catalysts is an immense drawback. An alternative and

highly under explored option is the use of iron catalysts which possess many advantages

over traditional catalyst due to iron’s copious, non-toxic, and inexpensive nature. The

use of Fe(salen)Cl as a pre-catalyst in the cross-coupling of aryl chlorides and Grignard

alkyls has been recently investigated and found to be highly effective.65 Such report

opens a new avenue for the utilization of iron salen complexes in organometallic

catalysis.

In this context, few investigations incorporating iron as the metal center in the

copolymerization of CO2 and epoxides to afford polycarbonate have been conducted.

Due to the success associated with the Cr(salen)Cl catalyst for this purpose, the search

for new catalysts bearing the salen ligand framework with a variety of metals is of

interest.23 Herein, we wish to report the synthesis of a novel Fe(salen)(OPh), 1,

complex, incorporating 2,6-diphenylphenoxy moiety in the axial site (Figure 5.1). The

synthetic strategy for the preparation of these types of complexes is discussed as well the

solid state characterization of 1. The Fe(salen)(acac), 2, complex has also been prepared

through the use of a previously reported synthetic route (Figure 5.1).66 The

123

N N

O O

Fe

t-Bu

t-Bu t-Bu

t-Bu

O

PhPh

N N

O O

Fe

t-Bu

t-But-Bu

t-Bu

O

O

= acacO

O

1 2

Figure 5.1. Fe(salen)X complexes incorporating monodentate and bidentate anionic ligands.

124

coordination mode of a bidentate ligand such as acetylacetonate induces dramatic

changes in the geometry at the metal center.

In addition, the solid state characterization of the µ-oxo dimer, 3, is presented.

Such species are of importance due to the many bioinorganic processes involving

dioxygen activation.67 For example, methane monooxygenase effectively cleaves the O2

bond to produce one molecule of both water and methanol. Although it is not the

purpose of this manuscript to fully compare the oxo species to relevant bioinorganic

models, many important physical attributes such as selected bond distances and angles

are provided. Additionally, µ-[Fe(salen)]2O complexes of this type have also been used

in the catalytic olefin cyclopropanation reaction to afford many useful organic

substrates.68

EXPERIMENTAL

Methods and Materials

Unless otherwise indicated, all reactions were carried out under an inert argon

atmosphere using standard Schlenk and drybox techniques. Prior to their use, all

solvents were distilled using standard techniques. The synthetic precursors, FeCl3,

Fe(acac)3, 2,6-diphenylphenol, and 1,2-ethyldiamine were purchased from Aldrich

Chemical Co. 2,6-Diphenylphenol was purified by sublimination prior to its use. The

preparations of Fe[N(Si(CH3)3)2]358 and 3,5-di-tert-butyl-2-hydroxybenzaldehyde33 were

accomplished by the literature procedures. The synthesis of N,N'-bis(3,5-di-tert-

butylsalicylidene)-1,2-ethyldiimine (salen) 23a was accomplished by the typical protocol

125

of refluxing 1,2-ethyldiamine and 3,5-di-tert-butyl-2-hydroxybenzaldehyde in methanol

over a period of 5 hr in the presence of molecular sieves.

After each CO2/epoxide copolymerization experiment, the resulting reaction

mixture was analyzed by IR spectroscopy using a Mattson 6021 FTIR spectrometer with

DTGS and MCT detectors. X-ray data were recorded using a Bruker Smart 1000 CCD

diffractometer.

Synthesis of Fe(salen)(OPh) (1)

To a 100 mL Schlenk flask was added Fe[N(Si(CH3)3)2]3 (0.150 g, 0.28 mmol)

which was dissolved in approximately 15 mL of toluene. To the resulting green solution

was added the H2salen ligand (0.138 g, 0.28 mmol) in 15 mL of toluene via cannula

technique, and the dark solution was stirred for approximately 2 hr. Freshly sublimed

2,6-diphenylphenol (0.069 g, 0.28 mmol), in 10 mL of toluene, was cannulated into the

reaction solution to afford a deep red solution which was stirred overnight.

Subsequently, the solvent was removed under vacuum, and the remaining solid was

dried. Yield: 92.8%. The complex was characterized by X-ray crystallography via the

use of dark, plate-like crystals formed by the slow diffusion of pentane in a methylene

chloride solution of 1 at -20ºC.

Synthesis of Fe(Salen)(acac) (2)66

The synthetic methodology employed in the synthesis of this derivative was

identical to that reported by Cheng and coworkers. To a 50 mL Schlenk flask equipped

with a condenser was added Fe(acac)3 (0.300 g, 0.85 mmol) and the H2salen ligand

(0.415 g, 0.85 mmol) in approximately 30 mL of acetonitrile. The resulting red solution

126

was refluxed for 2 hr, causing the formation of a dark purple solution. The solution was

filtered and the solvent was removed under vacuum. Complex 2 was characterized by

X-ray crystallography using purple crystals formed by the diffusion of pentane into a

toluene solution of 2 at -20ºC.

Copolymerization of CO2 and Epoxides

A typical reaction was carried out using the following protocol. A 35 mL glass vial

with a septum was charged with 1 (50 mg, 0.063 mmol) followed by the addition of 20

mL of cyclohexene oxide. To this solution was added via microliter syringe N-MeIm

(11.7 mg, 0.142 mmol, 11.3 µL). The solution was then introduced into the stainless

steel autoclave via an injection port followed by pressurizing the reactor to

approximately 550 psi CO2 pressure at room temperature. The temperature was raised to

80ºC, at which time the CO2 pressure increased to 800 psi. The reaction was carried out

for 24 hr, after which the heat was turned off and the reactor was allowed to cool to

room temperature. After venting the excess CO2, the reactor was cleaned by dissolving

any polymer with methylene chloride. An infrared spectrum of the reaction mixture was

immediately taken in CH2Cl2 to determine the extent of polycarbonate and cyclohexene

carbonate formation.

RESULTS AND DISCUSSION

The preparation of complexes 1-2 was achieved via two independent synthetic

routes. Complex 1 was synthesized using the Fe[N(Si(CH3)3)2]3 precursor with one

equivalent of H2salen and the corresponding phenol (Scheme 5.1). Immediately, after

127

N N

O O

Fe

t-Bu

t-Bu t-Bu

t-Bu

O

PhPh

1

Fe[N(Si(CH3)3)2]3 +

N N

OH HOt-Bu

t-Bu t-Bu

t-Bu 2,6-DiphenylphenolToluene, r.t., overnight

Scheme 5.1

128

the addition of the H2salen ligand to the Fe[N(Si(CH3)3)2]3 green precursor, a deep red

solution was observed.58 Characterization of 1 was achieved by growing dark, plate-like

crystals via the slow introduction of pentane into a toluene solution of 1 at -20ºC. An X-

ray analysis of the bulk crystals resulted in the solid state characterization of 1.

Crystallographic data, and selected bond distances and angles are tabulated in Table 5.1

and Table 5.2, respectively. A thermal ellipsoid representation of 1 showing 50%

probability is provided in Figure 5.2. The iron center is found to adopt a distorted square

pyramidal geometry with the N(1)-Fe(1)-O(2) and N(2)-Fe(1)-O(1) bond angles having

values of 131.3(3) and 159.1(3)º, respectively. An expanded view of the metal center

with its immediate coordination sphere is presented in the inset in Figure 5.2. Such

orientation is not surprising and is also observed in other M(salen) complexes

incorporating the ethyl backbone fragment within the ligand framework.69 The Fe(1)-

O(1) and Fe(1)-O(2) bond distances were found to be 1.894(7) and 1.887(6) Å and are

nearly identical to the Fe(1)-O(3) bond distance (i.e., 1.876(8) Å) pertaining to the

phenoxy axial ligand. The N(1)-C(2) and N(1)-C(18) bond distance were found to differ

significantly from each other with values of 1.301(12) and 1.249(12) Å, respectively.

Such differences in the N=C bond distance within the same salen framework is not

typical.

The acetylacetonate derivative, 2, was successfully prepared thermally by reacting

one equivalent of H2salen with Fe(acac)3 in acetonitrile under refluxing conditions

(Scheme 5.2). This protocol has been previously used in the preparation of chiral iron

complexes bearing binaphthyl Schiff base analogues.67 The procedure leads

129

Table 5.1. Crystallographic data and data collection parameters for complexes 1, 2, and 3.

1 2 3

Cryst syst monoclinic monoclinic monoclinic

space group P2(1)/n C2/c C2/c

V, Å3 4704(2) 7475(3) 6567(7)

Z 4 8 6

a, Å 16.130(4) 24.801(5) 24.546(14)

b, Å 16.123(5) 10.637(2) 16.707(10)

c, Å 19.555(6) 28.336(6) 17.075(10)

α, deg — — —

β, deg 112.320(6) 90.258(4) 110.315(10)

γ, deg — — —

T, K 110 110 110

d(calc), g/cm3 1.235 1.197 1.227

Abs coeff, mm-1 0.477 0.444 0.498 R,a % [I > 2σ (I)] 9.73 6.64 5.37

Rw,a % 27.07 10.25 5.85 a R = Σ || Fo | – | Fc || / ΣFo and RwF = {[Σw(Fo – Fc)2] / ΣwFo

2}½

130

Table 5.2. Selected bond distances (Å) and angles for complexes 1, 2, and 3.a

Complex 1 Fe(1)-N(1) 2.094(9) Fe(1)-O(2) 1.887(6) Fe(1)-O(3) 1.876(8) Fe(1)-N(2) 2.091(9) N(1)-C(2) 1.301(12) N(1)-C(1) 1.448(13) Fe(1)-O(1) 1.894(7) N(2)-C(18) 1.249(12) N(2)-C(17) 1.478(13) O(1)-Fe(1)-N(2) 159.1(3) N(2)-Fe(1)-O(1) 159.1(3) O(2)-Fe(1)-N(1) 131.3(3) N(2)-Fe(1)-O(2) 85.7(3) N(1)-Fe(1)-O(3) 110.9(3) N(1)-Fe(1)-N(2) 77.3(4) N(1)-Fe(1)-O(1) 86.8(3) O(1)-Fe(1)-O(2) 95.0(3) N(2)-Fe(1)-O(3) 92.9(3) O(1)-Fe(1)-O(3) 105.5(3)

Complex 2 Fe(1)-N(1) 2.154(4) Fe(1)-O(2) 1.934(3) Fe(1)-O(3) 2.060(3) Fe(1)-N(2) 2.124(4) N(1)-C(2) 1.288(6) Fe(1)-O(4) 2.006(3) Fe(1)-O(1) 1.898(3) N(2)-C(18) 1.287(6) N(1)-C(1) 1.471(6) N(2)-C(17) 1.461(6) O(1)-Fe(1)-N(2) 156.61(15) N(2)-Fe(1)-O(1) 156.61(15) O(2)-Fe(1)-N(1) 111.00(14) N(2)-Fe(1)-O(2) 82.30(14) N(1)-Fe(1)-O(3) 80.38(14) N(1)-Fe(1)-N(2) 75.38(15) N(1)-Fe(1)-O(1) 84.52(14) O(1)-Fe(1)-O(2) 94.12(13) N(2)-Fe(1)-O(3) 160.81(13) O(1)-Fe(1)-O(3) 102.53(14) O(4)-Fe(1)-N(2) 109.78(14) O(4)-Fe(1)-O(2) 85.88(13) O(4)-Fe(1)-N(1) 163.04(14) O(4)-Fe(1)-O(3) 83.84(14)

131

Table 5.2 (Continued).a

Complex 3

Fe(1)-N(1) 2.116(3) Fe(1)-O(2) 1.926(2) Fe(1)-O(3) 1.7653(10) Fe(1)-N(2) 2.100(3) N(1)-C(2) 1.267(4) N(1)-C(1) 1.453(4) Fe(1)-O(1) 1.917(2) N(2)-C(18) 1.282(4) N(2)-C(17) 1.469(4) O(1)-Fe(1)-N(2) 174.26(9) N(2)-Fe(1)-O(1) 134.26(9) O(2)-Fe(1)-N(1) 156.18(9) N(2)-Fe(1)-O(2) 86.30(9) N(1)-Fe(1)-O(3) 97.50(10) N(1)-Fe(1)-N(2) 76.67(9) N(1)-Fe(1)-O(1) 84.44(9) O(1)-Fe(1)-O(2) 96.10(9) N(2)-Fe(1)-O(3) 113.58(8) O(1)-Fe(1)-O(3) 109.92(7) Fe(1)-O(3)-Fe(1A) 171.63(17)

a Estimated standard deviations are shown in parenthesis.

132

Figure 5.2. Thermal ellipsoid representation of Fe(salen)(OPh) (1) showing 50% probability.

133

N N

O O

Fe

t-Bu

t-But-Bu

t-Bu

O

O

= acacO

O

2

Fe(acac)3 +

N N

OH HOt-Bu

t-Bu t-Bu

t-Bu

CH3CN, reflux, 2 hr

Scheme 5.2

134

to the production of the desired product in good yields (>80%). Allowing the slow

diffusion of pentane into a toluene solution of 2 resulted in bulk X-ray quality dark

crystals. Crystallographic data, and selected bond distances and angles are presented in

Table 5.1 and Table 5.2, respectively. A thermal ellipsoid representation of 2 showing

50% probability is given in Figure 5.3. As has been previously described in the

analogous complexes, the use of the bidentate acetylacetonate ligand demands the iron

center to adopt a distorted octahedral geometry (inset in Figure 5.3). For example, the

N(1)-Fe(1)-O(2) and N(2)-Fe(1)-O(1) bond angles are found to have values of

111.00(14) and 156.61(15)º, respectively. The large deviation from the typical square

pyramidal geometry associated with M(salen)Cl (M = Cr, Fe, Mn) complexes is clearly

evident by other bond angle data presented in Table 5.2. The Fe(1)-O(1) and Fe(1)-O(2)

bond distances are found to have values of 1.898(3) and 1.934(3) Å, respectively. Such

deviation from one another is not surprising due to the octahedral nature of the iron

center. As expected and observed in other Fe(salen)(acac) complexes, the Fe(1)-O(4)

bond distance is approximately 0.06 Å shorter than the Fe(1)-O(3) distance

corresponding to the acetato ligand.66 Unfortunately, using 1 as a catalyst in the

copolymerization of CO2 and cyclohexene oxide was unsuccessful. The addition of 2.5

equivalents of the Lewis base, N-MeIm, to 1, in cyclohexene oxide, also resulted in an

inactive system. Perhaps the use of electron deficient OPh groups as initiators are not

suitably nucleophilic for either the ring opening of epoxides or the CO2 insertion into the

Fe-OPh bond even in the presence of an auxiliary Lewis base. Additionally, using 2 also

135

Figure 5.3. Thermal ellipsoid representation of Fe(salen)(acac) (2) showing 50% probability.

136

resulted in no polycarbonate production, and yielded only low amounts of cyclohexene

carbonate with PCy3 as the cocatalyst.

An attempt to synthesize the iron amido derivative, Fe(salen)(N(Si(CH3)3)2), was

unsuccessful, and due to the highly unstable nature of this intermediate, the hydrolysis

product was readily formed as indicated by the formation of the µ-oxo dimer, 3. The

complex is air stable and forms perfect rectangular black crystals in large quantities. A

solid state structure of the complex was obtained by X-ray crystallography.

Crystallographic data, including selected bond distances and angles are tabulated in

Table 5.1 and Table 5.2, respectively. A thermal ellipsoid drawing showing 50%

probability is shown in Figure 5.4. Due to the sterically encumbering tert-butyl groups

on the ligand framework, the iron centers are stacked in a 100.9º rotation with respect to

one another to afford the most stable conformation. The Fe(1) atom is also found to lie

0.566 Å above the plane formed by the N(1), N(2), O(1), and O(2) atoms. Such

deviation is typical and observed in other [Fe(salen)]2O species.70 The two complexes,

bridged by the lone oxygen atom, O(3), form a nearly linear Fe(1)-O(3)-Fe(1A) angle

with a value of 171.63(17)º, similar to the other salen Fe complexes and porphyrin

derivatives such as [Fe(TTP)]2O (TTP = meso-tetrakis(p-tolyl)-porphyrinato) (i.e.,

178.2(3)º).71 The linear characteristic of the Fe-O-Fe unit is heavily dependent on the

aryl substituents as sterically encumbering groups aid in the formation of a linear angle

by imposing electronic and steric repulsions between the ligands while those possessing

less sterically encumbering groups cause a more bent framework (i.e., no substitution on

salen: Fe(1)-O(1)-Fe(2)=156.5(3)º).70 The Fe(1)-O(3) bond distance

137

Figure 5.4. Thermal ellipsoid representation of µ-[Fe(salen)]2O (3) showing 50% probability.

138

is approximately 0.11 Å shorter than that found in the phenoxy analogue, 1, while the

Fe(1)-N(2) bond distance was found to be slightly longer than those found in 1.

CONCLUDING REMARKS

Iron complexes, 1-2, bearing the Schiff base containing a salen ligand were

successfully synthesized using two synthetic approaches. The use of Fe[N(Si(CH3)3)2]3

as a precursor with one equivalent of both the H2salen and 2,6-diphenylphenol ligand

has been found to be an effective route for the preparation of 1, and is a feasible

synthetic route for the synthesis other iron complexes bearing an array of OR groups in

the axial position. Yields are excellent due to the ease in removing the HN(Si(CH3)3)2

byproduct under reduced pressure. Characterization of 1 was achieved by X-ray analysis

of small plate-like crystals. The primary purpose behind the preparation of 1 was to

determine its catalytic activity in the copolymerization of CO2 and epoxides.

Unfortunately, a completely inactive system was observed using cyclohexene oxide as

the epoxide, even in the presence of a Lewis base cocatalyst. Perhaps, derivatives

incorporating alkoxy groups or more electron rich phenoxides coordinated to the iron

center may serve as better nucleophiles for the CO2 or ring opening initiation step.

Adding bidentate ligands, such as acetylacetonate, has been found to cause dramatic

coordination changes. In 2, the iron adopts a very distorted octahedral geometry,

indicating a strong preference for the square pyramidal analogues, as has been observed

in many other M(salen)X complexes, where X represents an anionic monodentate

ligand.69 A lack of catalytic activity was also observed using 2 as the catalyst for the

139

aforementioned copolymerization process with the use of PCy3 as the cocatalyst.

Furthermore, the hydrolysis of two equivalents of Fe(salen)(N(Si(CH3)3)2) with a proton

source (e.g., water), yields the µ-oxo derivative, 3. Complex 3 was also characterized by

X-ray crystallography and found to be similar to other analogues incorporating sterically

encumbering groups on the salen framework. This air stable derivative may serve as an

active catalyst in the olefin cyclopropanation reaction due to the potential formation of a

more stable Fe(II) intermediate than those formed with related complexes.68

140

CHAPTER VI

METHYLATION REACTIONS OF GROUP 10 1,3,5-TRIAZA-7-

PHOSPHAADAMANTANE COMPLEXES USING CH3OSO2F AND SYNTHESIS

OF NOVEL PALLADIUM-NICKEL DACO TRIMERS

INTRODUCTION

At the active sites of many enzymes lie transition metal complexes which catalyze

important biochemical reactions. One of the most widely studied metalloenzymes is the

carbon monoxide dehydrogenase (CODH)/acetyl-coenzyme A synthase (ACS) which

reversibly reduces CO2 to CO, and subsequently couples the molecule with CH3 and

CoA to form Acetyl-CoA.72,73 The harboring of CO2 as an energy source in order to

produce biomass allows microorganisms such as Moorella thermoacetica to thrive using

this very primitive energy production process. The two primary metallocofactors in the

CODH and ACS units are the C and A cluster. The former is responsible for the

reversible reduction of CO2 while the latter’s function is to couple CO, CH3, and CoA (a

thiol, SR-) to form the final thioester product. The active site in the A cluster is

composed a [Fe4S4] unit bridged by a metal atom that is linked to a nickel complex

composed of a N2S2 framework which originates from cysteine (S) and glycine (N)

residues (Figure 6.1).

Figure 6.1. Active site in the A cluster of Acetyl CoA Synthase.

[Fe4S4] S(Cys) M

L

S(Cys)

S(Cys)Ni

N(Cys)

N(Gly)

141

The metal atom represented as M in Figure 6.1 has been a subject of much debate, with

researchers identifying it as copper, nickel, or zinc.73, 74 Regardless of its identity, a

neutral ligand, L, is coordinated to this metal center, and most likely represents a CO

molecule. The proposed mechanism by Lindahl in the formation of Acetyl-CoA is

represented in Scheme 6.1.73a In the first step, a CH3 group is donated by a cobalt

complex (i.e., methyl cobalamine, denoted as CH3-[Co] in Scheme 6.1), forming the

nickel alkyl species which subsequently inserts CO to form the nickel acyl complex.

Nucleophilic attack by CoA- followed by reductive elimination leads to the formation of

Acetyl-CoA.

Herein, we present synthetic strategies for the preparation of model bimetallic

complexes of the type [(N2S2)Ni]-[Pd(XR)(CH3)] (X=O, S). Such complexes would be

analogous to the bimetallic site in Figure 6.1. Although nickel is the primary choice,

palladium typically provides more stable complexes which may be isolated and

characterized by X-ray crystallography. The [(N2S2)Ni] complex chosen for the study is

the (BME-DACO)Ni75 and (BME-DACH)Ni76 species, as they are synthesized with

relative ease and the latter using commercially available reagents. Additionally, the two

sulfur atoms are suitable donors to stabilize a second metal center, and lack any type of

steric influences that may prohibit binding.

The methyl transfer and CO insertion pathway (in Scheme 6.1) is primarily

supported by model complexes developed by Holm,77 Norton,78 and others.79 For

example, Norton has previously synthesized a [Co]CH3 complex that effectively

142

Scheme 6.1

SR [Ni]

SR [Ni] CH3

CH3 [Co]

SR [Ni] C(O)CH3

CoA-

CH3 CoA

O

CO Insertion

(Cobalt Corronoid Protein)

143

transfers the covalently coordinated methyl group to a [Ni] complex to produce the

[Ni]CH3 species. Herein, in a collaborative effort with Dr. Paul Lindahl from Texas

A&M University, we wish to focus on the preparation of Group 10 water-soluble methyl

complexes that might model the methyl transfer feature of ACS. Hundreds of water-

solubilizing ligands have appeared through the years, with the most common based on

tertiary phosphines such as the meta-triply sulfonated triphenylphosphine derivative,

TPPTS.31 However, we wish to focus on non-salt containing phosphines such as the

aliphatic, heterocyclic 1,3,5-triaza-5-phosphaadamaantane (PTA) ligand, which has been

found to be a good donor due to electronic and steric influences.11 In this report, we

present the attempted methylation of M(PTA)4 (M = Ni (1), Pt (2)) using “magic”

methyl, CH3OSO2F, in the pursuit of water soluble complexes which may be used as

methyltransfer agents. The use of platinum as the metal is due to the potential isolation

of more stable complexes which may be crystallographically characterized.

EXPERIMENTAL

Materials and Methods

Unless otherwise indicated, all reactions were carried out under an inert argon

atmosphere using standard Schlenk and drybox techniques. Prior to their use, all

solvents were distilled using standard techniques. The parent PTA11a-b ligand was

prepared by the literature procedure as well the alkylated (PTA-CH3+)(I-)14 derivative.

The metal complexes, Ni(PTA)413, Pt(PTA)4

13, (BME-DACO)Ni76, (BME-DACH)Ni76,

(TMEDA)Pd(CH3)234b, and (TMEDA)Pd(CH3)(OPh)80 were all prepared by the

144

published procedure. All other reagents were purchased from the Aldrich Chemical Co.

and used without any additional purification.

31P NMR data were obtained using a Varian Unity+ 300 MHz NMR instrument.

Deuteratured D2O was degassed prior to its use. The 31P chemical shifts were referenced

using an external 85% H3PO4 sample. IR data was collected using a Mattson 6021 FTIR

spectrometer with DTGS and MCT detectors.

Preparation of [Ni(PTA)3((PTA-CH3)+(FSO3)-)] (3)

In a 100 mL Schlenk flask, 1 (0.200 g, 0.29 mmol) was dissolved in approximately

45 mL of acetonitrile and was subsequently cannulated over to a separate 100 mL

Schlenk flask containing CH3OSO2F (0.033 g, 0.29 mmol). The resulting milky-white

solution was stirred overnight. Subsequently, the solvent was removed, yielding a white

solid. 31P NMR (121 MHz, D2O, δ): -36.03 ((PTA-CH3)+(SO3F)-) ,

-46.52 (PTA).

Synthesis of [Ni(CO)(PTA)2((PTA-CH3)+(SO3F)-)] (4)

To a 100 mL Schlenk flask charged with 3 (0.225 g, 0.28 mmol) was added 20 mL

of H2O and was subsequently purged with CO for approximately 1 hr. The solution was

then stirred overnight after which a small aliquot was used for IR analysis. The solvent

was removed and the white solid was analyzed by 31P NMR. IR( H2O): v(CO) = 1955

cm-1. 31P NMR (121 MHz, D2O, δ): -10.25 (PTA=O), -33.60 ((PTA-CH3)+(SO3F)-), -

47.16 (PTABOUND), -101.26 (PTAFREE).

145

Synthesis of [Pt((PTA-CH3)+(SO3F)-)4] (5)

A 50 mL Schlenk flask was first charged with 2 (0.200 g, 0.24 mmol) followed by

the addition of 30 mL of CH3CN. The solution was subsequently cannulated over to a

separate 50 mL flask containing CH3OSO2F (0.083 g, 0.24 mmol), and the mixture was

stirred overnight. The solvent was then removed and analyzed by 31P NMR, which

revealed several impurities with the predominant product being 5. 31P NMR (121 MHz,

dmso-D6, δ): -62.73 (t, 1JP-Pt=3639 Hz).

Synthesis of [Ni((PTA-CH3)+(I)-)4] (6)

The synthesis of 6 was achieved by the typical displacement of the labile COD

ligands from Ni(COD)2. To a 100 mL Schlenk flask containing Ni(COD)2 (0.50 g, 1.81

mmol) was added 60 mL of toluene. To the resulting yellow solution was added (PTA-

CH3)+(I)-) (2.16 g, 7.24 mmol) in 40 mL of MeOH, by cannula technique. The resulting

solution was stirred for 1 hr, after which the white solid was collected by filtration and

washed with 2 x 5 mL of toluene. 31P NMR (121 MHz, dmso-D6, δ): -33.82.

Synthesis of [Pt((PTA-CH3)+(I)-)4] (7)

To a 100 mL Schlenk flask charged with PtCl2 (0.30 g, 1.13 mmol) and (PTA-

CH3)+(I)-) (1.01 g, 3.39 mmol) was added 30 mL of water, and the mixture was stirred

overnight. After removing the solvent, approximately 35 mL of MeOH was added

followed by 30 mL of ether, which resulted in the formation of an orange precipitate.

After filtration, the deep red mother liquor was collected and allowed to slowly

evaporate in open air, resulting in clear crystals after 4 days.

146

Synthesis of [(BME-DACO)Ni]-[Pd(CH3)(Cl)] (8)

To a 50 mL Schlenk flask containing (TMEDA)Pd(CH3)2 (0.15 g, 0.59 mmol) was

added 15 mL of CH2Cl2. A solution of (BME-DACO)Ni (0.18 g, 0.623 mmol) in 15 mL

of CH2Cl2 was added via cannula over, and the resulting dark red solution was stirred

overnight. The solvent's volume was reduced in vacuo until about 5 mL of solvent

remained. Next, 25 ml of pentane was added, resulting in the precipitation of a red solid

which was then collected by filtration. On dissolving the complex in ether and allowing

the slow diffusion of pentane into the solution, resulted in the formation of 8 as a

crystalline solid.

Synthesis of [((BME-DACH)Ni)2-µ-[Pd(CH3)2(OPh)]+[OPh]- . HOPh (9)

To a 100 mL Schlenk flask charged with (BME-DACH)Ni (0.199 g, 0.76 mmol),

was added 70 mL of benzene. A solution of (TMEDA)Pd(CH3)(OPh) (0.250 g, 0.76

mmol), 30 mL of benzene, was cannulated over, and the mixture was stirred for 72 hr.

Following the orange, insoluble solid, was separated by filtration and the solvent

pertaining to the mother liquor was removed under reduced pressure. Allowing a

benzene solution of the solid to slowly evaporate in open air resulted in crystals of 9

suitable for X-ray diffraction studies.

147

RESULTS AND DISCUSSION

Methylation Reactions of M(PTA)4 (M=Ni (1), Pt (2))

The methylation of 1 and 2 with one equivalent of CH3OSO2F was carried out at

room temperature utilizing the non-protic, polar solvent, CH3CN. These two cases

produced unique results with the use of 1 rendering a single product (eq. 6.1).

(6.1)

Unfortunately, methylation was found to take place at a single nitrogen atom of the

ligand. This type of electrophilic reaction has been observed in the preparation of the

[(PTA-CH3)+(I-)] analogue via the use of PTA with one equivalent of MeI.14 Complex 3

displays the expected two 31P NMR resonances, located at -46.48 and -35.94 ppm with a

3:1 integration ratio, respectively.

Exposing 3 to a CO pressure of 2.5 atm in water resulted in the displacement of

one PTA molecule by CO, producing the [Ni(CO)(PTA)2((PTA-CH3)+(FSO3)-)], 4,

complex. The 31P NMR spectrum displays a signal at –47.16 and –33.60 ppm which are

due to the bound PTA and the (PTA-CH3)+ species, respectively. Although the expected

2:1 PTABOUND to (PTA-CH3)+BOUND ratio was not observed, the large amount of free

PTA and an IR signal at 1955 cm-1 (similar to Ni(CO)(PTA)3) supports the formation of

4. That is, the removal of PTA appears to take place with greater ease when compared

to the methylated analogue.

Ni(PTA)4 + CH3OSO2F [Ni(PTA)3((PTA_CH3)+(FSO3)-)]CH3CNr.t., overnight

1 3

148

Carrying out the methylation reaction with 2 under identical conditions resulted

in a mixture of products. After stirring for 2hr, the sample analyzed by 31P NMR

revealed a number of splitting patterns. In addition, excess Pt(PTA)4 and the protonated

form, Pt((PTA-H)+(Cl-))4 species was observed. The latter species was initially present

in 2 due to its formation from PtCl2 and PTA. Addition of three equivalents of

CH3OSO2F to 2 resulted in yet another difficult to interpret 31P NMR spectrum.

Although no starting material was present, the spectrum displays various amounts of

coupling, some of which may be due to 31P-19F interactions. Allowing a solution of the

resulting mixture in DMSO-d6 to slowly evaporate in air resulted in the formation of

clear crystals which were subsequently analyzed by X-ray crystallography. A solid state

structure of [Pt((PTA-CH3)+(OSO2F)-)4], 5, was obtained. Crystallographic data, and

selected bond distances and angles are tabulated in Table 6.1 and Table 6.2, respectively.

A thermal ellipsoid representation showing 50% probability is provided in Figure 6.2.

Surprisingly, one nitrogen atom corresponding to each PTA ligand is methylated, which

was not expected due to the 3:1 phosphine to metal stoichiometry. The platinum metal

center exhibits the typical tetrahedral geometry associated with a group 10 metal center

in the “0” oxidation state. The four –OSO2F groups are in close proximity to the

nitrogen atoms, and the change associated with the methylated C(12)-N(4) and C(10)-

N(4) bond distances is clearly evident, as an average 0.07 Ả lengthening occurs when

compared to the non-alkylated C-N group (i.e., C(10)-N(5): 1.49(3) Ả) of PTA. The

Pt(1)-P(x) (x=1-4) bond distances are found to have an average value of 2.268 Ả. The

149

Table 6.1. Crystallographic data and data collection parameters for compounds 5, 7, 8', and 9.

5 7 8' 9

Cryst syst monoclinic Triclinic orthorhombic Monoclinic

space group P2(1)/c P-1 Pmn2(1) P2(1)/c

V, Å3 4780(10) 2216.9(4) 926.3(8) 4024(5)

Z 4 2 2 8

a, Å 14.602(18) 12.8106(14) 12.234(6) 13.276(10)

b, Å 13.653(17) 12.8389(14) 9.291(5) 19.674(14)

c, Å 24.28(3) 13.9945(15) 8.149(4) 16.634(11)

α, deg — 98.512(2) — —

β, deg 99.05(2) 96.086(2) — 112.139(15)

γ, deg — 100.542(2) — —

T, K 110 110 110 110

d(calc), g/cm3 1.801 2.156 1.903 1.801

Abs coeff, mm-1 3.330 6.139 2.624 2.054 R,a % [I > 2σ (I)] 7.72 8.84 4.45 9.62

Rw,a % 20.63 9.45 4.57 24.41 a R = Σ || Fo | – | Fc || / ΣFo and RwF = {[Σw(Fo – Fc)2] / ΣwFo

2}½

150

Table 6.2. Selected bond distances (Å) and angles for compounds 5, 7, 8', and 9.a

Compound 5

Pt(1)-P(1) 2.266(5) Pt(1)-P(4) 2.275(7) N(3)-C(6) 1.56(3) Pt(1)-P(2) 2.261(5) N(3)-C(25) 1.46(3) N(1)-C(4) 1.42(3) Pt(1)-P(3) 2.270(7) N(3)-C(4) 1.52(3) N(1)-C(5) 1.49(3) P(1)-Pt(1)-P(2) 107.46(19) P(2)-Pt(1)-P(3) 108.3(3) P(1)-Pt(1)-P(3) 111.5(3) P(3)-Pt(1)-P(4) 110.16(19) P(1)-Pt(1)-P(4) 109.9(3)

Compound 7 Pt(1)-P(1) 2.260(3) Pt(1)-P(4) 2.264(3) N(4)-C(10) 1.509(19) Pt(1)-P(2) 2.262(3) N(4)-C(25) 1.491(19) N(5)-C(10) 1.455(19) Pt(1)-P(3) 2.253(3) N(4)-C(12) 1.536(19) N(5)-C(11) 1.468(18) P(1)-Pt(1)-P(2) 110.33(11) P(2)-Pt(1)-P(3) 109.49(11) P(1)-Pt(1)-P(3) 107.97(11) P(3)-Pt(1)-P(4) 110.10(10) P(1)-Pt(1)-P(4) 110.43(11)

Complex 8’ Ni(1)-S(1) 2.179(3) Pd(1)-S(1) 2.368(3) Pd(1)-Cl(1) 2.275(19) Ni(1)-N(1) 1.960(8) Pd(1)-C(1) 2.12(5) Ni(1)-Pd(1) 2.802(2) S(1)-Ni(1)-N(1) 90.9(2) S(1)-Pd(1)-S(1A) 77.03(12) N(1)-Ni(1)-N(1A) 91.4(5) S(1)-Pd)1)-Cl(1) 98.3(5) S(1)-Ni(1)-S(1A) 85.14(16)

151

Table 6.2 (Continued).

Compound 9 Ni(1A)-S(1A) 2.153(8) Ni(1B)-N(1B) 1.89(2) Pd(1)-C(1) 2.02(2) Ni(1A)-S(2A) 2.155(8) Ni(1B)-N(2B) 1.930(19) Pd(1)-O(1) 2.104(15) Ni(1A)-N(1A) 1.91(2) Pd(1)-S(1A) 2.275(7) Pd(2)-C(2) 1.96(2) Ni(1A)-N(2A) 1.93(2) Pd(1)-S(1B) 2.283(7) Pd(2)-O(1) 2.089(17) Ni(1B)-S(1B) 2.122(7) Pd(2)-S(2A) 2.306(7) Ni(1B)-S(2B) 2.130(8) Pd(2)-S(2B) 2.271(7) S(1A)-Ni(1A)-N(2A) 168.9(7) S(1A)-Pd(1)-C(1) 97.2(7) S(2A)-Ni(1A)-N(1A) 170.0(7) S(1B)-Pd(1)-C(1) 86.2(7) S(1A)-Ni(1A)-N(1A) 90.2(7) C(1)-Pd(1)-O(1) 178.1(9) S(2A)-Ni(1A)-N(2A) 90.9(8) S(1A)-Pd(1)-O(1) 83.8(5) S(1A)-Ni(1A)-S(2A) 97.5(3) S(1B)-Pd(1)-O(1) 92.8(5) N(1A)-Ni(1A)-N(2A) 80.7(10) S(2A)-Pd(2)-C(2) 96.7(8) S(1B)-Ni(1B)-N(2B) 171.7(7) S(2B)-Pd(2)-C(2) 87.7(8) S(2B)-Ni(1B)-N(1B) 173.5(7) C(2)-Pd(2)-O(1) 175.6(10) S(1B)-Ni(1B)-S(2B) 94.5(3) S(2A)-Pd(2)-O(1) 81.3(5) N(1B)-Ni(1B)-N(2B) 83.0(9) S(2B)-Pd(2)-O(1) 94.9(5) S(2B)-Ni(1B)-N(2B) 90.7(7) Pd(1)-O(1)-Pd(2) 108.7(7) a Estimated standard deviations are given in parenthesis.

152

Figure 6.2. Thermal ellipsoid representation of Pt[(PTA-CH3+)(OSO2F-)]4 (5) showing 50% probability

(OSO2F- groups omitted for clarity).

153

P(1)-Pt(1)-P(2) and P(3)-P(1)-P(4) angles were found to be 107.46(19) and 110.16(19)º,

respectively.

Alternatively, methylation reactions involving the [Ni((PTA-CH3)-(I)-)4], 6,

derivative was carried out to attempt to methylate the metal center on an already

alkylated PTA ligand. The preparation of 6 was accomplished by the displacement of

the labile ligands of Ni(COD)2 with four equivalents of (PTA-CH3+)(I-) (eq. 6.2).

Ni(COD)2 + 4 (PTA-CH3

+)(I-) Ni((PTA-CH3+)(I-))4

Toluene/MeOH25o C, 1 hr

6 (6.2)

The 31P NMR resonance associated with 6 lies at -33.82 ppm, in DMSO-d6.

Unfortunately, subjecting 6 to one equivalent of CH3OSO2F resulted in no reaction after

stirring at room temperature for approximately 2 hr. The platinum analogue to 6 was

also prepared by the reduction of PtCl2 with five equivalents of (PTA-CH3+)(I-) in water

(eq. 6.3).

(6.3)

During the course of the reaction, a deep red solution was observed, which is indicative

of the disubstituted PtCl2 species. After filtration, the solid was analyzed by 31P NMR in

DMSO-d6 and revealed a mixture of products. However, allowing the DMSO-d6

solution to stand in air for 4 days, resulted in the formation of large, clear crystals that

PtCl2 + 5 (PTA_CH3+)(I-) Pt((PTA_CH3

+)(I-))4H2O25o C, 12 hr

7

154

were analyzed by X-ray crystallography. The solid state structure confirmed the

formation of 7. Crystallographic data, and selected bond distances and angles for

complex 7 are tabulated in Table 6.1 and Table 6.2, respectively. A thermal ellipsoid

representation showing 50% probability is provided in Figure 6.3. Due to exposure to

moisture exposure during crystal growth, three water molecules are found in the

asymmetric unit. Surprisingly, no hydrogen bonding to the surrounding nitrogen atoms

of the phosphine was observed. The platinum metal center exhibits tetrahedral geometry

with the P(1)-Pt(1)-P(2) and P(3)-Pt(1)-P(4) angles having values of 110.33(11) amd

110.10(10)˚, respectively. The average Pt(1)-P(x) (x = 1-4) bond distance was found to

be 2.260 Å, and is almost identical to that found in 6. Additionally, the C(2)-N(3) and

C(6)-N(3) bond distances were found to be approximately 0.04 Å longer than the non-

alkylated N-C bond distances. This type of bond lengthening in the PTA framework has

been observed in other PTA derivatives such as in the Pt((PTA-H+)(Cl-))4 analogue.12,32

Bimetallic Nickel and Palladium Complexes

Initially, the strategy for the formation of the bimetallic [(N2S2)Ni]-[Pd(CH3)(SR)]

complex involved the displacement of the labile TMEDA ligand from

(TMEDA)Pd(CH3)2 precursor by the (BME-DACO)Ni complex (Scheme 6.2).

Hydrolysis of a single CH3 group in 8 to afford the thermodynamically stable CH4 (g)

side-product using one equivalent of HSPh would yield the desired dimer. Due to the

low solubility of (BME-DACO)Ni complex in most organic solvents, apart from lower

molecular weight alcohols, methylene chloride was employed as the reaction medium.

155

Figure 6.3. Thermal ellipsoid representation of Pt[(PTA-CH3+)(I-)]4 (7) showing 50% probability.

156

Scheme 6.2

N SNi

N S+

N

N

Pd

CH3

CH3

TMEDA(TMEDA)Pd(CH3)2n=0 (BME-DACH)Ni

n=1 (BME-DACO)Ni

PdCH3

CH3

8

CH2Cl2

ClCH2CH3

8'

N SNi

N S

n

n

n

PdCH3

Cl

N SNi

N S

157

The addition of one equivalent of (TMEDA)Pd(CH3)2, in toluene, to the purple (BME-

DACO)Ni complex, in methylene chloride, resulted in an immediate color change to

deep red. Crystals were obtained by the slow diffusion of pentane into a CH2Cl2

solution of the red product. Unfortunately, 8 is reactive toward chlorinated solvents,

replacing a methyl group with chlorine, forming the [Pd]-Cl derivative, 8’.

Crystallographic data, and selected bond distances and angles are provided in Table 6.1

and Table 6.2, respectively. A thermal ellipsoid representation of 8’ showing 50%

probability is presented in Figure 6.4. The disordered methyl and chlorine atoms are

modeled as populating each site approximately 50% of the time. The nickel metal center

adopts a slightly distorted square planar geometry, with the N(1A)-Ni(1)-S(1) bond

angle exhibiting an angle of 169.9(3)º. The N(1A)-Ni(1)-N(1) bond angle has a value of

91.4(5)º and is approximately 6.3º larger than the S(1A)-Ni(1)-S(1) angle. The S(1A)-

Ni(1)-S(1) bond angle is clearly affected by the ligation of the two sulfur atoms to

palladium, as an approximate 5º decrease in this angle is observed when compared to

free (BME-DACO)Ni.76 The Ni(1)-S(1) bond length was found to be 2.179(3) Ả and is

nearly identical that seen in (BME-DACO)Ni. The palladium metal center also exhibits

square planar geometry with the S(1A)-Pd(1)-C(1) and S(1)-Pd(1)-Cl(1A) bond angles

having a value of 173.4(16)º. The Pd(1)-S(1) and Pd(1)-C(1) bond distances were found

to be 2.368(3) and 2.12(5) Ả, respectively, while the Ni(1)-Pd(1) bond distance was

found to have a value of 2.802 Ả. An important geometrical aspect of the dimer

involves the location of the palladium metal center with respect to the nickel metal, as

158

Figure 6.4. Thermal ellipsoid representation of (BME-DACO)Ni-Pd(CH3)(Cl) (8’) showing 50% probability.

159

the plane formed by the N2S2 fragment is at a 79.92º angle with respect to that formed by

the S(1), S(1A), C(1), and Cl(1) atom framework of palladium.

Due to the reactivity of the complex toward chlorinated solvents, the attempted

synthesis of (TMEDA)Pd(CH3)(SPh) was carried out in order to subsequently expose the

complex to (BME-DACH)Ni using a chlorinated solvent medium. However, the

reaction between (TMEDA)Pd(CH3)2 and one equivalent of HSPh resulted in an

insoluble aggregate. Due to this difficulty, the phenoxy derivative was prepared by

reacting palladium (TMEDA)Pd(CH3)2 and one equivalent of HOPh in ether.80 Using

this palladium precursor, (TMEDA)Pd(CH3)(OPh), with one equivalent of the (BME-

DACH)Ni complex (BME-DACH: n = 0 in Scheme 6.2) in methylene chloride and

benzene, yielded a surprising result. Red crystals of the complex, 9, were isolated and

analyzed by X-ray crystallography. Crystallographic data, and selected bond distances

and angles are tabulated in Table 6.1 and Table 6.2, respectively. A thermal ellipsoid

representation of 9 showing 50% probability is given in Figure 6.5. The overall shape of

the complex is a step with the palladium metal center forming an "A" frame using two

methyl groups and a phenoxy ligand in the apex position. The step is formed by the

S(1A), S(2A), S(1B), and S(2B) plane with the two S(1A)-Pd(1)-S(1B) and S(2A)-

Pd(2)-S(2B) angles being 175.8(3) and 171.0(3)˚, respectively. Both nickel metal

centers exhibit a slightly distorted square planar geometry with the Ni(1A)-Ni(1A)-

S(2A), N(2A)-Ni(1A)-S(1A), N(1B)-Ni(1B)-S(2B), and N(2B)-Ni(1B)-S(1B) having

values of 170.0(7), 168.9(7), 173.6(7), and 171.7(7)˚, respectively. The N-Ni-N and

160

Figure 6.5. Thermal ellipsoid representation of [(BME-DACH)Ni]2-[Pd(CH3)]2(OPh) (9) showing 50% probability.

161

S-Ni-S were found to be nearly identical to those found in the free (BME-DACH)Ni

complex.76 The Pd(2)-S(2A)-Ni(1A), Pd(1)-S(1A)-Ni(1A), Pd(1)-S(1B)-Ni(1B), and

Pd(2)-S(2B)-Ni(1B) exhibit bond angles of 106.7(3), 110.4(3), 107.2(3), and 104.1(3)˚,

respectively, and face in opposite directions. The planes formed by the N(1A), N(2A),

S(1A), and S(2A) atoms are at approximately 59.29˚ with respect to that formed by the

S(1A), Pd(1), S(2A) and Pd(2) atoms (Figure 6.6). The palladium metal center also

exhibits distorted square planar geometry with corresponding C(1)-Pd(1)-O(1) and C(2)-

Pd(2)-O(1) bond angles of 178.1(9) and 175.4(10)˚, respectively. The plane formed by

the phenyl ring is paralleled to that formed by the "A" frame. The two nickel metal

centers, Ni(1A) and Ni(1B), lie approximately 0.112 and 0.073 Å from their respected

N2S2 plane. The Pd(1)-C(1) and Pd(2)-C(2) bond distance were found to be 2.02(2) and

1.95(2) Å, respectively. Asobserved in Figure 6.5, one deprotonated phenolic ligand is

present in the asymmetric unit for charge balance purposes. A surprising aspect of 9

involves the stable nature of the complex, as the Pd-CH3 bond is not hydrolyzed in the

presence of atmospheric moisture.

CONCLUDING REMARKS

The methylation of Ni(N2S2) at the nickel metal center in the active site of ACS has

been shown to occur through a methyl cobalamine protein (CH3-[CoIII]. Herein, we have

focused on the synthesis of a water-soluble organometallic [M]-CH3 methyl cobalamine

analogue bearing PTA as the water-solubilizing ligand. However, all attempts to prepare

162

Figure 6.6. Selected plane angles of complex [(BME-DACH)Ni]2-[Pd(CH3)]2(OPh) (9).

Pd(1)

Pd(2) S(2A)

S(1A)

N(2A)

N(1A)

θ=120.71

S(1B)

S(2B) Pd(2)

Pd(1)

N(2B)

N(1B)

θ=112.54

Pd(1)

Pd(2) S(2A)

S(1A)

O(1)

θ=80.16

163

these complexes via the oxidative addition using CH3OSO2F were unsuccessful, and

resulted in methylation of the PTA nitrogen atom. Furthermore, attempting to methylate

the methyl-containing PTA analogue, (PTA-CH3+)(I)-, 6, resulted in no reactivity.

Perhaps the added sterically encumbering methyl groups on four PTA units prohibits the

formation of the trigonal bipyramidal [Ni]-CH3 species, which would be analogous to

the [CH3Ni(PMe3)4]+[B(C6H5)4]- complex.81 Carrying out identical reactions using

platinum as the metal center was also unsuccessful and yielded a mixture of products, as

determined by 31P NMR. Out of these preliminary studies, complexes 5 and 7 were

isolated as colorless crystals. Crystallographic data indicates 5 and 7 to be nearly

identical with respect to bond distances and angles and demonstrate the lengthening of

the alkylated N-C bond when compared to the other non-alkylated N-C bonds. It is

evident from these studies that a different approach is needed to afford PTA based [M]-

CH3 complexes. An alternative route parallels the synthesis of

[BrNi(PMe3)4]+[B(C6H5)4]- which can then be methylated using CH3Li.82

Modeling the active site depicted in Figure 6.1 with organometallic complexes is of

great interest due to the potential to simplify the catalytic production of thioesters via a

similar route. Additionally, finding a suitable bimetallic nickel species which

accomplishes this type of reaction would further support and shed light into the ACS

mechanistic pathway. The attempted synthesis of complexes of the type 8 was carried

out using [(BME-DACO)Ni] with one equivalent of (TMEDA)Pd(CH3)2. Unfortunately,

it was shortly realized that complexes of the type 8 react with halogenated solvents to

form the undesired [Pd]-Cl analogues, 8’. Complex 8’ was characterized by X-ray

164

crystallography and shows very unique binding of the nickel complex to the palladium

metal center with the N2S2 plane being approximately 10º from forming a right angle

with respect to the corresponding plane associated with the palladium coordination

sphere. Furthermore, from these preliminary studies it is evident that the preparation of

such a bimetallic complex is possible without the drawback of forming other side

products such as trimetallic complexes.75 Additionally, known [Ni]-SR complexes may

be used to directly produce the desired organometallic model. For example, Holm and

Tucci have reported the synthesis of a nickel complex incorporating a variety of thiols,

which was shown to insert CO followed by reductive elimination to afford Ni(bpy)(CO)2

(bpy=2,2’-bipyridyl) and the corresponding thioester (Figure 6.7).77

Figure 6.7. Holm’s Ni(bpy)(CH3)(SR) complex.

Their in-depth investigation on these types of complexes also reveals the ease in which

most of the derivatives crystallize, thereby affording important structural data.

The use of the (TMEDA)Pd(CH3)(OPh) as a reagent, however, led to the synthesis

of the trimetallic species, 9, upon exposure to moisture during crystal growth. The

N

N

Ni

CH3

SR

165

complex adopts a very unique structural arrangement, taking the form of a step with the

two nickel metal centers located at each extremity. Additionally, the palladium metal

center forms part of the “A” frame. One interesting factor is the stability of the Pd-CH3

bond toward hydrolysis.

Overall, the synthesis of (N2S2)Ni-M(CH3)(SR) (M=Ni, Pd) using (BME-

DACO)Ni complexes are feasible if the correct reaction conditions are met, including

the use of the appropriate solvent medium. Once these types of complexes are produced,

the CO insertion study may be conducted to attempt to determine the binding mode of

CO. That is, although one would expect CO to bind to the nickel metal center

containing the CH3 group, the possible binding of CO to the (N2S2)Ni prior to insertion

may occur and be of monumental importance to the ACS Acetyl-CoA synthesis process.

166

CHAPTER VII

CONCLUSIONS

The work presented in this dissertation is a compilation of two main areas:

Organometallic aqueous chemistry (Chapter II-III) and the coupling of CO2 and

epoxides using a salen based catalyst (Chapter IV-V). In the former, we report the

synthesis of group 10 salicylaldiminato complexes bearing the water-soluble 1,3,5-

triaza-7-phosphaadamantane (PTA) phosphine ligand (Chapter II). Of importance is the

air stability and good donating properties of PTA, including its small cone angle (~102˚)

which enables it to effectively stabilize low valent group 10 metals in aqueous

medium.11,12 The nickel salicylaldiminato PPh3 derivatives, developed by Grubbs and

coworkers, have been shown to be effective in the polymerization of ethylene, often

exhibiting activities comparable to traditional Ziegler-Natta systems.9 One of the main

drawbacks, however, is the need for a phosphine scavenger in order to produce the

active catalytic species. Herein, we have replaced the hydrophobic PPh3 with PTA in an

effort to trap the dissociated water-soluble phosphine in the aqueous medium by

employing a biphasic toluene/water solvent system. The PTA complexes can be easily

synthesized by the ligand exchange reaction between PPh3 and PTA using Grubbs'

catalyst in a homogeneous toluene/methanol solvent system. Alternatively, a direct

approach may be used in which (TMEDA)M(CH3)2 (M= Ni, Pd) is reacted with one

equivalent of the salicylaldimine and PTA, respectively. The first route produces the

desired product in good yields, while the latter often affords near quantitative yields for

several of these derivatives. Throughout the chapter, we present numerous solid state

167

structures, as these complexes all crystallize well using the traditional protocol of

allowing the slow diffusion of pentane into a toluene or methylene chloride solution of

the complex. An important point to make with regards to catalyst design is the

significance of the mono-ligated salicylaldiminato complex, as the bis derivative leads to

deactivation during polymerization.

Unfortunately, all polymerization attempts resulted in a completely inactive

system. This is presumably due to a lack of phosphine dissociation which can be

attributed to the strong M-P bond strength. The concept of forming the active species

via this mechanism, however, is viable if the correct choice of phosphine is made.

Therefore, these investigations can be viewed as a stepping stone to the production of

active catalytic species for a variety of processes via the use of a biphasic medium. As

far as this particular research is concerned, the use of less donating water-soluble

phosphines with similar dissociation energy as that seen with PPh3 should prove this

technique successful.

The subject devoted to chapter III concerns the full characterization of the novel

water-soluble phosphine, 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane

(DAPTA), in addition to the preparation of several group 6 and group 10 complexes

incorporating the ligand.11d One of the most surprising results involves the water-

solubility associated with DAPTA, as a 7.4 M solution was accomplished which is far

more water-soluble than the commercially used TPPTS ligand (see Figure 3.2). This

PTA derivative is easily prepared by the direct acylation of PTA using acetic anhydride

in an aqueous medium. The corresponding oxide derivative is also readily prepared by

168

the same acylation reaction with PTA oxide. Two group 10 metal complexes

incorporating DAPTA were prepared. The tetrakis(DAPTA)nickel derivative was easily

synthesized by the typical protocol of ligand substitution of Ni(COD)2 with four

equivalents of DAPTA. Although the complex is formed in near quantitative yields, the

water-solubility of the white powder is non-existent, and an explanation for this

observation still remains to be addressed. The palladium salicylaldiminato derivative is

identical to the PTA analogues described in Chapter II. Unfortunately, using this

derivative in the aforementioned biphasic medium process would render an inactive

system due to the stronger M-P bond strength than that associated with PTA, as was

observed by NMR data. The binding mode in each of the complexes mentioned above

closely resembles that observed with PTA, and is further supported by the synthesis of

the tungsten and chromium pentacarbonyl complexes, M(CO)5(DAPTA). A comparison

of the solid state data to that obtained with the PTA derivatives clearly indicates similar

binding mode and strength. The purpose of this subject was well realized in that this

unexplored ligand was fully characterized by NMR and solid state data, and adds

another potential ligand for use in aqueous catalysis.

The second main topic considered concerns the catalytic process of coupling CO2

and epoxides utilizing Cr(salen)X (X = Br, OPh) catalysts (Chapter IV). This type of

catalysis involving chromium as the metal center with the tetradentate salen framework

was first observed in our laboratories for the production of high molecular weight

polycarbonate.23 The idea behind using such catalysts originated from the work of

Jacobsen, as he demonstrated these complexes to be active in the asymmetric ring

169

opening of epoxides to afford products in high enantiomeric excess.24 Herein, we have

focused on increasing the activity of the previously reported catalysts by not only

replacing the nucleophile bound to chromium, but also incorporating more electron

donating Lewis bases (i.e., phosphines). In this chapter, we report the most active

systems to date (compared to the previously published results using the Cr(salen)Cl23),

affording activities on the order of 109 mol CHO consumed . mol Cr-1 . hr-1 with the use

of X = Br and L = PCy3 as the cocatalyst. Monitoring the copolymerization in situ using

and ASI 1000 ReactIR probe equipped with a high pressure stainless steel Parr reactor,

we have observed the dramatic changes in rate as the phosphine cocatalyst is varied,

with the most active being PCy3. The order of increased activity as a function of

phosphine was found to be: PCy3>P(p-toly)3>PPh3.

Catalysts design aspects were also investigated by looking at similar chromium

derivatives incorporating another Schiff base ligand framework. In the aforementioned

Cr(salen)X catalysts, the nucleophile resides trans to the binding of epoxide or

cocatalyst, and enchainment presumably takes place on one face of the ligand framework

(see Figure 4.12). A chromium bis-salicylaldiminato complex was prepared in which

substrate binding is in a cis orientation relative to the nucleophile (e.g., polymer chain).

Important concepts to take from these studies correspond to not only lower activities due

the inability to use cocatalysts (use of cocatalysts effectively block binding of substrate),

but also the production of copolymer with large amounts of polyether linkages due to

repeated epoxide ring-opening steps.

170

Investigating the potential use of other metals in this copolymerization process is

considered in Chapter V, as Fe(salen)OR (OR= 2,6-diphenylphenoxy, acac) derivatives

were prepared. To our knowledge, this is the first report involving the synthesis of any

phenoxy derivative in iron salen chemistry. The two aforementioned derivatives were

characterized by obtaining their solid state structures, and dramatic differences are

clearly observed when a monodentate or bidentate anionic ligand is employed. Using

the bidentate acetylacetonate ligand, the complex adopts a very distorted octahedral

geometry, and points toward the desire for the species to be square pyramidal as

observed with chromium derivatives (see Chapter IV). Unfortunately, both of these

complexes were inactive in the copolymerization of CO2 and epoxides. A probable

cause for the inactivity may result from using OPh as the initiator. These OPh groups

have been found to insert CO2 orders of magnitude slower than corresponding alkoxy,

OR, functionalities.60 Of course, the lack of activation of epoxides by the iron metal

center cannot be ruled out. The µ-oxo dimer was also prepared by the hydrolysis of the

[Fe(salen)(N(Si(CH3)3)2)] intermediate, and characterized by X-ray crystallography.

Several key structural aspects are reported, including its nearly linear Fe(1)-O(3)-Fe(1A)

unit.

Miscellaneous methylation reactions and synthesis of model Acetyl Coenzym-A

Synthase complexes are also reported (Chapter VI). The synthesis of novel group 10

PTA complexes incorporating a methylated metal center was attempted by using

CH3OSO2F as the methylating agent. Unfortunately, all attempts were unsuccessful and

resulted in methylation of the nitrogen atom on the PTA ligand. Using the already

171

methylated PTA complexes was found to be unreactive toward CH3OSO2F. Although

all reactions did not produce the desired products, novel platinum, Pt(PTA-CH3+)(X-)

(X=OSO2F, I), complexes were characterized by X-ray crystallography. Both

complexes exhibit similar characteristics; for example, the alkylated N-C bonds are all

slightly longer than those associated with no substitution.

The synthesis of model bimetallic ACS complexes was also attempted by using

(BME-DACO)Ni and (BME-DACH)Ni as the N2S2 core, along with

(TMEDA)Pd(CH3)2. Although the desired bimetallic structure was obtained, the final

(N2S2)Ni-Pd(CH3)2 product ultimately reacts with the chlorinated medium and results in

the (N2S2)Ni-Pd(CH3)(Cl) derivative. Although unsuccessful, these studies may be used

as a learning tool to better develop a suitable reaction protocol for the production of

these bimetallic complexes. Alternatively, the use of other precursors to replace the

aforementioned palladium species, should lead to the desired product. In fact, nickel

complexes such as those prepared by Holm, may be an attractive route.77 Synthesis of

[Pd]-OPh complexes resulted in a very unique trimetallic product when exposed to air

(see Figure 6.5). The complex takes the form of a step with an built-in "A" frame. A

complete description of the solid state data is also included in this chapter.

172

REFERENCES

1. For extensive review on aqueous catalysis, see: (a) Joó, F. Aqueous Organometallic

Catalysis. Kluwer Academic: Boston. 2001. (b) Cornils, B.; Herrmann, W. A., Eds.;

Aqueous-Phase Organometallic Catalysis. Concepts and Applications. Wiley-VCH:

Weinheim, Germany, 1998. (c) Horváth, I. T.; Joó, F., Eds.; Aqueous

Organometallic Chemistry and Catalysis. Kluwer: Dordrecht, Netherlands, 1995. (d)

Sinou, D. Top. Curr. Chem. 1999, 206, 41.

2. Cornils, B. Org. Process Res. Devel. 1998, 2, 121.

3. Mecking, S.; Held, A.; Bauers, F. Angew. Chem. Int. Ed. 2002, 41, 545.

4. For a comprehensive review, see: (a) Kuran, W. Principles of Coordination

Polymerization. Wiley-VCH: New York, 2001: pp 53-215. (b) Coville, NJ;

Möhring, P. C.; J. Organomet. Chem. 1994, 479, 1. (c) Hlatky, G. Coord. Chem.

Rev. 2000, 199, 235. (d) Alt, H. G.; Köppl, A. Chem. Rev. 2000, 100, 1205. (e)

Bendikt, G. M., ed. Metallocene Technology in Commercial Application. Norwich,

NY : Plastics Design Library: Norwich, NY, 1999.

5. For a comprehensive review, see: (a) Brookhart, M.; Ittel, S. D.; Johnson, L. K.

Chem. Rev. 2000, 100, 1169. (b) Mecking, S. Coord. Chem. Rev. 2000, 203, 325. (c)

Gibson, V. C.; Britovsek, G. J.; Wass, D. F. Angew. Chem. Int. Ed. 1999, 38, 428.

6. Johnson, L. K.; Killian, C. M.; Arthur, S. D.; Feldman, J.; McCord, E.; McLain, S.

J.; Kreutzer, K. A.; Bennet, M. A.; Coughlin, E. B.; Ittel, S. D.; Parthasarathy, A.;

Tempel, D.; Brookhart, M. (UNC-Chapel Hill/DuPont) WO 96/23010, 1996.

7. Held, A.; Weiss, F.; Mecking, S. Poly. Prepr. 2001, 42, 466.

173

8. Bauers, F. M.; Mecking, S. Macromolecules 2001, 34, 1165.

9. (a) Grubbs, R. H.; Wang, C.; Friedrich, S.; Younkin, T. R.; Li, R. T.; Bansleben, D.

A.; Day, M. W. Organometallics. 1998, 17, 3149. (b) Grubbs, R. H.; Younkin, T.

R.; Connor, E. F.; Henderson, J. I.; Friedrich, S.; Bansleben, D. A. Science. 2000,

287, 460.

10. Bauers, F. M.; Mecking, S. Angew. Chem Int. Ed. 2001, 40, 3020.

11. (a) Daigle, D. J.; Peppermann, A. B.; Vail, S. L. J. Heterocyclic Chem. 1974. 11,

407. (b) Daigle, D. J. Inorg. Synth. 1998, 32, 40. (c) Fluck, E.; Förster, J.;

Weidlein, J.; Hidiche, E.; Z. Naturforsh. 1977, 32b, 409. (d) Siele, V. I. J.

Heterocyclic Chem. 1977, 14, 337.

12. (a) Darensbourg, D.J.; Joó, F.; Kannisto, M.; Kathó, A.; Reibenspies, J. H.

Organometallics, 1992, 11, 1990. (b) Darensbourg, D. J.; Stafford, N. W.; Joó, F.;

Reibenspies, J. H. J. Organometal. Chem. 1995, 455, 99. (c) Darensbourg, D. J.;

Joó, F.; Nádasdi, L.; Bényei, A. Cs. J. Organometal. Chem. 1996, 512, 45. (d)

Smolenski, P.; Pruchnik, F. P. Appl. Organometal. Chem. 1999, 13, 829.

13. Darensbourg, D. J.; Decuir, T. J.; Stafford, N. W.; Robertson, J. B.; Draper, J. D.;

Reibenspies, J. H. Inorg. Chem. 1997, 36, 4218.

14. Pruchnik, F. P.; Smolenski, P.; Galdecka, E.; Galdecki, Z. Inorg. Chim. Acta. 1999,

293, 110.

15. (a) Inoue, S. CHEMTEC 1976, 588. (b) Rokicki, A.; Kuran, W. J. Macromol. Sci.

Rev. Macromol. Chem. 1981, C21, 135. (c) Darensbourg, D. J.; Holtcamp, M.

174

Coord. Chem. Rev. 1996, 153, 155. (d) Super, M.; Beckman, E. Trends Poly. Sci.

1997, 5, 236.

16. Bottenbroch, L. Engineering Thermoplastics: Polycarbonates, Polyacetals,

Polyesters, and Cellulose Esters. Hanser/Gardner Publications Inc.: Cincinnatti,

1996.

17. Inoue, S; Koinuma, H.; Tsuruta, T. J. Poly. Sci. Poly Lett. 1969, 7, 287.

18. Song, C.; Gaffney, A. M.; Fujimoto, K., Eds. CO2 Conversion and Utilization.

Oxford University Press: Washington, DC, 2002.

19. (a) Inoue, S.; Kobayashi, M.; Koinuma, H.; Tsuruta, T. Makromolekulare, 1972,

155, 61. (b) Kuran, W.; Listos, J. Macromol. Chem. Phys. 1994, 195, 977.

20. (a) Soga, k.; Uenishi, K.; Hosoda, S.; Ikeda, S. Makromol. Chem. 1977, 178, 893.

(b) Soga, K.; Hyakkoku, K.; Ikeda, S. Makromol. Chem. 1978, 179, 2837.

21. (a) Darensbourg, D. J.; Holtcamp, M. Macromolecules 1995, 28, 7577. (b)

Darensbourg, D. J.; Holtcamp, M.; Struck, G.; Zimmer, M.; Niezgoda, S.; Rainey,

P.; Draper, J.; Reibenspies, J. J. Am. Chem. Soc. 1999, 121, 107.

22. (a) Cheng, M.; Lobkovsky, E.; Coates, G. J. Am. Chem. Soc. 1998, 120, 11018. (b)

Coates, G.; Cheng, M. PCT Int. Appl. WO 0008088, 2000. (c) Chamberlain, B.;

Cheng, M.; Moore, D.; Ovitt, J.; Lobkovsky, E. J. Am. Chem. Soc. 2001, 123, 3229.

(d) Moore, D. R.; Cheng, M.; Lobkovsky, E.; Coates, G. Angew. Chem. Int. Ed.

2002, 41, 2599.

23. (a) Typically, the term salen refers to the symmetrical and unsubstituted Schiff base

ligand framework. However, herein, this term is used to specifically represent the

175

N,N’-bis(3,5-di-tert-butylsalicylidene)-1,2-ethyldiimine derivative. (b)

Darensbourg, D. J.; Yarbrough, J. C. J. Am. Chem. Soc. 2002, 124, 6335.

24. (a) Martinez, L. E.; Leighton, J. L.; Carston, D. H.; Jacobsen, E. N. J. Am. Chem.

Soc. 1995, 117, 5897. (b) Hansen, K. B.; Leighton, J. L.; Jacobsen, E. N. J. Am.

Chem. Soc. 1996, 118, 10924. (c) Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421.

25. Inoue, S. J. Poly. Sci., Part A, Poly. Chem. 2000, 38, 2861.

26. Kruper, W. J.; Dellar, D. V. J. Org. Chem. 1995, 60, 725.

27. (a) Keim, W.; Chung, H.; Bauer, R. S.; Glockner, P. W.; van Zwet, H.; et. al. (Shell

Dev.) U.S. Patents 3635937, 3647914, 3686159, 3644563, 3647914, 1974. (b)

Keim, W. Angew. Chem. Int. Ed. Engl. 1990, 29, 235. (c) Keim, W.; Peuckert, M.

Organometallics. 1983, 2, 594. (d) Skupinska, J. Chem. Rev. 1991, 91, 613.

28. (a) Brookhart, M.; Johnson, L. K.; Killian, C. M. J. Am. Chem. Soc. 1995, 117,

6414. (b) Brookhart, M.; Johnson, L. K.; Mecking, S. J. Am. Chem. Soc. 1996, 118,

267. (c) Brookhart, M.; Killian, C. M.; Tempel, D. J.; Johnson, L. K. J. Am. Chem.

Soc. 1996, 118, 11664. (d) Brookhart, M.; Killian, C. M.; Johnson, L. K.

Organometallics. 1997, 16, 2005. (e) Brookhart, M.; Svejda, S. A.; Johnson, L. K.

J. Am. Chem. Soc. 1999, 121, 10634. (f) Brookhart, M.; Tempel, D. J.; Johnson, L.

K.; Huff, R. L.; White, P. S. J. Am. Chem. Soc. 2000, 122, 6686.

29. (a) Arthur, S. D.; Bennett, A. M. A.; Brookhart, M. S.; Coughlin, E. B.; Feldman, J.;

Ittel, S. D.; Johnson, L. K.; Killian, C. M.; Kreutzer, K. A. (DuPont) U. S. Patent

5866663.1999. (b) Brookhart, M. S.; Ittel, S. D.; Johnson, L. K.; Killian, C. M.;

Kreutzer, K. A; McCord, E. F.; McLain, S. J.; Tempel, D. J. (DuPont) U. S. Patent

176

5880241. 1999. (c) Brookhart, M. S.; Johnson, L. K.; Killian, C. M.; Wang, L.;

Yang, Z. Y., (DuPont). U.S. Patent 5880323. 1999. (d) Arthur, S. D.; Bennett, A.

M. A.; Brookhart, M. S.; Coughlin, E. B.; Feldman, J.; Ittel, S. D.; Johnson, L. K.;

Killian, C. M.; Kreutzer, K. A.; Parthasarathy, A.; Temple, D. J., (DuPont). U.S.

Patent 5886224. 1999. (e) Arthur, S. D.; Brookhart, M. S.; Hohnson, L. K.; Killian,

C. M.; McCord, El F.; McLain, S. J., (DuPont). U.S. Patent 5891963. 1999.

30. (a) Cornils, B.; Wiebus, E. CHEMTEC. 1995, 25, 33. (b) Cornils, B. Angew. Chem.

Int. Ed. 1995, 34, 1575. (c) Cornils, B.; Kuntz, E. G. J. Organometal. Chem. 1995,

502, 177. For a comprehensive review, see: (d) Joó, F.; Kathó, Á. J. Mol. Cat. A:

Chem. 1997, 116, 3. (e) Cornils, B.; Herrmann, W. A.; Eckl, R. W. J. Mol. Cat. A:

Chem. 1997, 116, 27.

31. (a) Herrmann, W. A.; Kohlpaintner, C. W. Inorg. Synth. 1998, 32, 8. (b) Kuntz, E.

G. CHEMTEC. 1987, 17, 570. (c) Kuntz, E. G. French Patent 2314910, 20.06, 1975.

(d) Kuntz, E. G. US Patent Re 31812, 29.05, 1982.

32. (a) Darensbourg, D. J.; Joó, F.; Daigle, D. J.; Kannisto, M.; Kathó, A.; Reibenspies,

J. H. Inorg. Chem. 1994, 33, 200. (b) Akbayeva, D. N.; Gonsalvi, L.; Oberhauser,

W. ; Peruzzini, M.; Vizza, F.; Brüggeller, P.; Romerosa, A.; Sava, G.; Bergamo, A.

Chem. Commun. 2003, 264.

33. Casiraghi, G.; Casnati, G.; Puglia, G.; Sartori, G.; Terenghi, G.; J. Chem. Soc.,

Perkin Trans. 1. 1980, 1862.

34. (a) Kaschube, W.; Pörschke, K. R.; Wilke, G. J. Organomet. Chem. 1988, 355, 525.

(b) Byers, P. K.; Canty, A. J.; Jin, H.; Kruis, D.; Markies, B. A.; Boersma, J.; Koten,

177

G. V.; Hill, G. S.; Irwin, M. J. Rendina, L. M.; Puddephatt, R. J. Inorg. Synth. 1998,

32, 167.

35. DeLerno, J. R.; Trefonas, L. M.; Darensbourg, M. Y.; Majeste, R. J. Inorg. Chem.

1976, 15, 816.

36. Tolman, C. A. Chem. Rev. 1977, 77, 313.

37. Darensbourg, D. J.; Rainey, P.; Yarbrough, J. Inorg. Chem. 2001, 40, 986.

38. Klein, H.; Bickelhaupt, A. Inorg. Chim. Acta. 1996, 248, 111.

39. (a) Klein, H.; Keim, W.; Heinicke, J.; He, M.; Dal, A.; Hetche, O.; Flörke, U.;

Haupt, H. Eur. J. Inorg. Chem. 2000, 431. (b) Klein, H.; Wiemer, T. Inorg. Chim.

Act. 1988, 154, 21.

40. Ittel, S. D.; Calabrese, J.; Klabunde, U.; Mulhaupt, R.; Herskovitz, T.; Janowicz, A.

H. J. Poly. Sci.: A: Poly. Chem. 1987, 25, 1989.

41. Darensbourg, D. J.; Bischoff, C. J. Inorg. Chem. 1993, 32, 47.

42. Darensbourg, D. J.; Bischoff, C. J.; Reibenspies, J. H. Inorg. Chem. 1991, 30, 1144.

43. Stelzer, O.; Sheldrick, W. S.; Weferling, N.; Herd, O.; Hebler, A.; Langhans, K. P.

J. Organometa. Chem. 1994, 475, 99.

44. Daigle, D. J.; Boudreaux, G. J.; Vail, S. L. J. Chem. Eng. Data. 1976, 21, 240.

45. (a) Darensbourg, D. J.; Yarbrough, J. C.; Lewis, S. J. Organometallics. 2003, 22,

2050. (b) Assmann, B.; Angermaier, K.; Paul, M.; Riede, J.; Schmidbaur, H. Chem.

Ber. 1995, 128, 891.

46. Hale, G. C. J. Am. Chem. Soc. 1925, 47, 2754.

178

47. (a) Bachmann, W. E.; Horton, W. J.; Jenner, E. L.; MacNaughton, N. W.; Scott, L.

B. ibid. 1951, 73, 2769. (b) Bachmann, W. E.; Deno, N. C. ibid. 1951, 73, 2777.

48. (a) Warman, M.; Siele, V. I.; Gilbert, E. E. J. Heterocyclic Chem. 1973, 10, 97. (b)

Siele, V. I.; Warman, M.; Gilbert, E. E. ibid. 1974, 11, 237.

49. (a) Yamada, S. J. Org. Chem. 1996, 61, 941. (b) Sunner, B.; Piette, L. H.;

Schneider, W. G. Can. J. Chem. 1960, 38, 681. (c) Kamei, H. Bull. Chem. Soc. Jpn.

1968, 41, 2269. (d) Drakenberg, T.; Forsen S. J. Phys Chem. 1970, 74, 1. (e)

Wiberg, K. B.; Breneman, C. M. J. Am. Chem. Soc. 1992, 114, 831.

50. (a) Cotton, F. A.; Darensbourg, D. J.; Ilsley, W. H. Inorg. Chem. 1981, 20, 4440. (b)

Lee, K. J.; Brown, T. L. Inorg. Chem. 1992, 31, 289. (c) Davies, M. S.; Aroney, M.

J.; Buys, I. E.; Hambley, T. W. Inorg. Chem. 1995, 34, 330.

51. Darensbourg, M. Y.; Daigle, D. J. Inorg. Chem. 1975, 14, 1217.

52. Mang, S.; Cooper, A. I.; Colclough, M. E.; Chauhan, N.; Holmes, A. B.

Macromolecules, 2000, 33, 303.

53. Darensbourg, D. J.; Rodgers, J. L.; Fang, C. Inorg. Chem. 2003, 42, 4498.

54. Sârbu, T.; Beckman, E. J. Macromolecules. 1999, 32, 6904.

55. Herwig, W.; Zeiss, H. J. Org. Chem. 1958, 9, 1404.

56. Gibson, V. C.; Newton, C.; Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D.

J. J. Chem. Soc., Dalton Trans. 2000, 1969.

57. Bradley, D. C.; Copperthwaite, R. G. Inorg. Syn. 1978, 18, 112.

58. Turova, N. Y.; Turevskaya, E. P. J. Organometal. Chem. 1972, 42, 9.

179

59. (a) Fan, R.; Hou, X. J. Org. Chem. 2003, 68, 726. (b) Hou, X.; Fan, R.; Dai, L. J.

Org. Chem. 2002, 67, 5295.

60. (a) Darensbourg, D. J.; Mueller, B. L.; Bischoff, C. J.; Chojnacki, S. S. Inorg. Chem.

1991, 30, 2418. (b) Darensbourg, D. J.; Mueller, B. L.; Reibenspies, J. H. J.

Organometal. Chem. 1993, 451, 83.

61. Selected reviews focused on Schiff base chemistry can be found in the following and

references therein: (a) Aly, M. M. Rev. Inorg. Chem. 1996, 16, 315. (b) Che, C.;

Huang, J. Coord. Chem. Rev. 2003, 242, 97.

62. (a) Dalton, C. T.; Ryan, K. M.; Wall, V. M.; Bousquet, C.; Gilheany, D. G. Top.

Catal. 1998, 5, 75. (b) Scheurer, A.; Mosset, P. Tetrahedron, 1999, 1063. (c) Ryan,

K. M.; Bousquet, C.; Gilheany, D. G. Tetrahedron Lett. 1999, 40, 3613. (d) Daly, A.

M.; Dalton, C. T.; Renehan, M. F.; Gilheany, D. G. Tetrahedron Lett. 1999, 40,

3617. (e) Daly, A. M.; Renehan, M. F.; Gilheany, D. G. Org. Lett. 2001, 3, 663. (f)

O’Mahony, C. P.; McGarrigle, E. M.; Renehan, M. F.; Ryan, K. M.; Kerrigan, N. J.;

Bousquet, C.; Gilheany, D. G. Org. Lett. 2001, 3, 3435. (g) Dalton, C. T.; Ryan, K.

M.; Laugan, I. J.; Coyne, E. J.; Gilheany, D. G. J. Mol. Catal. A. Chem. 2002, 187,

179.

63. (a) Huang, Y.; Iwama, T.; Rawal, V. H. Org. Lett. 2002, 4, 1163. (b) Takenaka, N.;

Huang, Y.; Rawal, V. H. Tetrahedron, 2002, 58, 8299. (c) Aikawa, K.; Irie,, R.;

Katsuki, T. Tetrahedron. 2001, 57, 845.

180

64. (a) Miyaura, N., Ed.; Cross Coupling Reactions. A Practical Guide. Springer:

Berlin, 2002. (b) Li, J. T.; Gribb, G. W., Eds.; Palladium in Heterocyclic Chemistry:

A Guide for the Synthetic Chemist. Elsevier: Oxford, U. K. 2000.

65. Fürstner, A.; Leitner, A.; Mendez, M.; Krause, H. J. Am. Chem. Soc. 2002, 124,

13856.

66. Cheng, M.; Chan, M. C.; Peny, S.; Cheung, K.; Che, C. J. Chem. Soc., Dalton Trans.

1997, 3479.

67. Wallar, B. J.; Lipscomb, J. Chem. Rev. 1996, 96, 2625.

68. Edulji, S.; Nguyen, S. T. Organometallics. 2003, 22, 3374.

69. (a) Shi, W.; Cao, R.; Li, X.; Luo, J.; Hong, M.; Chen, Z. New J. Chem. 2002, 26,

1397. (b) Brewer, C. T.; Brewer, G.; Jameson, G. B.; Kamaras, P.; May, L.; Rapta,

M. J. Chem. Soc. Dalton Trans. 1995, 37. (c) Martinez, D.; Motevalli, M.;

Watkinson, M. Acta Cryst. 2002, C58, m258. (d) Pecoramo, V. L.; Butler, W. M.;

Acta Cryst. 1986, C42, 1151.

70. Mukherjee, R. N.; Stack, T. D. P.; Holm, R. H. J. Am. Chem. Soc. 1988, 110, 1850.

71. Li, A.; Wei, H.; Gang, L. Inorg. Chim. Acta, 1999, 290, 51.

72. For reviews on the role of CODH/ACS, see: (a) Grahame, D. A. Trend. Biochem.

Sci. 2003, 28, 221. (b) Pohl, S. Bioinorg. Chem. 1997, 649. (c) Ragsdale, S. W.;

Kumar, M. Chem. Rev. 1996, 96, 2515.

73. (a) Lindahl, P. A. Biochemistry, 2002, 41, 2097. (b) Peters, J. W.; Drennan, C. L.

Curr. Opin. Struct. Bio. 2003, 13, 220. (c) Peters, J. W. Science, 2002, 298, 552. (d)

181

Doukov, T. I.; Iverson, T. M.; Seravalli, J.; Ragsdale, S. W.; Drennan, C. L. Science,

2002, 298, 567.

74. Gencic, S.; Grahame, D. A. J. Biol. Chem. 2003, 278, 6101.

75. Mills, D. K.; Reibenspies, J. H.; Darensbourg, M. Y. Inorg. Chem. 1990, 29, 4364.

76. Smee, J. J.; Miller, M. L.; Grapperhaus, C. A.; Reibenspies, J. H.; Darensbourg, M.

Y. Inorg. Chem. 2001, 40, 3601.

77. Tucci, G. C.; Holm, R. H. J. Am. Chem. Soc. 1995, 117, 6489.

78. Ram, M. S.; Riordan, C. G.; Yap, G. P. A.; Liable-Sands, L.; Rheingold, A. L.;

Marchaj, A.; Norton, J. R. J. Am. Chem. Soc. 1997, 119, 1648.

79. (a) Stavropoulos, P.; Carrie, M.; Muetterties, M. C.; Holm, R. H. J. Am. Chem. Soc.

1990, 112, 5385. (b) Stavropoulos, P.; Carrie, M.; Muetterties, M. C.; Holm, R. H. J.

Am. Chem. Soc. 1991, 113, 8492. (c) Matsunaga, P.; Hillhouse, G. L. Angew.

Chem., Int. Ed. Engl. 1994, 1748. (d) Tucci, G. C.; Holm, R. H. J. Am. Chem. Soc.

1995, 117, 6489. (e) Sellmann, D.; Schillinger, H.; Knoch, F.; Moll, M. Inorg.

Chim. Acta. 1992, 198, 351. (f) Sellmann, D.; Haussinger, D.; Knoch, F.; Moll, M.

J. Am. Chem. Soc. 1996, 118, 5368.

80. Kim, Y. J.; Choi, J. C.; Osakada, K. J. Organometal. Chem. 1995, 491, 97.

81. Klein, H. F.; Karsh, H. H. Chem. Ber. 1976, 109, 2515.

82. (a) Dartiguenare, M.; Dartiguenare, Y.; Gleizes, A.; Saint-Jolly, C.; Galy, J.; Meirer,

P. Inorg. Chem. 1978, 17, 3503. (b) Gleizes, A.; Kerkeni, A.; Dartiguenare, M.;

Dartiguenare, Y.; Klein, H. F. Inorg. Chem. 1981, 20, 2372.

182

APPENDIX A

BOND DISTANCES AND ANGLES CORRESPONDING TO SOLID STATE

STRUCTURES IN CHAPTER II*

Table A.1. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for trans-(PPh3)2Ni(Ph)(Cl). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Ni(1) 8384(1) 512(1) 7350(1) 15(1) Cl(1) 10390(1) 759(1) 7027(1) 22(1) P(1) 8514(1) 2349(1) 7102(1) 15(1) P(2) 8132(1) -1317(1) 7677(1) 15(1) C(1) 6617(2) 234(2) 7379(1) 17(1) C(2) 6040(2) 501(2) 8208(2) 21(1) C(3) 4734(2) 289(2) 8183(2) 27(1) C(4) 3966(2) -191(2) 7324(2) 32(1) C(5) 4507(2) -465(2) 6489(2) 28(1) C(6) 5812(2) -257(2) 6514(2) 23(1) C(7) 7308(2) 3074(2) 7465(1) 16(1) C(8) 6099(2) 2677(2) 6959(2) 22(1) C(9) 5143(2) 3169(2) 7204(2) 26(1) C(10) 5373(2) 4092(2) 7958(2) 25(1) C(11) 6568(2) 4510(2) 8461(2) 23(1) C(12) 7532(2) 4004(2) 8227(1) 19(1) C(13) 8570(2) 2594(2) 5831(1) 17(1) C(14) 8799(2) 1757(2) 5143(1) 19(1) C(15) 8858(2) 1955(2) 4175(2) 24(1) C(16) 8678(2) 2983(2) 3900(2) 29(1) C(17) 8462(2) 3829(2) 4582(2) 31(1) C(18) 8406(2) 3640(2) 5550(2) 24(1) C(19) 9988(2) 3315(2) 7746(1) 15(1) C(20) 10207(2) 3267(2) 8739(1) 19(1) C(21) 11330(2) 3930(2) 9269(1) 20(1) _______________ * Appear in the order in which they are described in the chapter.

183

C(22) 12269(2) 4633(2) 8807(2) 20(1) C(23) 12058(2) 4671(2) 7817(1) 21(1) C(24) 10928(2) 4023(2) 7290(1) 18(1) C(25) 9506(2) -1681(2) 8243(1) 16(1) C(26) 10463(2) -801(2) 8824(1) 21(1) C(27) 11448(2) -1082(2) 9327(2) 25(1) C(28) 11494(2) -2243(2) 9264(1) 23(1) C(29) 10549(2) -3125(2) 8689(1) 22(1) C(30) 9568(2) -2841(2) 8182(1) 19(1) C(31) 7649(2) -2330(2) 6540(1) 16(1) C(32) 8037(2) -1910(2) 5679(1) 19(1) C(33) 7690(2) -2633(2) 4794(2) 24(1) C(34) 6947(2) -3783(2) 4756(2) 24(1) C(35) 6565(2) -4219(2) 5604(2) 23(1) C(36) 6913(2) -3500(2) 6490(1) 19(1) C(37) 6941(2) -1914(2) 8481(1) 16(1) C(38) 5652(2) -2242(2) 8157(2) 21(1) C(39) 4749(2) -2610(2) 8788(2) 26(1) C(40) 5127(2) -2649(2) 9753(2) 27(1) C(41) 6397(2) -2334(2) 10086(2) 25(1) C(42) 7308(2) -1969(2) 9458(1) 20(1) _______________________________________________________________________

Table A.2. Bond lengths [Å] and angles [°] for trans-(PPh3)2Ni(Ph)(Cl). _______________________________________________________________________ Ni(1)-C(1) 1.887(2) Ni(1)-P(1) 2.2114(6) Ni(1)-P(2) 2.2155(6) Ni(1)-Cl(1) 2.2327(6) P(1)-C(19) 1.822(2) P(1)-C(13) 1.8251(19) P(1)-C(7) 1.833(2) P(2)-C(31) 1.826(2) P(2)-C(25) 1.829(2) P(2)-C(37) 1.8334(19) C(1)-C(2) 1.400(3) C(1)-C(6) 1.409(3) C(2)-C(3) 1.388(3) C(3)-C(4) 1.383(3) C(4)-C(5) 1.387(3) C(5)-C(6) 1.388(3) C(7)-C(8) 1.395(3) C(7)-C(12) 1.398(3)

C(8)-C(9) 1.378(3) C(9)-C(10) 1.384(3) C(10)-C(11) 1.381(3) C(11)-C(12) 1.391(3) C(13)-C(14) 1.385(3) C(13)-C(18) 1.394(3) C(14)-C(15) 1.395(3) C(15)-C(16) 1.376(3) C(16)-C(17) 1.381(3) C(17)-C(18) 1.391(3) C(19)-C(24) 1.388(3) C(19)-C(20) 1.395(3) C(20)-C(21) 1.382(3) C(21)-C(22) 1.390(3) C(22)-C(23) 1.387(3) C(23)-C(24) 1.382(3) C(25)-C(30) 1.389(3) C(25)-C(26) 1.399(3)

184

C(26)-C(27) 1.382(3) C(27)-C(28) 1.384(3) C(28)-C(29) 1.389(3) C(29)-C(30) 1.384(3) C(31)-C(36) 1.399(2) C(31)-C(32) 1.399(2) C(32)-C(33) 1.384(3) C(33)-C(34) 1.384(3) C(34)-C(35) 1.388(3) C(35)-C(36) 1.383(3) C(37)-C(38) 1.394(3) C(37)-C(42) 1.402(3) C(38)-C(39) 1.389(3) C(39)-C(40) 1.386(3) C(40)-C(41) 1.378(3) C(41)-C(42) 1.391(3) C(1)-Ni(1)-P(1) 89.20(6) C(1)-Ni(1)-P(2) 87.04(6) P(1)-Ni(1)-P(2) 175.33(3) C(1)-Ni(1)-Cl(1) 169.76(6) P(1)-Ni(1)-Cl(1) 90.05(2) P(2)-Ni(1)-Cl(1) 94.13(2) C(19)-P(1)-C(13) 105.62(9) C(19)-P(1)-C(7) 103.97(9) C(13)-P(1)-C(7) 101.21(9) C(19)-P(1)-Ni(1) 108.67(6) C(13)-P(1)-Ni(1) 114.42(7) C(7)-P(1)-Ni(1) 121.47(6) C(31)-P(2)-C(25) 105.23(9) C(31)-P(2)-C(37) 104.15(9) C(25)-P(2)-C(37) 100.16(9) C(31)-P(2)-Ni(1) 108.74(6) C(25)-P(2)-Ni(1) 117.94(6) C(37)-P(2)-Ni(1) 119.01(7) C(2)-C(1)-C(6) 116.9(2) C(2)-C(1)-Ni(1) 124.28(15) C(6)-C(1)-Ni(1) 118.76(16) C(3)-C(2)-C(1) 121.7(2) C(4)-C(3)-C(2) 120.2(2) C(3)-C(4)-C(5) 119.6(2) C(4)-C(5)-C(6) 120.2(2) C(5)-C(6)-C(1) 121.3(2) C(8)-C(7)-C(12) 117.95(19)

C(8)-C(7)-P(1) 118.51(15) C(12)-C(7)-P(1) 123.54(16) C(9)-C(8)-C(7) 121.5(2) C(8)-C(9)-C(10) 120.1(2) C(11)-C(10)-C(9) 119.4(2) C(10)-C(11)-C(12) 120.8(2) C(11)-C(12)-C(7) 120.2(2) C(14)-C(13)-C(18) 119.49(18) C(14)-C(13)-P(1) 120.49(15) C(18)-C(13)-P(1) 120.01(16) C(13)-C(14)-C(15) 120.31(19) C(16)-C(15)-C(14) 119.9(2) C(15)-C(16)-C(17) 120.2(2) C(16)-C(17)-C(18) 120.2(2) C(17)-C(18)-C(13) 119.8(2) C(24)-C(19)-C(20) 118.92(18) C(24)-C(19)-P(1) 123.56(15) C(20)-C(19)-P(1) 117.36(14) C(21)-C(20)-C(19) 120.79(18) C(20)-C(21)-C(22) 119.97(19) C(23)-C(22)-C(21) 119.29(19) C(24)-C(23)-C(22) 120.75(18) C(23)-C(24)-C(19) 120.27(18) C(30)-C(25)-C(26) 118.53(19) C(30)-C(25)-P(2) 121.21(15) C(26)-C(25)-P(2) 119.99(15) C(27)-C(26)-C(25) 120.62(19) C(26)-C(27)-C(28) 120.22(19) C(27)-C(28)-C(29) 119.7(2) C(30)-C(29)-C(28) 119.96(19) C(29)-C(30)-C(25) 120.94(18) C(36)-C(31)-C(32) 118.64(18) C(36)-C(31)-P(2) 123.27(14) C(32)-C(31)-P(2) 118.08(14) C(33)-C(32)-C(31) 120.74(17) C(34)-C(33)-C(32) 119.89(18) C(33)-C(34)-C(35) 120.15(19) C(36)-C(35)-C(34) 120.12(18) C(35)-C(36)-C(31) 120.44(18) C(38)-C(37)-C(42) 118.63(18) C(38)-C(37)-P(2) 120.84(15) C(42)-C(37)-P(2) 120.38(16) C(39)-C(38)-C(37) 120.72(19) C(40)-C(39)-C(38) 119.9(2)

185

C(41)-C(40)-C(39) 120.2(2) C(40)-C(41)-C(42) 120.2(2)

C(41)-C(42)-C(37) 120.3(2)

_______________________________________________________________________ Table A.3. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 1a. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Ni(1) 6630(1) 7588(1) 7368(1) 17(1) P(1) 7945(1) 8491(1) 6520(1) 16(1) N(1) 5547(2) 6730(2) 8150(1) 16(1) N(2) 2348(3) 9860(2) 9884(2) 32(1) O(1) 6014(2) 8962(2) 7663(1) 21(1) O(2) 1708(3) 9074(2) 10220(2) 54(1) O(3) 2252(2) 10845(2) 10042(1) 39(1) C(1) 7173(3) 6291(2) 6908(2) 19(1) C(2) 4726(3) 7147(2) 8610(2) 19(1) C(3) 4451(3) 8279(2) 8644(2) 17(1) C(4) 3513(3) 8539(2) 9181(2) 21(1) C(5) 3290(3) 9623(3) 9292(2) 23(1) C(6) 3994(3) 10493(2) 8871(2) 24(1) C(7) 4907(3) 10257(2) 8335(2) 23(1) C(8) 5165(3) 9148(2) 8188(2) 19(1) C(9) 5746(3) 5576(2) 8351(2) 18(1) C(10) 4911(3) 4694(2) 7856(2) 20(1) C(11) 5229(3) 3615(2) 8034(2) 26(1) C(12) 6310(3) 3437(2) 8688(2) 27(1) C(13) 7084(3) 4319(2) 9191(2) 26(1) C(14) 6829(3) 5417(2) 9036(2) 20(1) C(15) 7666(3) 6397(2) 9590(2) 24(1) C(16) 9240(3) 6311(3) 9861(2) 45(1) C(17) 6976(4) 6538(3) 10383(2) 42(1) C(18) 3687(3) 4916(2) 7158(2) 24(1) C(19) 3270(3) 4001(3) 6457(2) 34(1) C(20) 2351(3) 5092(3) 7531(2) 32(1) C(21) 9521(3) 7942(2) 6248(2) 17(1) C(22) 9367(3) 7128(2) 5605(2) 20(1) C(23) 10542(3) 6679(2) 5411(2) 24(1) C(24) 11875(3) 7049(2) 5864(2) 25(1) C(25) 12054(3) 7849(3) 6509(2) 26(1)

186

C(26) 10874(3) 8296(2) 6706(2) 22(1) C(27) 8728(3) 9898(2) 6924(2) 17(1) C(28) 9079(3) 10091(2) 7806(2) 23(1) C(29) 9822(3) 11104(3) 8136(2) 27(1) C(30) 10219(3) 11932(3) 7585(2) 30(1) C(31) 9865(3) 11764(2) 6710(2) 26(1) C(32) 9125(3) 10749(2) 6373(2) 21(1) C(33) 6848(3) 8648(2) 5483(2) 17(1) C(34) 7401(3) 8937(2) 4731(2) 23(1) C(35) 6491(3) 9056(2) 3973(2) 27(1) C(36) 5027(3) 8892(3) 3950(2) 28(1) C(37) 4473(3) 8598(2) 4685(2) 25(1) C(38) 5371(3) 8484(2) 5446(2) 20(1) C(39) 6418(3) 5791(2) 6150(2) 24(1) C(40) 6680(3) 4757(3) 5859(2) 32(1) C(41) 7701(3) 4213(3) 6333(2) 33(1) C(42) 8489(3) 4702(3) 7070(2) 32(1) C(43) 8261(3) 5743(2) 7356(2) 24(1) _______________________________________________________________________ Table A.4. Bond lengths [Å] and angles [°] for 1a. _______________________________________________________________________ Ni(1)-C(1) 1.893(3) Ni(1)-O(1) 1.9141(19) Ni(1)-N(1) 1.947(2) Ni(1)-P(1) 2.1754(8) P(1)-C(33) 1.823(3) P(1)-C(27) 1.827(3) P(1)-C(21) 1.838(3) N(1)-C(2) 1.298(3) N(1)-C(9) 1.458(3) N(2)-O(2) 1.226(3) N(2)-O(3) 1.232(3) N(2)-C(5) 1.452(4) O(1)-C(8) 1.288(3) C(1)-C(39) 1.385(4) C(1)-C(43) 1.405(4) C(2)-C(3) 1.428(4) C(3)-C(4) 1.394(4) C(3)-C(8) 1.431(4) C(4)-C(5) 1.368(4) C(5)-C(6) 1.396(4) C(6)-C(7) 1.365(4)

C(7)-C(8) 1.418(4) C(9)-C(10) 1.394(4) C(9)-C(14) 1.407(4) C(10)-C(11) 1.395(4) C(10)-C(18) 1.527(4) C(11)-C(12) 1.380(4) C(12)-C(13) 1.378(4) C(13)-C(14) 1.395(4) C(14)-C(15) 1.520(4) C(15)-C(16) 1.516(4) C(15)-C(17) 1.525(4) C(18)-C(19) 1.527(4) C(18)-C(20) 1.531(4) C(21)-C(22) 1.386(4) C(21)-C(26) 1.389(4) C(22)-C(23) 1.388(4) C(23)-C(24) 1.375(4) C(24)-C(25) 1.375(4) C(25)-C(26) 1.394(4) C(27)-C(28) 1.389(4) C(27)-C(32) 1.399(4)

187

C(28)-C(29) 1.381(4) C(29)-C(30) 1.380(4) C(30)-C(31) 1.376(4) C(31)-C(32) 1.386(4) C(33)-C(38) 1.392(4) C(33)-C(34) 1.402(4) C(34)-C(35) 1.382(4) C(35)-C(36) 1.383(4) C(36)-C(37) 1.378(4) C(37)-C(38) 1.380(4) C(39)-C(40) 1.396(4) C(40)-C(41) 1.374(4) C(41)-C(42) 1.365(5) C(42)-C(43) 1.390(4) C(1)-Ni(1)-O(1) 171.64(10) C(1)-Ni(1)-N(1) 92.89(10) O(1)-Ni(1)-N(1) 92.86(8) C(1)-Ni(1)-P(1) 84.86(8) O(1)-Ni(1)-P(1) 89.65(6) N(1)-Ni(1)-P(1) 176.61(7) C(33)-P(1)-C(27) 106.99(12) C(33)-P(1)-C(21) 104.17(13) C(27)-P(1)-C(21) 101.16(13) C(33)-P(1)-Ni(1) 109.30(9) C(27)-P(1)-Ni(1) 113.23(9) C(21)-P(1)-Ni(1) 120.84(9) C(2)-N(1)-C(9) 113.8(2) C(2)-N(1)-Ni(1) 124.33(19) C(9)-N(1)-Ni(1) 121.45(17) O(2)-N(2)-O(3) 122.9(3) O(2)-N(2)-C(5) 118.6(3) O(3)-N(2)-C(5) 118.5(3) C(8)-O(1)-Ni(1) 129.68(18) C(39)-C(1)-C(43) 117.5(3) C(39)-C(1)-Ni(1) 120.6(2) C(43)-C(1)-Ni(1) 121.6(2) N(1)-C(2)-C(3) 127.7(2) C(4)-C(3)-C(2) 117.9(2) C(4)-C(3)-C(8) 119.9(3) C(2)-C(3)-C(8) 122.2(2) C(5)-C(4)-C(3) 120.6(3) C(4)-C(5)-C(6) 120.9(3) C(4)-C(5)-N(2) 118.7(3)

C(6)-C(5)-N(2) 120.4(3) C(7)-C(6)-C(5) 119.6(3) C(6)-C(7)-C(8) 122.0(3) O(1)-C(8)-C(7) 119.9(2) O(1)-C(8)-C(3) 123.1(3) C(7)-C(8)-C(3) 117.0(2) C(10)-C(9)-C(14) 123.0(3) C(10)-C(9)-N(1) 120.0(2) C(14)-C(9)-N(1) 116.9(2) C(9)-C(10)-C(11) 117.4(3) C(9)-C(10)-C(18) 120.5(3) C(11)-C(10)-C(18) 122.1(3) C(12)-C(11)-C(10) 120.8(3) C(13)-C(12)-C(11) 120.7(3) C(12)-C(13)-C(14) 121.1(3) C(13)-C(14)-C(9) 116.9(3) C(13)-C(14)-C(15) 121.6(3) C(9)-C(14)-C(15) 121.4(2) C(16)-C(15)-C(14) 114.6(3) C(16)-C(15)-C(17) 109.6(3) C(14)-C(15)-C(17) 109.7(2) C(10)-C(18)-C(19) 114.0(2) C(10)-C(18)-C(20) 112.0(2) C(19)-C(18)-C(20) 108.6(3) C(22)-C(21)-C(26) 118.9(2) C(22)-C(21)-P(1) 120.3(2) C(26)-C(21)-P(1) 120.8(2) C(21)-C(22)-C(23) 121.0(3) C(24)-C(23)-C(22) 119.4(3) C(23)-C(24)-C(25) 120.8(3) C(24)-C(25)-C(26) 119.8(3) C(21)-C(26)-C(25) 120.2(3) C(28)-C(27)-C(32) 119.1(3) C(28)-C(27)-P(1) 118.8(2) C(32)-C(27)-P(1) 121.7(2) C(29)-C(28)-C(27) 120.7(3) C(30)-C(29)-C(28) 119.6(3) C(31)-C(30)-C(29) 120.7(3) C(30)-C(31)-C(32) 120.1(3) C(31)-C(32)-C(27) 119.9(3) C(38)-C(33)-C(34) 118.4(3) C(38)-C(33)-P(1) 117.5(2) C(34)-C(33)-P(1) 124.1(2) C(35)-C(34)-C(33) 120.3(3)

188

C(34)-C(35)-C(36) 120.3(3) C(37)-C(36)-C(35) 119.8(3) C(36)-C(37)-C(38) 120.4(3) C(37)-C(38)-C(33) 120.7(3) C(1)-C(39)-C(40) 121.4(3)

C(41)-C(40)-C(39) 119.8(3) C(42)-C(41)-C(40) 120.0(3) C(41)-C(42)-C(43) 120.7(3) C(42)-C(43)-C(1) 120.4(3)

_____________________________________________________________ Table A.5. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 2a. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Ni(1) 112(1) 2062(1) 8231(1) 22(1) P(1) 945(2) 1499(1) 7306(1) 23(1) O(1) -1415(4) 1517(2) 7996(3) 27(1) N(1) -534(5) 2515(2) 9188(3) 20(1) N(5) -5201(5) 901(3) 10009(4) 31(1) N(4) 1607(5) 1352(3) 5658(3) 27(1) O(2) -6055(4) 490(2) 9723(3) 37(1) N(3) 2960(5) 726(3) 6880(3) 30(1) C(10) 957(6) 3007(3) 10465(4) 21(1) C(8) -2301(6) 1392(3) 8481(4) 23(1) C(11) 1587(6) 3558(3) 10860(4) 25(1) C(13) 638(6) 4222(3) 9646(4) 26(1) C(31) 1630(6) 3083(3) 7625(4) 28(2) C(1) 1654(6) 2589(3) 8250(4) 24(1) C(23) 2633(6) 1136(3) 7590(4) 28(2) C(7) -3245(6) 888(3) 8228(4) 26(2) C(6) -4176(6) 733(3) 8720(4) 25(1) C(14) -20(6) 3689(3) 9216(4) 20(1) N(2) 637(5) 395(3) 6275(3) 31(1) C(21) 1118(7) 1840(3) 6244(4) 30(2) C(15) -1014(6) 3774(3) 8357(4) 21(1) C(30) 2691(6) 3505(3) 7639(4) 29(2) C(17) -645(6) 4329(3) 7792(4) 28(2) C(3) -2395(6) 1768(3) 9245(4) 23(1) O(3) -5157(5) 1146(3) 10726(3) 48(1)

189

C(9) 154(5) 3081(3) 9636(4) 21(1) C(25) 2946(6) 1114(3) 6086(4) 32(2) C(2) -1557(6) 2309(3) 9514(4) 24(1) C(22) 10(6) 756(3) 6912(4) 28(2) C(5) -4220(6) 1076(3) 9481(4) 24(1) C(24) 2003(6) 192(3) 6667(4) 31(2) C(4) -3369(6) 1593(3) 9733(4) 28(2) C(27) 2851(6) 2519(3) 8871(4) 29(2) C(18) 1157(6) 2363(3) 10955(4) 31(2) C(26) 696(7) 806(3) 5494(4) 30(2) C(12) 1446(6) 4157(3) 10462(4) 30(2) C(29) 3816(7) 3442(4) 8274(5) 40(2) C(28) 3911(6) 2938(4) 8894(4) 34(2) C(16) -2441(6) 3875(3) 8526(4) 30(2) C(20) 417(7) 2375(4) 11736(5) 45(2) C(19) 2636(6) 2203(3) 11284(4) 33(2) Cl(2S) 866(2) 912(1) -455(1) 60(1) Cl(1S) 348(2) 624(1) 1284(1) 69(1) C(1S) 1444(9) 489(5) 533(5) 68(3) _______________________________________________________________________ Table A.6. Bond lengths [Å] and angles [°] for 2a. _______________________________________________________________________ Ni(1)-O(1) 1.888(4) Ni(1)-C(1) 1.893(6) Ni(1)-N(1) 1.964(5) Ni(1)-P(1) 2.1345(18) P(1)-C(21) 1.831(6) P(1)-C(22) 1.839(6) P(1)-C(23) 1.841(6) O(1)-C(8) 1.299(7) N(1)-C(2) 1.304(7) N(1)-C(9) 1.462(7) N(5)-O(3) 1.215(7) N(5)-O(2) 1.231(6) N(5)-C(5) 1.444(7) N(4)-C(26) 1.443(8) N(4)-C(25) 1.477(8) N(4)-C(21) 1.497(8) N(3)-C(24) 1.459(8) N(3)-C(25) 1.466(8) N(3)-C(23) 1.473(7) C(10)-C(11) 1.384(8)

C(10)-C(9) 1.397(8) C(10)-C(18) 1.521(8) C(8)-C(7) 1.413(8) C(8)-C(3) 1.432(8) C(11)-C(12) 1.373(8) C(13)-C(12) 1.382(8) C(13)-C(14) 1.386(8) C(31)-C(30) 1.377(8) C(31)-C(1) 1.401(9) C(1)-C(27) 1.409(8) C(7)-C(6) 1.356(8) C(6)-C(5) 1.383(8) C(14)-C(9) 1.405(8) C(14)-C(15) 1.525(8) N(2)-C(24) 1.464(8) N(2)-C(22) 1.471(7) N(2)-C(26) 1.486(8) C(15)-C(17) 1.524(8) C(15)-C(16) 1.528(8) C(30)-C(29) 1.368(9)

190

C(3)-C(4) 1.397(8) C(3)-C(2) 1.413(8) C(5)-C(4) 1.377(8) C(27)-C(28) 1.369(9) C(18)-C(19) 1.526(8) C(18)-C(20) 1.538(9) C(29)-C(28) 1.405(10) Cl(2S)-C(1S) 1.766(8) Cl(1S)-C(1S) 1.773(8) O(1)-Ni(1)-C(1) 169.7(2) O(1)-Ni(1)-N(1) 92.99(18) C(1)-Ni(1)-N(1) 96.1(2) O(1)-Ni(1)-P(1) 87.68(13) C(1)-Ni(1)-P(1) 83.85(18) N(1)-Ni(1)-P(1) 173.33(15) C(21)-P(1)-C(22) 98.4(3) C(21)-P(1)-C(23) 97.6(3) C(22)-P(1)-C(23) 98.1(3) C(21)-P(1)-Ni(1) 121.0(2) C(22)-P(1)-Ni(1) 115.5(2) C(23)-P(1)-Ni(1) 121.5(2) C(8)-O(1)-Ni(1) 129.3(4) C(2)-N(1)-C(9) 114.6(5) C(2)-N(1)-Ni(1) 122.5(4) C(9)-N(1)-Ni(1) 122.7(4) O(3)-N(5)-O(2) 121.3(5) O(3)-N(5)-C(5) 120.2(5) O(2)-N(5)-C(5) 118.4(5) C(26)-N(4)-C(25) 109.0(5) C(26)-N(4)-C(21) 110.8(5) C(25)-N(4)-C(21) 109.0(5) C(24)-N(3)-C(25) 108.3(5) C(24)-N(3)-C(23) 111.6(5) C(25)-N(3)-C(23) 110.5(5) C(11)-C(10)-C(9) 117.5(6) C(11)-C(10)-C(18) 118.8(5) C(9)-C(10)-C(18) 123.7(6) O(1)-C(8)-C(7) 119.1(5) O(1)-C(8)-C(3) 122.1(5) C(7)-C(8)-C(3) 118.7(5) C(12)-C(11)-C(10) 122.1(6)

C(12)-C(13)-C(14) 121.1(6) C(30)-C(31)-C(1) 122.1(6) C(31)-C(1)-C(27) 116.7(6) C(31)-C(1)-Ni(1) 119.6(5) C(27)-C(1)-Ni(1) 123.7(5) N(3)-C(23)-P(1) 112.3(4) C(6)-C(7)-C(8) 121.2(6) C(7)-C(6)-C(5) 119.9(6) C(13)-C(14)-C(9) 118.0(5) C(13)-C(14)-C(15) 120.7(5) C(9)-C(14)-C(15) 120.9(5) C(24)-N(2)-C(22) 110.8(5) C(24)-N(2)-C(26) 108.9(5) C(22)-N(2)-C(26) 110.4(5) N(4)-C(21)-P(1) 112.9(4) C(17)-C(15)-C(14) 113.4(5) C(17)-C(15)-C(16) 109.7(5) C(14)-C(15)-C(16) 110.9(5) C(29)-C(30)-C(31) 119.7(7) C(4)-C(3)-C(2) 119.1(6) C(4)-C(3)-C(8) 118.2(6) C(2)-C(3)-C(8) 122.7(5) C(10)-C(9)-C(14) 121.7(6) C(10)-C(9)-N(1) 119.8(5) C(14)-C(9)-N(1) 118.5(5) N(3)-C(25)-N(4) 115.1(5) N(1)-C(2)-C(3) 128.1(6) N(2)-C(22)-P(1) 112.5(4) C(4)-C(5)-C(6) 121.1(6) C(4)-C(5)-N(5) 119.4(5) C(6)-C(5)-N(5) 119.5(6) N(3)-C(24)-N(2) 114.6(5) C(5)-C(4)-C(3) 120.7(6) C(28)-C(27)-C(1) 121.7(6) C(10)-C(18)-C(19) 112.7(5) C(10)-C(18)-C(20) 109.9(5) C(19)-C(18)-C(20) 109.3(5) N(4)-C(26)-N(2) 114.7(5) C(11)-C(12)-C(13) 119.6(6) C(30)-C(29)-C(28) 120.4(6) C(27)-C(28)-C(29) 119.3(6) Cl(2S)-C(1S)-Cl(1S) 110.4(5)

_______________________________________________________________________

191

Table A.7. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 4a. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Pd(1) 6498(1) 6846(1) 7581(1) 23(1) P(1) 7052(3) 7414(2) 8685(2) 21(1) O(1) 7587(7) 8267(6) 6531(4) 23(1) O(2) 7652(8) 11489(6) 2267(5) 36(2) O(3) 6653(8) 9909(7) 2321(5) 42(2) N(1) 6139(7) 6226(6) 6514(5) 16(2) N(2) 8653(8) 8941(7) 9002(5) 23(2) N(3) 8654(8) 6690(7) 10175(5) 28(2) N(4) 6257(8) 8572(7) 10123(5) 26(2) N(5) 7177(8) 10474(7) 2701(5) 28(2) C(1) 5341(11) 5578(9) 8624(6) 28(2) C(2) 6269(9) 6925(8) 5631(6) 21(2) C(3) 6735(9) 8185(8) 5193(6) 21(2) C(4) 6628(9) 8811(8) 4217(6) 22(2) C(5) 7251(10) 9908(9) 3700(6) 26(2) C(6) 7989(10) 10419(9) 4135(7) 32(2) C(7) 8051(11) 9896(9) 5075(7) 30(2) C(8) 7456(10) 8719(8) 5660(6) 22(2) C(9) 5878(9) 4888(8) 6724(6) 20(2) C(10) 7105(10) 3747(8) 6993(6) 20(2) C(11) 6839(10) 2475(9) 7197(6) 26(2) C(12) 5414(10) 2335(8) 7146(6) 26(2) C(13) 4208(10) 3497(8) 6902(6) 23(2) C(14) 4413(9) 4766(8) 6708(5) 20(2) C(15) 3016(9) 5990(8) 6477(6) 22(2) C(16) 2603(11) 6228(9) 5515(7) 32(2) C(17) 1594(9) 5823(8) 7298(7) 25(2) C(18) 8703(10) 3827(9) 7058(7) 29(2) C(19) 9238(14) 2929(12) 8008(9) 57(3) C(20) 9879(11) 3439(12) 6247(8) 42(3) C(21) 5559(9) 8237(8) 9489(6) 23(2) C(22) 8260(10) 8651(9) 8228(6) 26(2) C(23) 8231(10) 6101(8) 9569(6) 26(2) C(24) 9559(10) 7691(9) 9622(6) 29(2) C(25) 7247(10) 7353(9) 10707(6) 27(2) C(26) 7243(10) 9518(9) 9570(6) 27(2) _______________________________________________________________________

192

Table A.8. Bond lengths [Å] and angles [°] for 4a. _______________________________________________________________________ Pd(1)-C(1) 2.024(9) Pd(1)-O(1) 2.094(5) Pd(1)-N(1) 2.097(6) Pd(1)-P(1) 2.199(3) P(1)-C(21) 1.843(9) P(1)-C(23) 1.843(8) P(1)-C(22) 1.844(9) O(1)-C(8) 1.267(10) O(2)-N(5) 1.220(9) O(3)-N(5) 1.230(10) N(1)-C(2) 1.291(10) N(1)-C(9) 1.459(10) N(2)-C(26) 1.469(11) N(2)-C(22) 1.473(11) N(2)-C(24) 1.483(11) N(3)-C(24) 1.467(11) N(3)-C(23) 1.472(11) N(3)-C(25) 1.475(11) N(4)-C(21) 1.473(11) N(4)-C(26) 1.475(11) N(4)-C(25) 1.475(11) N(5)-C(5) 1.441(11) C(2)-C(3) 1.444(12) C(3)-C(4) 1.418(12) C(3)-C(8) 1.426(12) C(4)-C(5) 1.383(12) C(5)-C(6) 1.383(13) C(6)-C(7) 1.354(13) C(7)-C(8) 1.457(12) C(9)-C(14) 1.390(12) C(9)-C(10) 1.401(12) C(10)-C(11) 1.393(12) C(10)-C(18) 1.517(11) C(11)-C(12) 1.378(12) C(12)-C(13) 1.397(12) C(13)-C(14) 1.369(11) C(14)-C(15) 1.535(11) C(15)-C(16) 1.519(12) C(15)-C(17) 1.580(12) C(18)-C(20) 1.524(14) C(18)-C(19) 1.529(14)

C(1)-Pd(1)-O(1) 176.1(3) C(1)-Pd(1)-N(1) 93.5(3) O(1)-Pd(1)-N(1) 88.6(2) C(1)-Pd(1)-P(1) 87.7(3) O(1)-Pd(1)-P(1) 90.44(17) N(1)-Pd(1)-P(1) 175.82(19) C(21)-P(1)-C(23) 98.5(4) C(21)-P(1)-C(22) 98.4(4) C(23)-P(1)-C(22) 99.2(4) C(21)-P(1)-Pd(1) 123.3(3) C(23)-P(1)-Pd(1) 119.0(3) C(22)-P(1)-Pd(1) 114.0(3) C(8)-O(1)-Pd(1) 126.8(5) C(2)-N(1)-C(9) 115.5(6) C(2)-N(1)-Pd(1) 123.4(5) C(9)-N(1)-Pd(1) 120.9(5) C(26)-N(2)-C(22) 111.1(6) C(26)-N(2)-C(24) 109.3(7) C(22)-N(2)-C(24) 110.6(7) C(24)-N(3)-C(23) 111.8(7) C(24)-N(3)-C(25) 108.7(7) C(23)-N(3)-C(25) 110.7(7) C(21)-N(4)-C(26) 110.4(7) C(21)-N(4)-C(25) 111.6(7) C(26)-N(4)-C(25) 107.6(6) O(2)-N(5)-O(3) 122.9(8) O(2)-N(5)-C(5) 118.2(7) O(3)-N(5)-C(5) 118.9(7) N(1)-C(2)-C(3) 128.3(8) C(4)-C(3)-C(8) 119.7(8) C(4)-C(3)-C(2) 116.5(7) C(8)-C(3)-C(2) 123.4(8) C(5)-C(4)-C(3) 121.1(8) C(4)-C(5)-C(6) 120.1(8) C(4)-C(5)-N(5) 119.2(7) C(6)-C(5)-N(5) 120.7(8) C(7)-C(6)-C(5) 120.8(9) C(6)-C(7)-C(8) 122.1(8) O(1)-C(8)-C(3) 125.3(7) O(1)-C(8)-C(7) 118.5(7) C(3)-C(8)-C(7) 116.1(8) C(14)-C(9)-C(10) 121.6(7)

193

C(14)-C(9)-N(1) 120.0(7) C(10)-C(9)-N(1) 118.3(7) C(11)-C(10)-C(9) 117.8(7) C(11)-C(10)-C(18) 118.7(7) C(9)-C(10)-C(18) 123.6(7) C(12)-C(11)-C(10) 121.5(8) C(11)-C(12)-C(13) 118.9(8) C(14)-C(13)-C(12) 121.5(8) C(13)-C(14)-C(9) 118.6(7) C(13)-C(14)-C(15) 118.4(7) C(9)-C(14)-C(15) 123.0(7) C(16)-C(15)-C(14) 111.1(7)

C(16)-C(15)-C(17) 112.9(7) C(14)-C(15)-C(17) 110.5(7) C(10)-C(18)-C(20) 109.7(7) C(10)-C(18)-C(19) 112.1(7) C(20)-C(18)-C(19) 110.4(9) N(4)-C(21)-P(1) 111.9(5) N(2)-C(22)-P(1) 111.4(6) N(3)-C(23)-P(1) 111.5(6) N(3)-C(24)-N(2) 113.7(7) N(3)-C(25)-N(4) 114.9(7) N(2)-C(26)-N(4) 114.7(7)

_______________________________________________________________________ Table A.9. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 4b. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Pd(1) 7041(1) 1818(1) 3429(1) 13(1) P(1) 8045(1) 2556(1) 2919(1) 14(1) O(1) 6410(2) 1343(1) 2713(1) 16(1) O(2) 5820(2) 1038(1) 1703(1) 24(1) N(1) 5954(2) 1216(2) 3917(1) 13(1) N(2) 8612(2) 3028(2) 1866(1) 19(1) N(3) 9988(2) 3193(2) 2613(1) 15(1) N(4) 8361(2) 3969(2) 2587(1) 18(1) C(1) 7690(3) 2328(2) 4110(2) 22(1) C(2) 5146(3) 861(2) 3705(2) 16(1) C(3) 4865(3) 746(2) 3132(2) 14(1) C(4) 3849(3) 409(2) 3021(2) 19(1) C(5) 3485(3) 290(2) 2492(2) 24(1) C(6) 4133(3) 493(2) 2036(2) 22(1) C(7) 5125(3) 811(2) 2120(2) 18(1) C(8) 5516(3) 984(2) 2673(2) 15(1) C(9) 5976(3) 1275(2) 4525(2) 17(1) C(10) 6642(3) 794(2) 4828(2) 17(1) C(11) 6697(3) 894(2) 5410(2) 23(1) C(12) 6132(3) 1443(2) 5673(2) 24(1) C(13) 5499(3) 1911(2) 5361(2) 23(1) C(14) 5404(3) 1840(2) 4778(2) 18(1)

194

C(15) 4703(3) 2354(2) 4434(2) 22(1) C(16) 4784(4) 3140(2) 4632(2) 32(1) C(17) 3509(3) 2113(2) 4426(2) 28(1) C(18) 7254(3) 196(2) 4537(2) 22(1) C(19) 8350(3) 25(2) 4804(2) 37(1) C(20) 6554(4) -483(2) 4505(2) 36(1) C(21) 7696(3) 3523(2) 2963(2) 18(1) C(22) 7977(3) 2454(2) 2148(1) 20(1) C(23) 9539(3) 2646(2) 2999(2) 15(1) C(24) 9758(3) 2994(2) 2028(2) 20(1) C(25) 9517(3) 3904(2) 2725(2) 19(1) C(26) 8203(3) 3744(2) 2000(2) 22(1) C(27) 5438(4) 975(2) 1138(2) 41(1) Table A.10. Bond lengths [Å] and angles [°] for 4b. _______________________________________________________________________ Pd(1)-C(1) 2.036(4) Pd(1)-O(1) 2.068(2) Pd(1)-N(1) 2.087(3) Pd(1)-P(1) 2.1995(12) P(1)-C(21) 1.839(4) P(1)-C(23) 1.847(4) P(1)-C(22) 1.848(4) O(1)-C(8) 1.283(4) O(2)-C(7) 1.373(4) O(2)-C(27) 1.429(4) N(1)-C(2) 1.290(4) N(1)-C(9) 1.454(5) N(2)-C(26) 1.448(5) N(2)-C(24) 1.457(5) N(2)-C(22) 1.477(5) N(3)-C(25) 1.459(4) N(3)-C(24) 1.467(5) N(3)-C(23) 1.472(4) N(4)-C(21) 1.463(5) N(4)-C(25) 1.459(5) N(4)-C(26) 1.470(5) C(2)-C(3) 1.424(5) C(3)-C(4) 1.417(5) C(3)-C(8) 1.421(5) C(4)-C(5) 1.354(5) C(5)-C(6) 1.396(6) C(6)-C(7) 1.364(5)

C(7)-C(8) 1.438(5) C(9)-C(14) 1.392(5) C(9)-C(10) 1.405(5) C(10)-C(11) 1.400(5) C(10)-C(18) 1.504(5) C(11)-C(12) 1.377(5) C(12)-C(13) 1.378(5) C(13)-C(14) 1.397(5) C(14)-C(15) 1.519(5) C(15)-C(16) 1.529(5) C(15)-C(17) 1.529(5) C(18)-C(19) 1.518(5) C(18)-C(20) 1.521(5) C(1)-Pd(1)-O(1) 177.13(13) C(1)-Pd(1)-N(1) 92.98(13) O(1)-Pd(1)-N(1) 89.67(11) C(1)-Pd(1)-P(1) 86.26(11) O(1)-Pd(1)-P(1) 90.98(8) N(1)-Pd(1)-P(1) 173.27(8) C(21)-P(1)-C(23) 97.88(16) C(21)-P(1)-C(22) 98.28(17) C(23)-P(1)-C(22) 98.98(17) C(21)-P(1)-Pd(1) 116.10(12) C(23)-P(1)-Pd(1) 123.60(12) C(22)-P(1)-Pd(1) 117.36(13) C(8)-O(1)-Pd(1) 126.8(2)

195

C(7)-O(2)-C(27) 116.9(3) C(2)-N(1)-C(9) 116.2(3) C(2)-N(1)-Pd(1) 122.9(3) C(9)-N(1)-Pd(1) 120.2(2) C(26)-N(2)-C(24) 108.3(3) C(26)-N(2)-C(22) 111.9(3) C(24)-N(2)-C(22) 110.8(3) C(25)-N(3)-C(24) 108.8(3) C(25)-N(3)-C(23) 110.8(3) C(24)-N(3)-C(23) 110.5(3) C(21)-N(4)-C(25) 110.9(3) C(21)-N(4)-C(26) 110.5(3) C(25)-N(4)-C(26) 108.5(3) N(1)-C(2)-C(3) 129.4(4) C(4)-C(3)-C(8) 119.0(3) C(4)-C(3)-C(2) 117.1(3) C(8)-C(3)-C(2) 123.8(3) C(5)-C(4)-C(3) 122.2(4) C(4)-C(5)-C(6) 119.5(4) C(7)-C(6)-C(5) 120.6(4) C(6)-C(7)-O(2) 125.3(3) C(6)-C(7)-C(8) 121.7(4) O(2)-C(7)-C(8) 112.9(3) O(1)-C(8)-C(3) 125.5(3) O(1)-C(8)-C(7) 117.7(3)

C(3)-C(8)-C(7) 116.7(3) C(14)-C(9)-C(10) 122.9(3) C(14)-C(9)-N(1) 118.6(3) C(10)-C(9)-N(1) 118.3(3) C(11)-C(10)-C(9) 116.9(3) C(11)-C(10)-C(18) 121.9(3) C(9)-C(10)-C(18) 121.2(3) C(12)-C(11)-C(10) 121.5(4) C(11)-C(12)-C(13) 119.9(4) C(12)-C(13)-C(14) 121.6(4) C(9)-C(14)-C(13) 117.2(3) C(9)-C(14)-C(15) 121.2(3) C(13)-C(14)-C(15) 121.6(3) C(14)-C(15)-C(16) 112.9(3) C(14)-C(15)-C(17) 111.6(3) C(16)-C(15)-C(17) 110.0(3) C(10)-C(18)-C(19) 113.7(3) C(10)-C(18)-C(20) 110.3(3) C(19)-C(18)-C(20) 110.4(3) N(4)-C(21)-P(1) 112.5(2) N(2)-C(22)-P(1) 110.8(2) N(3)-C(23)-P(1) 111.6(2) N(2)-C(24)-N(3) 115.2(3) N(3)-C(25)-N(4) 114.6(3) N(2)-C(26)-N(4) 114.9(3)

_______________________________________________________________________ Table A.11. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 3b. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Ni(1) 8752(1) 6365(1) 3064(1) 34(1) P(1) 8311(2) 6964(1) 4161(2) 32(1) N(1) 9139(6) 5800(2) 2091(5) 30(2) N(2) 9224(5) 7668(2) 6230(5) 30(2) N(3) 7002(6) 7265(3) 5575(6) 42(2) N(4) 7402(6) 8038(3) 4342(6) 39(2) O(1) 10498(5) 6606(2) 3935(4) 34(1) O(2) 12711(5) 7124(2) 5318(5) 38(1) C(1) 6904(7) 6209(3) 2236(8) 50(2)

196

C(2) 10288(7) 5749(3) 2105(7) 34(2) C(3) 11448(7) 6061(3) 2843(7) 29(2) C(4) 12589(7) 5930(3) 2664(7) 37(2) C(5) 13753(7) 6191(3) 3392(7) 36(2) C(6) 13811(7) 6595(3) 4291(7) 34(2) C(7) 12750(7) 6738(3) 4479(7) 29(2) C(8) 11498(7) 6457(3) 3719(7) 31(2) C(9) 8150(7) 5424(3) 1218(7) 30(2) C(10) 7897(7) 4918(3) 1721(8) 36(2) C(11) 6910(8) 4568(3) 859(9) 42(2) C(12) 6237(8) 4707(3) -361(8) 43(2) C(13) 6523(8) 5198(3) -813(8) 44(2) C(14) 7491(7) 5566(3) -24(8) 35(2) C(15) 7827(8) 6106(3) -522(8) 47(2) C(16) 8697(9) 5974(4) -1173(8) 67(3) C(17) 6613(9) 6435(3) -1374(8) 66(3) C(18) 8614(8) 4773(3) 3086(8) 40(2) C(19) 9814(8) 4414(3) 3334(8) 62(3) C(20) 7770(9) 4472(4) 3618(9) 73(3) C(21) 7601(8) 7652(3) 3456(7) 46(2) C(22) 9653(7) 7234(3) 5574(7) 34(2) C(23) 7193(7) 6780(3) 4841(7) 40(2) C(24) 8258(7) 7423(3) 6591(7) 39(2) C(25) 6516(8) 7775(3) 4791(8) 49(2) C(26) 8623(7) 8165(3) 5420(7) 36(2) C(27) 13883(7) 7417(4) 6034(8) 47(2) Cl(1S) 6236(3) 5328(1) 5549(4) 137(2) C(1S) 4810(20) 5107(8) 5468(14) 172(7) _______________________________________________________________________ Table A.12. Bond lengths [Å] and angles [°] 3b. _______________________________________________________________________ Ni(1)-O(1) 1.881(5) Ni(1)-C(1) 1.926(8) Ni(1)-N(1) 1.931(6) Ni(1)-P(1) 2.119(2) P(1)-C(22) 1.819(7) P(1)-C(23) 1.829(7) P(1)-C(21) 1.834(8) N(1)-C(2) 1.304(8) N(1)-C(9) 1.449(8) N(2)-C(24) 1.459(8) N(2)-C(26) 1.476(8)

N(2)-C(22) 1.486(8) N(3)-C(24) 1.459(9) N(3)-C(25) 1.467(9) N(3)-C(23) 1.503(9) N(4)-C(26) 1.449(9) N(4)-C(25) 1.466(9) N(4)-C(21) 1.479(9) O(1)-C(8) 1.317(8) O(2)-C(7) 1.361(8) O(2)-C(27) 1.407(8) C(2)-C(3) 1.426(10)

197

C(3)-C(8) 1.377(9) C(3)-C(4) 1.436(9) C(4)-C(5) 1.370(9) C(5)-C(6) 1.406(9) C(6)-C(7) 1.360(9) C(7)-C(8) 1.467(9) C(9)-C(14) 1.372(10) C(9)-C(10) 1.413(9) C(10)-C(11) 1.406(10) C(10)-C(18) 1.501(10) C(11)-C(12) 1.350(10) C(12)-C(13) 1.368(10) C(13)-C(14) 1.391(10) C(14)-C(15) 1.515(10) C(15)-C(17) 1.517(11) C(15)-C(16) 1.530(11) C(18)-C(19) 1.518(10) C(18)-C(20) 1.532(10) Cl(1S)-C(1S)#1 1.63(2) Cl(1S)-C(1S) 1.67(2) C(1S)-C(1S)#1 1.45(3) C(1S)-Cl(1S)#1 1.63(2) O(1)-Ni(1)-C(1) 172.7(3) O(1)-Ni(1)-N(1) 94.2(2) C(1)-Ni(1)-N(1) 92.7(3) O(1)-Ni(1)-P(1) 86.50(15) C(1)-Ni(1)-P(1) 86.7(2) N(1)-Ni(1)-P(1) 178.20(18) C(22)-P(1)-C(23) 98.0(3) C(22)-P(1)-C(21) 98.0(4) C(23)-P(1)-C(21) 99.0(4) C(22)-P(1)-Ni(1) 118.0(2) C(23)-P(1)-Ni(1) 120.8(3) C(21)-P(1)-Ni(1) 118.5(3) C(2)-N(1)-C(9) 114.4(6) C(2)-N(1)-Ni(1) 123.0(5) C(9)-N(1)-Ni(1) 122.5(5) C(24)-N(2)-C(26) 108.0(5) C(24)-N(2)-C(22) 110.2(5) C(26)-N(2)-C(22) 111.3(5) C(24)-N(3)-C(25) 106.2(6) C(24)-N(3)-C(23) 109.6(6) C(25)-N(3)-C(23) 111.0(6)

C(26)-N(4)-C(25) 108.1(6) C(26)-N(4)-C(21) 111.7(6) C(25)-N(4)-C(21) 110.1(6) C(8)-O(1)-Ni(1) 127.3(4) C(7)-O(2)-C(27) 116.2(6) N(1)-C(2)-C(3) 127.8(7) C(8)-C(3)-C(2) 122.2(7) C(8)-C(3)-C(4) 120.9(7) C(2)-C(3)-C(4) 116.8(6) C(5)-C(4)-C(3) 119.8(7) C(4)-C(5)-C(6) 119.5(7) C(7)-C(6)-C(5) 122.7(7) C(6)-C(7)-O(2) 126.8(7) C(6)-C(7)-C(8) 118.6(7) O(2)-C(7)-C(8) 114.6(6) O(1)-C(8)-C(3) 124.9(7) O(1)-C(8)-C(7) 116.6(6) C(3)-C(8)-C(7) 118.5(7) C(14)-C(9)-C(10) 122.9(7) C(14)-C(9)-N(1) 120.6(6) C(10)-C(9)-N(1) 116.5(7) C(11)-C(10)-C(9) 115.2(7) C(11)-C(10)-C(18) 122.6(7) C(9)-C(10)-C(18) 122.2(7) C(12)-C(11)-C(10) 122.7(8) C(11)-C(12)-C(13) 120.2(8) C(12)-C(13)-C(14) 120.8(8) C(9)-C(14)-C(13) 118.2(7) C(9)-C(14)-C(15) 120.7(7) C(13)-C(14)-C(15) 121.1(7) C(14)-C(15)-C(17) 112.0(7) C(14)-C(15)-C(16) 110.9(7) C(17)-C(15)-C(16) 111.5(7) C(10)-C(18)-C(19) 110.7(7) C(10)-C(18)-C(20) 114.0(7) C(19)-C(18)-C(20) 109.7(7) N(4)-C(21)-P(1) 112.8(5) N(2)-C(22)-P(1) 112.8(5) N(3)-C(23)-P(1) 112.5(5) N(2)-C(24)-N(3) 116.6(6) N(4)-C(25)-N(3) 116.4(6) N(4)-C(26)-N(2) 113.9(6) C(1S)#1-Cl(1S)-C(1S) 52.3(9) C(1S)#1-C(1S)-Cl(1S)#1 65.3(15)

198

C(1S)#1-C(1S)-Cl(1S) 62.4(16) Cl(1S)#1-C(1S)-Cl(1S) 127.7(8) Table A.13. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 3d. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Ni(1) 7596(1) 1265(1) 9402(1) 25(1) Cl(1) 11427(1) 1483(1) 11499(1) 43(1) Cl(2) 11973(1) 4590(1) 10116(1) 54(1) P(1) 7776(1) 318(1) 10451(1) 25(1) N(1) 7479(3) 2232(2) 8579(2) 21(1) N(2) 9208(3) -800(2) 11711(3) 31(1) N(3) 7097(3) -1056(2) 11313(3) 33(1) N(4) 7995(3) 186(2) 12298(3) 31(1) O(1) 9155(2) 1522(2) 10105(2) 28(1) C(1) 6031(4) 874(3) 8839(3) 36(1) C(2) 8250(4) 2835(3) 8723(3) 26(1) C(3) 9346(4) 2885(3) 9441(3) 25(1) C(4) 10037(4) 3616(3) 9460(4) 31(1) C(5) 11120(4) 3678(3) 10083(4) 32(1) C(6) 11555(4) 3017(3) 10710(3) 29(1) C(7) 10890(4) 2306(3) 10702(3) 29(1) C(8) 9758(4) 2207(3) 10080(3) 22(1) C(9) 6546(4) 2334(3) 7719(3) 24(1) C(10) 6667(4) 1925(3) 6942(3) 25(1) C(11) 5775(4) 2029(3) 6126(4) 35(1) C(12) 4806(4) 2526(3) 6071(4) 35(1) C(13) 4698(4) 2920(3) 6843(3) 31(1) C(14) 5563(4) 2824(3) 7696(3) 26(1) C(15) 5416(4) 3259(3) 8543(3) 28(1) C(16) 5735(4) 4212(3) 8554(4) 40(1) C(17) 4199(4) 3147(3) 8616(4) 34(1) C(18) 7711(4) 1376(3) 6972(4) 32(1) C(19) 8202(4) 1593(3) 6192(4) 38(1) C(20) 7415(5) 414(3) 6962(4) 50(2) C(21) 6769(4) -582(3) 10435(3) 31(1) C(22) 7782(4) 817(3) 11543(3) 28(1) C(23) 9140(4) -292(3) 10880(3) 28(1) C(24) 9117(4) -242(3) 12460(3) 32(1)

199

C(25) 8263(4) -1433(3) 11515(4) 38(1) C(26) 7086(4) -483(3) 12071(4) 34(1) _______________________________________________________________________ Table A.14. Bond lengths [Å] and angles [°] for A.14. _______________________________________________________________________ Ni(1)-O(1) 1.907(3) Ni(1)-C(1) 1.923(4) Ni(1)-N(1) 1.936(4) Ni(1)-P(1) 2.1381(14) Cl(1)-C(7) 1.746(5) Cl(2)-C(5) 1.742(5) P(1)-C(22) 1.843(5) P(1)-C(23) 1.841(4) P(1)-C(21) 1.849(4) N(1)-C(2) 1.293(5) N(1)-C(9) 1.456(5) N(2)-C(24) 1.469(6) N(2)-C(25) 1.467(6) N(2)-C(23) 1.479(5) N(3)-C(26) 1.467(6) N(3)-C(25) 1.473(6) N(3)-C(21) 1.476(6) N(4)-C(24) 1.466(5) N(4)-C(26) 1.475(6) N(4)-C(22) 1.475(6) O(1)-C(8) 1.296(5) C(2)-C(3) 1.441(6) C(3)-C(4) 1.404(6) C(3)-C(8) 1.417(6) C(4)-C(5) 1.367(7) C(5)-C(6) 1.391(6) C(6)-C(7) 1.364(6) C(7)-C(8) 1.417(6) C(9)-C(10) 1.398(6) C(9)-C(14) 1.405(6) C(10)-C(11) 1.386(6) C(10)-C(18) 1.516(6) C(11)-C(12) 1.387(6) C(12)-C(13) 1.375(6) C(13)-C(14) 1.407(6) C(14)-C(15) 1.523(6) C(15)-C(17) 1.527(6)

C(15)-C(16) 1.525(6) C(18)-C(20) 1.531(6) C(18)-C(19) 1.532(6) O(1)-Ni(1)-C(1) 171.03(17) O(1)-Ni(1)-N(1) 93.71(13) C(1)-Ni(1)-N(1) 95.17(17) O(1)-Ni(1)-P(1) 82.38(10) C(1)-Ni(1)-P(1) 88.65(15) N(1)-Ni(1)-P(1) 172.58(12) C(22)-P(1)-C(23) 98.2(2) C(22)-P(1)-C(21) 98.2(2) C(23)-P(1)-C(21) 97.8(2) C(22)-P(1)-Ni(1) 111.53(16) C(23)-P(1)-Ni(1) 119.37(15) C(21)-P(1)-Ni(1) 126.53(17) C(2)-N(1)-C(9) 113.2(4) C(2)-N(1)-Ni(1) 123.2(3) C(9)-N(1)-Ni(1) 123.6(3) C(24)-N(2)-C(25) 108.0(4) C(24)-N(2)-C(23) 111.3(4) C(25)-N(2)-C(23) 110.4(4) C(26)-N(3)-C(25) 108.6(4) C(26)-N(3)-C(21) 110.9(4) C(25)-N(3)-C(21) 110.9(4) C(24)-N(4)-C(26) 108.1(3) C(24)-N(4)-C(22) 110.9(3) C(26)-N(4)-C(22) 110.2(4) C(8)-O(1)-Ni(1) 128.7(3) N(1)-C(2)-C(3) 128.0(4) C(4)-C(3)-C(8) 120.3(4) C(4)-C(3)-C(2) 117.5(4) C(8)-C(3)-C(2) 122.1(4) C(5)-C(4)-C(3) 120.6(5) C(4)-C(5)-C(6) 120.5(4) C(4)-C(5)-Cl(2) 120.8(4) C(6)-C(5)-Cl(2) 118.8(4)

200

C(7)-C(6)-C(5) 119.5(4) C(6)-C(7)-C(8) 122.8(4) C(6)-C(7)-Cl(1) 119.5(4) C(8)-C(7)-Cl(1) 117.6(3) O(1)-C(8)-C(7) 120.5(4) O(1)-C(8)-C(3) 123.1(4) C(7)-C(8)-C(3) 116.3(4) C(10)-C(9)-C(14) 122.5(4) C(10)-C(9)-N(1) 117.7(4) C(14)-C(9)-N(1) 119.8(4) C(11)-C(10)-C(9) 117.2(4) C(11)-C(10)-C(18) 120.2(4) C(9)-C(10)-C(18) 122.6(4) C(12)-C(11)-C(10) 121.9(5) C(13)-C(12)-C(11) 120.1(5) C(12)-C(13)-C(14) 120.6(4)

C(13)-C(14)-C(9) 117.6(4) C(13)-C(14)-C(15) 119.6(4) C(9)-C(14)-C(15) 122.8(4) C(14)-C(15)-C(17) 112.8(4) C(14)-C(15)-C(16) 109.9(4) C(17)-C(15)-C(16) 110.9(4) C(10)-C(18)-C(20) 110.8(4) C(10)-C(18)-C(19) 112.2(4) C(20)-C(18)-C(19) 110.7(4) N(3)-C(21)-P(1) 111.9(3) N(4)-C(22)-P(1) 112.8(3) N(2)-C(23)-P(1) 112.5(3) N(4)-C(24)-N(2) 115.3(4) N(2)-C(25)-N(3) 114.6(4) N(3)-C(26)-N(4) 114.9(4)

_______________________________________________________________________ Table A.15. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 4c. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Pd(1) 6332(1) 7516(1) -24(1) 16(1) P(1) 4600(1) 6700(1) -1803(1) 17(1) O(1) 6279(3) 5764(2) -404(2) 18(1) N(1) 7996(3) 8214(2) 1613(2) 14(1) N(2) 3954(3) 6116(2) -4166(2) 20(1) N(3) 1944(3) 6380(2) -3344(2) 17(1) N(4) 2641(3) 4525(2) -3797(2) 18(1) C(1) 6273(4) 9191(3) 292(3) 28(1) C(2) 8715(4) 7562(3) 1863(3) 15(1) C(3) 8549(4) 6299(3) 1156(3) 13(1) C(4) 9654(4) 5852(3) 1583(3) 13(1) C(5) 9417(4) 4569(3) 972(3) 16(1) C(6) 8097(4) 3769(3) -36(3) 18(1) C(7) 7075(4) 4182(3) -446(3) 17(1) C(8) 7287(4) 5477(3) 105(3) 14(1) C(9) 8425(4) 9444(3) 2611(3) 15(1) C(10) 9612(4) 10392(3) 2778(3) 17(1) C(11) 10080(4) 11527(3) 3805(3) 21(1)

201

C(12) 9379(4) 11731(3) 4627(3) 22(1) C(13) 8154(4) 10810(3) 4412(3) 21(1) C(14) 7634(4) 9645(3) 3397(3) 18(1) C(15) 6272(4) 8656(3) 3173(3) 23(1) C(16) 6508(4) 8297(3) 4123(3) 40(1) C(17) 4917(4) 9054(3) 3059(3) 35(1) C(18) 10371(4) 10182(3) 1860(3) 21(1) C(19) 10637(4) 11232(3) 1594(3) 30(1) C(20) 11815(4) 9981(3) 2251(3) 35(1) C(21) 2917(4) 7107(3) -2077(3) 20(1) C(22) 3706(4) 5021(3) -2586(3) 17(1) C(23) 5171(4) 6808(3) -2993(3) 19(1) C(24) 3385(4) 4802(3) -4539(3) 21(1) C(25) 2723(4) 6578(3) -4101(3) 21(1) C(26) 1467(4) 5057(3) -3751(3) 21(1) C(27) 10994(4) 6611(3) 2561(3) 16(1) C(28) 12006(4) 6159(3) 2952(3) 22(1) C(29) 11744(4) 4901(3) 2355(3) 22(1) C(30) 10481(4) 4126(3) 1375(3) 21(1) Table A.16. Bond lengths [Å] and angles [°] for 4c. _______________________________________________________________________ Pd(1)-C(1) 2.026(3) Pd(1)-O(1) 2.072(2) Pd(1)-N(1) 2.074(3) Pd(1)-P(1) 2.2080(10) P(1)-C(22) 1.834(3) P(1)-C(23) 1.840(3) P(1)-C(21) 1.845(4) O(1)-C(8) 1.283(4) N(1)-C(2) 1.303(4) N(1)-C(9) 1.444(4) N(2)-C(25) 1.460(4) N(2)-C(23) 1.470(4) N(2)-C(24) 1.473(4) N(3)-C(25) 1.465(4) N(3)-C(21) 1.469(4) N(3)-C(26) 1.470(4) N(4)-C(26) 1.461(4) N(4)-C(24) 1.466(4) N(4)-C(22) 1.470(4) C(2)-C(3) 1.430(4) C(3)-C(8) 1.413(4)

C(3)-C(4) 1.451(5) C(4)-C(27) 1.403(4) C(4)-C(5) 1.425(4) C(5)-C(30) 1.404(5) C(5)-C(6) 1.414(5) C(6)-C(7) 1.348(5) C(7)-C(8) 1.443(4) C(9)-C(10) 1.397(4) C(9)-C(14) 1.404(4) C(10)-C(11) 1.383(4) C(10)-C(18) 1.521(4) C(11)-C(12) 1.377(4) C(12)-C(13) 1.374(4) C(13)-C(14) 1.392(4) C(14)-C(15) 1.510(4) C(15)-C(16) 1.510(5) C(15)-C(17) 1.525(5) C(18)-C(20) 1.515(5) C(18)-C(19) 1.527(4) C(27)-C(28) 1.369(5) C(28)-C(29) 1.391(4)

202

C(29)-C(30) 1.363(5) C(1)-Pd(1)-O(1) 177.06(13) C(1)-Pd(1)-N(1) 94.15(13) O(1)-Pd(1)-N(1) 88.47(10) C(1)-Pd(1)-P(1) 88.23(11) O(1)-Pd(1)-P(1) 89.18(7) N(1)-Pd(1)-P(1) 177.27(8) C(22)-P(1)-C(23) 98.02(15) C(22)-P(1)-C(21) 98.75(16) C(23)-P(1)-C(21) 97.61(15) C(22)-P(1)-Pd(1) 114.87(11) C(23)-P(1)-Pd(1) 118.21(11) C(21)-P(1)-Pd(1) 124.54(11) C(8)-O(1)-Pd(1) 127.2(2) C(2)-N(1)-C(9) 113.1(3) C(2)-N(1)-Pd(1) 123.1(2) C(9)-N(1)-Pd(1) 123.8(2) C(25)-N(2)-C(23) 110.3(3) C(25)-N(2)-C(24) 108.0(3) C(23)-N(2)-C(24) 110.4(3) C(25)-N(3)-C(21) 111.0(3) C(25)-N(3)-C(26) 107.5(3) C(21)-N(3)-C(26) 110.6(3) C(26)-N(4)-C(24) 107.9(3) C(26)-N(4)-C(22) 110.9(3) C(24)-N(4)-C(22) 111.0(3) N(1)-C(2)-C(3) 130.2(3) C(8)-C(3)-C(2) 121.1(3) C(8)-C(3)-C(4) 120.2(3) C(2)-C(3)-C(4) 118.6(3) C(27)-C(4)-C(5) 116.3(3) C(27)-C(4)-C(3) 124.2(3) C(5)-C(4)-C(3) 119.5(3) C(30)-C(5)-C(6) 121.6(3)

C(30)-C(5)-C(4) 120.0(3) C(6)-C(5)-C(4) 118.4(3) C(7)-C(6)-C(5) 122.4(3) C(6)-C(7)-C(8) 121.7(3) O(1)-C(8)-C(3) 126.3(3) O(1)-C(8)-C(7) 116.0(3) C(3)-C(8)-C(7) 117.7(3) C(10)-C(9)-C(14) 121.9(3) C(10)-C(9)-N(1) 119.7(3) C(14)-C(9)-N(1) 118.4(3) C(11)-C(10)-C(9) 117.8(3) C(11)-C(10)-C(18) 121.0(3) C(9)-C(10)-C(18) 121.1(3) C(12)-C(11)-C(10) 121.4(3) C(13)-C(12)-C(11) 120.0(3) C(12)-C(13)-C(14) 121.4(3) C(13)-C(14)-C(9) 117.3(3) C(13)-C(14)-C(15) 120.3(3) C(9)-C(14)-C(15) 122.4(3) C(14)-C(15)-C(16) 112.3(3) C(14)-C(15)-C(17) 110.7(3) C(16)-C(15)-C(17) 110.9(3) C(20)-C(18)-C(10) 111.4(3) C(20)-C(18)-C(19) 110.6(3) C(10)-C(18)-C(19) 111.9(3) N(3)-C(21)-P(1) 112.1(2) N(4)-C(22)-P(1) 112.3(2) N(2)-C(23)-P(1) 113.0(2) N(4)-C(24)-N(2) 115.0(3) N(2)-C(25)-N(3) 115.6(3) N(4)-C(26)-N(3) 115.7(3) C(28)-C(27)-C(4) 122.7(3) C(27)-C(28)-C(29) 120.0(4) C(30)-C(29)-C(28) 119.6(4) C(29)-C(30)-C(5) 121.3(3)

_______________________________________________________________________

203

Table A.17. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 4d. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Pd(1) 9662(1) 900(1) 1676(1) 24(1) P(1) 11084(2) -429(2) 1659(2) 25(1) O(1) 9609(6) 640(5) 2634(4) 35(2) N(1) 8404(7) 2242(6) 1771(5) 22(2) N(2) 13291(8) -1087(6) 2231(5) 35(3) N(3) 12892(9) -1770(7) 1153(5) 45(3) N(4) 11739(7) -2547(6) 2031(5) 33(3) Cl(1) 10202(2) -150(2) 3875(1) 35(1) Cl(2) 7154(3) 3131(2) 4629(2) 53(1) C(1) 9776(10) 1065(8) 725(5) 36(3) C(2) 8042(8) 2605(8) 2296(6) 26(3) C(3) 8301(8) 2188(7) 2926(5) 22(3) C(4) 7755(9) 2758(8) 3428(6) 31(3) C(5) 7926(10) 2438(9) 4035(6) 35(3) C(6) 8688(10) 1537(8) 4178(6) 35(3) C(7) 9242(8) 949(7) 3708(5) 22(2) C(8) 9063(9) 1230(8) 3061(6) 28(3) C(9) 8019(8) 2860(7) 1221(5) 24(3) C(10) 8702(9) 3818(7) 1052(5) 26(3) C(11) 8341(9) 4345(8) 508(5) 26(3) C(12) 7385(10) 3955(7) 138(6) 36(3) C(13) 6732(9) 3005(8) 302(6) 31(3) C(14) 7040(8) 2449(7) 840(5) 26(3) C(15) 6307(11) 1423(8) 1057(6) 38(4) C(16) 5282(12) 1746(10) 1494(8) 58(4) C(17) 5811(12) 752(9) 505(7) 53(4) C(18) 9786(8) 4251(7) 1453(5) 25(3) C(19) 10965(10) 4431(9) 1065(7) 42(4) C(20) 9405(10) 5306(8) 1787(6) 40(4) C(21) 11961(11) -927(9) 979(6) 46(4) C(22) 10657(9) -1783(7) 1982(6) 38(3) C(23) 12395(9) -155(8) 2207(6) 39(4) C(24) 12688(10) -2091(8) 2465(6) 39(4) C(25) 13799(10) -1320(8) 1627(7) 41(4) C(26) 12288(10) -2743(7) 1440(6) 34(3) _______________________________________________________________________

204

Table A.18. Bond lengths [Å] and angles [°] for 4d. _______________________________________________________________________ Pd(1)-C(1) 2.045(12) Pd(1)-O(1) 2.068(9) Pd(1)-N(1) 2.117(8) Pd(1)-P(1) 2.211(3) P(1)-C(22) 1.833(10) P(1)-C(21) 1.841(14) P(1)-C(23) 1.841(9) O(1)-C(8) 1.302(14) N(1)-C(2) 1.269(14) N(1)-C(9) 1.443(12) N(2)-C(25) 1.436(16) N(2)-C(24) 1.464(14) N(2)-C(23) 1.477(11) N(3)-C(21) 1.466(12) N(3)-C(26) 1.478(15) N(3)-C(25) 1.492(13) N(4)-C(26) 1.421(15) N(4)-C(24) 1.469(12) N(4)-C(22) 1.482(11) Cl(1)-C(7) 1.711(9) Cl(2)-C(5) 1.740(13) C(2)-C(3) 1.457(15) C(3)-C(4) 1.408(15) C(3)-C(8) 1.440(12) C(4)-C(5) 1.361(16) C(5)-C(6) 1.389(14) C(6)-C(7) 1.372(16) C(7)-C(8) 1.431(16) C(9)-C(14) 1.406(12) C(9)-C(10) 1.417(13) C(10)-C(11) 1.373(13) C(10)-C(18) 1.520(12) C(11)-C(12) 1.364(12) C(12)-C(13) 1.390(15) C(13)-C(14) 1.363(14) C(14)-C(15) 1.541(15) C(15)-C(16) 1.505(19) C(15)-C(17) 1.516(14) C(18)-C(20) 1.518(14) C(18)-C(19) 1.537(17) C(1)-Pd(1)-O(1) 176.4(3)

C(1)-Pd(1)-N(1) 94.0(4) O(1)-Pd(1)-N(1) 89.6(3) C(1)-Pd(1)-P(1) 90.0(3) O(1)-Pd(1)-P(1) 86.4(2) N(1)-Pd(1)-P(1) 174.2(2) C(22)-P(1)-C(21) 98.0(6) C(22)-P(1)-C(23) 96.5(5) C(21)-P(1)-C(23) 99.5(5) C(22)-P(1)-Pd(1) 117.6(4) C(21)-P(1)-Pd(1) 127.7(4) C(23)-P(1)-Pd(1) 112.1(3) C(8)-O(1)-Pd(1) 128.9(6) C(2)-N(1)-C(9) 116.8(8) C(2)-N(1)-Pd(1) 123.5(7) C(9)-N(1)-Pd(1) 119.4(7) C(25)-N(2)-C(24) 108.7(9) C(25)-N(2)-C(23) 111.9(9) C(24)-N(2)-C(23) 110.6(9) C(21)-N(3)-C(26) 110.8(9) C(21)-N(3)-C(25) 110.4(8) C(26)-N(3)-C(25) 107.0(9) C(26)-N(4)-C(24) 109.2(8) C(26)-N(4)-C(22) 112.1(9) C(24)-N(4)-C(22) 110.1(8) N(1)-C(2)-C(3) 129.7(9) C(4)-C(3)-C(8) 118.8(10) C(4)-C(3)-C(2) 117.3(9) C(8)-C(3)-C(2) 123.9(11) C(5)-C(4)-C(3) 122.3(10) C(4)-C(5)-C(6) 120.0(12) C(4)-C(5)-Cl(2) 120.0(9) C(6)-C(5)-Cl(2) 120.0(10) C(7)-C(6)-C(5) 120.2(11) C(6)-C(7)-C(8) 122.1(9) C(6)-C(7)-Cl(1) 120.9(8) C(8)-C(7)-Cl(1) 117.0(9) O(1)-C(8)-C(7) 119.4(8) O(1)-C(8)-C(3) 124.0(11) C(7)-C(8)-C(3) 116.6(11) C(14)-C(9)-C(10) 121.5(9) C(14)-C(9)-N(1) 119.1(8) C(10)-C(9)-N(1) 119.1(7)

205

C(11)-C(10)-C(9) 116.9(8) C(11)-C(10)-C(18) 121.1(9) C(9)-C(10)-C(18) 121.9(9) C(12)-C(11)-C(10) 121.8(9) C(11)-C(12)-C(13) 120.9(10) C(14)-C(13)-C(12) 120.2(9) C(13)-C(14)-C(9) 118.6(9) C(13)-C(14)-C(15) 122.1(8) C(9)-C(14)-C(15) 119.2(10) C(16)-C(15)-C(17) 111.7(9) C(16)-C(15)-C(14) 111.0(9)

C(17)-C(15)-C(14) 111.6(11) C(20)-C(18)-C(10) 110.0(8) C(20)-C(18)-C(19) 111.4(9) C(10)-C(18)-C(19) 111.8(10) N(3)-C(21)-P(1) 112.4(9) N(4)-C(22)-P(1) 112.3(7) N(2)-C(23)-P(1) 111.9(6) N(2)-C(24)-N(4) 113.5(9) N(2)-C(25)-N(3) 115.3(9) N(4)-C(26)-N(3) 115.2(9)

_______________________________________________________________________ Table A.19. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 3b'. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ P(1) 641(7) 6455(4) 1650(6) 63(2) N(1) 4760(15) 5516(12) 1682(15) 35(3) N(2) 1863(14) 3906(10) 1361(12) 24(2) N(3) 3417(15) 5398(9) 4232(13) 22(2) O(1) -413(14) 2576(9) 2500(11) 37(3) O(2) 5008(15) 3792(9) 5817(12) 49(3) C(1) 60(20) 4886(14) 1030(20) 45(4) C(2) 1640(20) 6324(13) 3663(15) 35(4) C(3) 3230(19) 6584(14) 1112(17) 41(4) C(4) 3931(19) 4314(14) 1008(16) 36(4) C(5) 5339(17) 5575(15) 3354(18) 33(4) C(6) 1380(20) 2813(14) 2143(18) 38(4) C(7) 3390(20) 4526(12) 5457(19) 36(4) C(8) 3200(20) 1811(14) 2320(20) 52(5) C(9) 1409(19) 4418(15) 6227(18) 44(4) _______________________________________________________________________

206

Table A.20. Bond lengths [Å] and angles [°] for 3b'. _______________________________________________________________________P(1)-C(2) 1.707(14) P(1)-C(1) 1.736(15) P(1)-C(3) 1.742(14) N(1)-C(5) 1.393(18) N(1)-C(4) 1.435(18) N(1)-C(3) 1.489(17) N(2)-C(6) 1.373(18) N(2)-C(4) 1.426(16) N(2)-C(1) 1.504(17) N(3)-C(7) 1.377(18) N(3)-C(2) 1.484(16) N(3)-C(5) 1.512(15) O(1)-C(6) 1.224(15) O(2)-C(7) 1.258(14) C(6)-C(8) 1.524(19) C(7)-C(9) 1.483(19) C(2)-P(1)-C(1) 104.0(7) C(2)-P(1)-C(3) 93.9(6) C(1)-P(1)-C(3) 98.5(7)

C(5)-N(1)-C(4) 116.9(12) C(5)-N(1)-C(3) 109.6(11) C(4)-N(1)-C(3) 111.1(9) C(6)-N(2)-C(4) 128.3(11) C(6)-N(2)-C(1) 116.0(10) C(4)-N(2)-C(1) 115.0(11) C(7)-N(3)-C(2) 124.7(11) C(7)-N(3)-C(5) 123.7(10) C(2)-N(3)-C(5) 111.4(10) N(2)-C(1)-P(1) 118.5(9) N(3)-C(2)-P(1) 119.9(10) N(1)-C(3)-P(1) 115.0(10) N(2)-C(4)-N(1) 116.9(11) N(1)-C(5)-N(3) 113.3(10) O(1)-C(6)-N(2) 124.3(12) O(1)-C(6)-C(8) 121.5(13) N(2)-C(6)-C(8) 113.6(13) O(2)-C(7)-N(3) 118.2(13) O(2)-C(7)-C(9) 122.2(15) N(3)-C(7)-C(9) 119.5(11)

_______________________________________________________________________ Table A.21. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 4d-DAPTA. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Pd(1A) 9529(1) 9323(1) 7398(1) 30(1) P(1A) 10596(2) 8335(2) 8060(2) 44(1) N(1A) 11109(9) 6801(6) 8975(7) 89(4) N(2A) 11819(8) 8083(5) 9357(5) 74(3) N(3A) 12534(8) 7443(6) 7929(7) 84(3) N(4A) 8572(5) 10287(4) 6768(3) 24(1) O(1A) 13257(6) 7719(4) 10036(4) 56(2) O(2A) 13841(6) 8343(6) 7560(5) 86(3) O(3A) 10744(4) 10223(4) 7344(3) 39(1) Cl(1A) 11177(2) 13819(2) 5508(2) 57(1) Cl(2A) 12830(2) 10985(2) 7354(2) 50(1) C(1A) 11145(9) 8719(6) 8863(6) 65(3)

207

C(2A) 11797(9) 8060(7) 7521(7) 73(3) C(3A) 10206(9) 7228(6) 8580(6) 59(3) C(4A) 11396(11) 7197(7) 9617(8) 104(6) C(5A) 11999(13) 6649(8) 8450(11) 120(8) C(6A) 12743(8) 8271(6) 9611(5) 40(2) C(7A) 13539(8) 7657(8) 7945(6) 55(3) C(8A) 13163(8) 9185(6) 9317(6) 55(3) C(9A) 14278(9) 7031(7) 8417(7) 69(3) C(10A) 8421(7) 8367(6) 7500(6) 47(2) C(11A) 8903(6) 11085(5) 6488(4) 26(2) C(12A) 9933(6) 11456(5) 6523(4) 24(2) C(13A) 10068(6) 12324(5) 6095(4) 29(2) C(14A) 11006(7) 12748(5) 6059(5) 34(2) C(15A) 11859(6) 12352(5) 6448(5) 35(2) C(16A) 11747(6) 11501(5) 6878(5) 32(2) C(17A) 10779(6) 11007(5) 6933(4) 31(2) C(18A) 7483(6) 10137(5) 6594(5) 29(2) C(19A) 7307(6) 9949(5) 5877(5) 31(2) C(20A) 6254(7) 9827(5) 5720(5) 35(2) C(21A) 5419(7) 9884(5) 6272(6) 40(2) C(22A) 5622(7) 10042(6) 6985(5) 39(2) C(23A) 6645(7) 10171(5) 7168(5) 34(2) C(24A) 6860(7) 10336(6) 7969(5) 45(2) C(25A) 6486(13) 11216(8) 8060(7) 100(5) C(26A) 6302(13) 9624(9) 8621(6) 105(5) C(27A) 8234(7) 9825(6) 5290(5) 42(2) C(28A) 8358(15) 8926(8) 5245(10) 163(10) C(29A) 8113(15) 10322(13) 4505(9) 218(14) Pd(1B) 4091(1) 4397(1) 2680(1) 28(1) P(1B) 4692(2) 3531(1) 3719(1) 27(1) N(1B) 5099(6) 1982(4) 4646(4) 35(2) N(2B) 6550(5) 3048(4) 4460(4) 32(2) N(3B) 4487(5) 3139(4) 5342(4) 32(2) N(4B) 3459(5) 5309(4) 1760(4) 29(2) O(1B) 7538(5) 2791(4) 5510(3) 42(2) O(2B) 4800(5) 4288(4) 5879(3) 47(2) O(3B) 5577(4) 4999(3) 2399(3) 33(1) Cl(1B) 6529(3) 8596(2) 725(2) 78(1) Cl(2B) 7681(2) 5597(2) 2639(1) 49(1) C(1B) 6129(6) 3632(5) 3767(5) 34(2) C(2B) 4099(7) 3732(5) 4650(4) 34(2) C(3B) 4594(7) 2333(5) 3923(5) 31(2) C(4B) 6231(6) 2126(5) 4585(5) 33(2) C(5B) 4506(7) 2209(5) 5338(5) 36(2)

208

C(6B) 7196(7) 3315(6) 4957(5) 35(2) C(7B) 4839(6) 3502(6) 5926(5) 34(2) C(8B) 7455(7) 4272(6) 4813(5) 46(2) C(9B) 5251(7) 2885(6) 6616(5) 43(2) C(10B) 2688(6) 3712(6) 2960(5) 41(2) C(11B) 3957(7) 6028(5) 1417(5) 31(2) C(12B) 4995(7) 6315(5) 1551(4) 29(2) C(13B) 5265(8) 7178(5) 1153(5) 41(2) C(14B) 6224(7) 7533(6) 1233(5) 45(2) C(15B) 6960(8) 7054(6) 1691(5) 43(2) C(16B) 6730(6) 6208(5) 2077(5) 33(2) C(17B) 5741(7) 5788(5) 2029(4) 30(2) C(18B) 2408(6) 5211(5) 1507(5) 33(2) C(19B) 2280(7) 4708(5) 971(5) 35(2) C(20B) 1265(7) 4625(6) 738(5) 40(2) C(21B) 400(7) 5047(6) 1046(5) 45(2) C(22B) 541(7) 5506(7) 1590(6) 57(3) C(23B) 1543(8) 5627(7) 1829(6) 56(3) C(24B) 1740(10) 6098(11) 2546(12) 116(7) C(25B) 1410(20) 7042(11) 2211(9) 218(15) C(26B) 1020(20) 5811(12) 3232(9) 174(11) C(27B) 3229(7) 4266(6) 622(5) 38(2) C(28B) 3021(9) 3325(7) 573(6) 60(3) C(29B) 3618(8) 4825(7) -176(6) 57(3) C(1S) 602(11) 1184(10) 9003(6) 43(3) C(2S) 10006(11) 2948(10) 4019(7) 93(5) Cl(2') 637(7) 2083(7) 9362(5) 134(5) Cl(1S) -786(5) 747(5) 9062(4) 181(3) Cl(2S) 492(19) 1340(20) 8933(17) 296(17) Cl(3S) 9328(5) 2050(5) 4234(3) 179(3) Cl(4S) 9449(5) 3890(5) 3205(3) 192(3) O(1W) -1199(5) -51(5) 9447(4) 55(2) _______________________________________________________________________ Table A.22. Bond lengths [Å] and angles [°] for 4d-DAPTA. _______________________________________________________________________ Pd(1A)-C(10A) 2.031(8) Pd(1A)-O(3A) 2.077(5) Pd(1A)-N(4A) 2.080(6) Pd(1A)-P(1A) 2.209(2) P(1A)-C(2A) 1.816(12) P(1A)-C(1A) 1.827(10) P(1A)-C(3A) 1.831(8)

N(1A)-C(5A) 1.45(2) N(1A)-C(3A) 1.445(13) N(1A)-C(4A) 1.467(17) N(2A)-C(6A) 1.330(12) N(2A)-C(4A) 1.459(12) N(2A)-C(1A) 1.467(12) N(3A)-C(7A) 1.313(14)

209

N(3A)-C(2A) 1.434(13) N(3A)-C(5A) 1.511(17) N(4A)-C(11A) 1.303(9) N(4A)-C(18A) 1.453(10) O(1A)-C(6A) 1.218(11) O(2A)-C(7A) 1.190(13) O(3A)-C(17A) 1.280(9) Cl(1A)-C(14A) 1.751(8) Cl(2A)-C(16A) 1.737(8) C(6A)-C(8A) 1.502(12) C(7A)-C(9A) 1.491(14) C(11A)-C(12A) 1.436(10) C(12A)-C(13A) 1.409(10) C(12A)-C(17A) 1.413(11) C(13A)-C(14A) 1.351(11) C(14A)-C(15A) 1.373(12) C(15A)-C(16A) 1.385(11) C(16A)-C(17A) 1.436(11) C(18A)-C(19A) 1.388(11) C(18A)-C(23A) 1.412(11) C(19A)-C(20A) 1.392(11) C(19A)-C(27A) 1.535(11) C(20A)-C(21A) 1.390(12) C(21A)-C(22A) 1.370(12) C(22A)-C(23A) 1.372(11) C(23A)-C(24A) 1.528(12) C(24A)-C(25A) 1.481(14) C(24A)-C(26A) 1.552(14) C(27A)-C(28A) 1.428(15) C(27A)-C(29A) 1.447(15) Pd(1B)-C(10B) 2.050(8) Pd(1B)-O(3B) 2.083(5) Pd(1B)-N(4B) 2.101(6) Pd(1B)-P(1B) 2.195(2) P(1B)-C(1B) 1.820(8) P(1B)-C(3B) 1.832(8) P(1B)-C(2B) 1.836(8) N(1B)-C(4B) 1.434(10) N(1B)-C(3B) 1.454(10) N(1B)-C(5B) 1.485(10) N(2B)-C(6B) 1.367(10) N(2B)-C(4B) 1.468(10) N(2B)-C(1B) 1.477(10) N(3B)-C(7B) 1.378(10)

N(3B)-C(5B) 1.454(10) N(3B)-C(2B) 1.466(10) N(4B)-C(11B) 1.303(10) N(4B)-C(18B) 1.440(10) O(1B)-C(6B) 1.225(10) O(2B)-C(7B) 1.213(10) O(3B)-C(17B) 1.277(9) Cl(1B)-C(14B) 1.744(9) Cl(2B)-C(16B) 1.737(8) C(6B)-C(8B) 1.499(12) C(7B)-C(9B) 1.493(12) C(11B)-C(12B) 1.436(11) C(12B)-C(13B) 1.413(11) C(12B)-C(17B) 1.428(11) C(13B)-C(14B) 1.361(12) C(14B)-C(15B) 1.370(13) C(15B)-C(16B) 1.375(11) C(16B)-C(17B) 1.430(11) C(18B)-C(19B) 1.370(11) C(18B)-C(23B) 1.401(12) C(19B)-C(20B) 1.381(12) C(19B)-C(27B) 1.521(12) C(20B)-C(21B) 1.394(13) C(21B)-C(22B) 1.336(13) C(22B)-C(23B) 1.381(13) C(23B)-C(24B) 1.626(18) C(24B)-C(26B) 1.45(2) C(24B)-C(25B) 1.53(2) C(27B)-C(28B) 1.519(12) C(27B)-C(29B) 1.536(12) C(1S)-Cl(2') 1.662(17) C(1S)-Cl(1S) 1.869(15) C(2S)-Cl(3S) 1.614(13) C(2S)-Cl(4S) 1.972(15) Cl(2')-Cl(2S) 1.54(3) Cl(1S)-Cl(2S) 1.84(2) C(10A)-Pd(1A)-O(3A) 175.3(3) C(10A)-Pd(1A)-N(4A) 93.7(3) O(3A)-Pd(1A)-N(4A) 90.9(2) C(10A)-Pd(1A)-P(1A) 88.4(3) O(3A)-Pd(1A)-P(1A) 86.94(16) N(4A)-Pd(1A)-P(1A) 177.86(17) C(2A)-P(1A)-C(1A) 102.1(6)

210

C(2A)-P(1A)-C(3A) 98.7(5) C(1A)-P(1A)-C(3A) 99.1(5) C(2A)-P(1A)-Pd(1A) 116.0(4) C(1A)-P(1A)-Pd(1A) 111.8(4) C(3A)-P(1A)-Pd(1A) 125.6(3) C(5A)-N(1A)-C(3A) 113.6(11) C(5A)-N(1A)-C(4A) 114.8(11) C(3A)-N(1A)-C(4A) 113.0(12) C(6A)-N(2A)-C(4A) 118.8(8) C(6A)-N(2A)-C(1A) 124.8(8) C(4A)-N(2A)-C(1A) 116.3(8) C(7A)-N(3A)-C(2A) 120.4(10) C(7A)-N(3A)-C(5A) 124.8(10) C(2A)-N(3A)-C(5A) 113.6(10) C(11A)-N(4A)-C(18A) 113.7(6) C(11A)-N(4A)-Pd(1A) 122.5(5) C(18A)-N(4A)-Pd(1A) 123.7(5) C(17A)-O(3A)-Pd(1A) 126.3(5) N(2A)-C(1A)-P(1A) 115.3(8) N(3A)-C(2A)-P(1A) 118.2(9) N(1A)-C(3A)-P(1A) 109.0(6) N(2A)-C(4A)-N(1A) 113.6(9) N(1A)-C(5A)-N(3A) 117.4(11) O(1A)-C(6A)-N(2A) 121.9(8) O(1A)-C(6A)-C(8A) 120.9(9) N(2A)-C(6A)-C(8A) 117.2(8) O(2A)-C(7A)-N(3A) 118.5(11) O(2A)-C(7A)-C(9A) 121.7(11) N(3A)-C(7A)-C(9A) 119.8(11) N(4A)-C(11A)-C(12A) 129.0(7) C(13A)-C(12A)-C(17A) 120.4(7) C(13A)-C(12A)-C(11A) 114.9(7) C(17A)-C(12A)-C(11A) 124.6(7) C(14A)-C(13A)-C(12A) 121.4(7) C(13A)-C(14A)-C(15A) 121.2(7) C(13A)-C(14A)-Cl(1A) 121.0(7) C(15A)-C(14A)-Cl(1A) 117.8(7) C(14A)-C(15A)-C(16A) 118.8(8) C(15A)-C(16A)-C(17A) 123.0(7) C(15A)-C(16A)-Cl(2A) 119.2(6) C(17A)-C(16A)-Cl(2A) 117.8(6) O(3A)-C(17A)-C(12A) 125.8(7) O(3A)-C(17A)-C(16A) 119.0(7) C(12A)-C(17A)-C(16A) 115.2(7)

C(19A)-C(18A)-C(23A) 122.4(7) C(19A)-C(18A)-N(4A) 118.9(7) C(23A)-C(18A)-N(4A) 118.7(7) C(18A)-C(19A)-C(20A) 117.6(8) C(18A)-C(19A)-C(27A) 121.8(7) C(20A)-C(19A)-C(27A) 120.5(7) C(19A)-C(20A)-C(21A) 120.5(8) C(22A)-C(21A)-C(20A) 120.5(8) C(21A)-C(22A)-C(23A) 121.3(8) C(22A)-C(23A)-C(18A) 117.6(8) C(22A)-C(23A)-C(24A) 120.7(8) C(18A)-C(23A)-C(24A) 121.6(7) C(25A)-C(24A)-C(23A) 111.8(8) C(25A)-C(24A)-C(26A) 109.6(10) C(23A)-C(24A)-C(26A) 109.9(9) C(28A)-C(27A)-C(29A) 107.0(13) C(28A)-C(27A)-C(19A) 111.4(8) C(29A)-C(27A)-C(19A) 113.8(9) C(10B)-Pd(1B)-O(3B) 175.5(3) C(10B)-Pd(1B)-N(4B) 93.5(3) O(3B)-Pd(1B)-N(4B) 89.5(2) C(10B)-Pd(1B)-P(1B) 86.4(2) O(3B)-Pd(1B)-P(1B) 91.01(15) N(4B)-Pd(1B)-P(1B) 174.26(18) C(1B)-P(1B)-C(3B) 99.2(4) C(1B)-P(1B)-C(2B) 105.2(4) C(3B)-P(1B)-C(2B) 99.5(4) C(1B)-P(1B)-Pd(1B) 112.4(3) C(3B)-P(1B)-Pd(1B) 123.6(3) C(2B)-P(1B)-Pd(1B) 114.4(3) C(4B)-N(1B)-C(3B) 113.3(6) C(4B)-N(1B)-C(5B) 115.6(7) C(3B)-N(1B)-C(5B) 112.7(7) C(6B)-N(2B)-C(4B) 120.6(6) C(6B)-N(2B)-C(1B) 124.4(7) C(4B)-N(2B)-C(1B) 115.0(6) C(7B)-N(3B)-C(5B) 125.1(7) C(7B)-N(3B)-C(2B) 118.1(7) C(5B)-N(3B)-C(2B) 116.7(6) C(11B)-N(4B)-C(18B) 115.5(7) C(11B)-N(4B)-Pd(1B) 122.4(5) C(18B)-N(4B)-Pd(1B) 121.9(5) C(17B)-O(3B)-Pd(1B) 125.9(5) N(2B)-C(1B)-P(1B) 113.2(5)

211

N(3B)-C(2B)-P(1B) 114.1(5) N(1B)-C(3B)-P(1B) 108.1(5) N(1B)-C(4B)-N(2B) 115.0(7) N(3B)-C(5B)-N(1B) 114.5(6) O(1B)-C(6B)-N(2B) 120.9(8) O(1B)-C(6B)-C(8B) 121.2(8) N(2B)-C(6B)-C(8B) 117.8(7) O(2B)-C(7B)-N(3B) 120.8(8) O(2B)-C(7B)-C(9B) 122.2(8) N(3B)-C(7B)-C(9B) 117.0(8) N(4B)-C(11B)-C(12B) 128.4(8) C(13B)-C(12B)-C(17B) 120.3(8) C(13B)-C(12B)-C(11B) 115.1(7) C(17B)-C(12B)-C(11B) 124.6(7) C(14B)-C(13B)-C(12B) 121.1(8) C(13B)-C(14B)-C(15B) 120.6(8) C(13B)-C(14B)-Cl(1B) 119.6(7) C(15B)-C(14B)-Cl(1B) 119.8(7) C(14B)-C(15B)-C(16B) 119.9(8) C(15B)-C(16B)-C(17B) 123.1(8) C(15B)-C(16B)-Cl(2B) 119.5(7) C(17B)-C(16B)-Cl(2B) 117.4(6) O(3B)-C(17B)-C(16B) 120.1(7) O(3B)-C(17B)-C(12B) 124.8(7)

C(16B)-C(17B)-C(12B) 115.1(7) C(19B)-C(18B)-C(23B) 122.0(8) C(19B)-C(18B)-N(4B) 119.5(7) C(23B)-C(18B)-N(4B) 118.5(8) C(18B)-C(19B)-C(20B) 118.3(8) C(18B)-C(19B)-C(27B) 121.4(8) C(20B)-C(19B)-C(27B) 120.3(8) C(19B)-C(20B)-C(21B) 120.2(8) C(22B)-C(21B)-C(20B) 120.3(9) C(21B)-C(22B)-C(23B) 121.8(10) C(22B)-C(23B)-C(18B) 117.3(9) C(22B)-C(23B)-C(24B) 123.4(9) C(18B)-C(23B)-C(24B) 118.7(8) C(26B)-C(24B)-C(25B) 105.2(12) C(26B)-C(24B)-C(23B) 114.1(13) C(25B)-C(24B)-C(23B) 101.6(15) C(19B)-C(27B)-C(28B) 113.9(8) C(19B)-C(27B)-C(29B) 110.1(7) C(28B)-C(27B)-C(29B) 111.6(7) Cl(2')-C(1S)-Cl(1S) 111.9(8) Cl(3S)-C(2S)-Cl(4S) 116.0(7) Cl(2S)-Cl(2')-C(1S) 9.1(15) Cl(2S)-Cl(1S)-C(1S) 8.7(14) Cl(2')-Cl(2S)-Cl(1S) 119.8(17)

_______________________________________________________________________

212

APPENDIX B

BOND DISTANCES AND ANGLES CORRESPONDING TO SOLID STATE

STRUCTURES IN CHAPTER III*

Table B.1. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 1. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ P(1) 641(7) 6455(4) 1650(6) 63(2) N(1) 4760(15) 5516(12) 1682(15) 35(3) N(2) 1863(14) 3906(10) 1361(12) 24(2) N(3) 3417(15) 5398(9) 4232(13) 22(2) O(1) -413(14) 2576(9) 2500(11) 37(3) O(2) 5008(15) 3792(9) 5817(12) 49(3) C(1) 60(20) 4886(14) 1030(20) 45(4) C(2) 1640(20) 6324(13) 3663(15) 35(4) C(3) 3230(19) 6584(14) 1112(17) 41(4) C(4) 3931(19) 4314(14) 1008(16) 36(4) C(5) 5339(17) 5575(15) 3354(18) 33(4) C(6) 1380(20) 2813(14) 2143(18) 38(4) C(7) 3390(20) 4526(12) 5457(19) 36(4) C(8) 3200(20) 1811(14) 2320(20) 52(5) C(9) 1409(19) 4418(15) 6227(18) 44(4) _______________________________________________________________________ _______________ * Appear in the order in which they are described in the chapter.

213

Table B.2. Bond lengths [Å] and angles [°] for 1. _______________________________________________________________________ P(1)-C(2) 1.707(14) P(1)-C(1) 1.736(15) P(1)-C(3) 1.742(14) N(1)-C(5) 1.393(18) N(1)-C(4) 1.435(18) N(1)-C(3) 1.489(17) N(2)-C(6) 1.373(18) N(2)-C(4) 1.426(16) N(2)-C(1) 1.504(17) N(3)-C(7) 1.377(18) N(3)-C(2) 1.484(16) N(3)-C(5) 1.512(15) O(1)-C(6) 1.224(15) O(2)-C(7) 1.258(14) C(6)-C(8) 1.524(19) C(7)-C(9) 1.483(19) C(2)-P(1)-C(1) 104.0(7) C(2)-P(1)-C(3) 93.9(6) C(1)-P(1)-C(3) 98.5(7)

C(5)-N(1)-C(4) 116.9(12) C(5)-N(1)-C(3) 109.6(11) C(4)-N(1)-C(3) 111.1(9) C(6)-N(2)-C(4) 128.3(11) C(6)-N(2)-C(1) 116.0(10) C(4)-N(2)-C(1) 115.0(11) C(7)-N(3)-C(2) 124.7(11) C(7)-N(3)-C(5) 123.7(10) C(2)-N(3)-C(5) 111.4(10) N(2)-C(1)-P(1) 118.5(9) N(3)-C(2)-P(1) 119.9(10) N(1)-C(3)-P(1) 115.0(10) N(2)-C(4)-N(1) 116.9(11) N(1)-C(5)-N(3) 113.3(10) O(1)-C(6)-N(2) 124.3(12) O(1)-C(6)-C(8) 121.5(13) N(2)-C(6)-C(8) 113.6(13) O(2)-C(7)-N(3) 118.2(13) O(2)-C(7)-C(9) 122.2(15) N(3)-C(7)-C(9) 119.5(11)

_______________________________________________________________________ Table B.3. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 5. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ W(1) 668(1) 2399(1) 1812(1) 27(1) P(1) 2700(3) 1515(2) 2379(2) 26(1) N(1) 4880(8) 805(6) 4005(7) 27(2) N(2) 5108(8) 1922(7) 2582(7) 29(2) N(3) 4001(8) -189(6) 2216(7) 30(2) O(1) 5264(7) 2267(6) 996(6) 31(2) O(2) 5653(7) -508(6) 1883(6) 37(2) O(3) -1804(7) 3692(6) 1218(7) 44(2) O(4) 1544(9) 4245(7) 712(8) 56(2) O(5) -514(9) 1317(8) -589(9) 72(3) O(6) 1872(8) 3421(7) 4238(8) 53(2) O(7) -268(9) 522(7) 2800(9) 68(3)

214

C(1) 3819(10) 2273(8) 2081(9) 27(3) C(2) 2735(10) 197(8) 1849(9) 29(3) C(3) 3689(10) 1214(9) 3873(9) 33(3) C(4) 5647(9) 1554(7) 3799(8) 24(2) C(5) 4737(11) -190(8) 3446(9) 32(3) C(6) 5761(10) 1993(8) 1980(9) 28(3) C(7) 4526(11) -390(8) 1522(9) 29(3) C(8) 7142(10) 1706(9) 2567(10) 39(3) C(9) 3689(11) -488(9) 271(9) 39(3) C(10) -939(12) 3209(9) 1417(10) 37(3) C(11) 1240(10) 3580(9) 1113(10) 36(3) C(12) -79(11) 1711(10) 306(11) 43(3) C(13) 1436(11) 3080(10) 3352(11) 36(3) C(14) 75(10) 1187(10) 2436(11) 40(3) _______________________________________________________________________ Table B.4. Bond lengths [Å] and angles [°] for 5. _______________________________________________________________________ W(1)-C(12) 1.999(13) W(1)-C(13) 2.032(13) W(1)-C(14) 2.040(13) W(1)-C(10) 2.049(14) W(1)-C(11) 2.053(13) W(1)-P(1) 2.492(3) P(1)-C(1) 1.840(11) P(1)-C(3) 1.845(11) P(1)-C(2) 1.849(10) N(1)-C(4) 1.442(12) N(1)-C(5) 1.455(13) N(1)-C(3) 1.460(13) N(2)-C(6) 1.344(13) N(2)-C(1) 1.462(13) N(2)-C(4) 1.524(13) N(3)-C(7) 1.348(13) N(3)-C(2) 1.464(13) N(3)-C(5) 1.472(14) O(1)-C(6) 1.224(13) O(2)-C(7) 1.230(12) O(3)-C(10) 1.138(13) O(4)-C(11) 1.150(13) O(5)-C(12) 1.180(14) O(6)-C(13) 1.142(14) O(7)-C(14) 1.146(14)

C(6)-C(8) 1.535(15) C(7)-C(9) 1.519(15) C(12)-W(1)-C(13) 179.2(5) C(12)-W(1)-C(14) 88.8(5) C(13)-W(1)-C(14) 90.6(5) C(12)-W(1)-C(10) 90.8(5) C(13)-W(1)-C(10) 89.8(5) C(14)-W(1)-C(10) 92.2(4) C(12)-W(1)-C(11) 88.5(5) C(13)-W(1)-C(11) 92.1(5) C(14)-W(1)-C(11) 177.3(5) C(10)-W(1)-C(11) 88.3(4) C(12)-W(1)-P(1) 92.7(4) C(13)-W(1)-P(1) 86.8(3) C(14)-W(1)-P(1) 89.7(3) C(10)-W(1)-P(1) 176.1(3) C(11)-W(1)-P(1) 90.0(3) C(1)-P(1)-C(3) 99.0(5) C(1)-P(1)-C(2) 105.6(5) C(3)-P(1)-C(2) 95.8(5) C(1)-P(1)-W(1) 113.6(3) C(3)-P(1)-W(1) 120.2(4) C(2)-P(1)-W(1) 119.3(4) C(4)-N(1)-C(5) 116.1(8)

215

C(4)-N(1)-C(3) 114.0(8) C(5)-N(1)-C(3) 111.6(9) C(6)-N(2)-C(1) 119.1(9) C(6)-N(2)-C(4) 124.1(9) C(1)-N(2)-C(4) 116.7(8) C(7)-N(3)-C(2) 124.5(9) C(7)-N(3)-C(5) 121.4(9) C(2)-N(3)-C(5) 113.4(8) N(2)-C(1)-P(1) 117.6(7) N(3)-C(2)-P(1) 112.4(7) N(1)-C(3)-P(1) 109.8(7) N(1)-C(4)-N(2) 113.6(8)

N(1)-C(5)-N(3) 116.2(9) O(1)-C(6)-N(2) 120.9(10) O(1)-C(6)-C(8) 121.4(10) N(2)-C(6)-C(8) 117.7(9) O(2)-C(7)-N(3) 121.5(10) O(2)-C(7)-C(9) 120.0(10) N(3)-C(7)-C(9) 118.5(10) O(3)-C(10)-W(1) 177.2(10) O(4)-C(11)-W(1) 179.0(11) O(5)-C(12)-W(1) 179.1(12) O(6)-C(13)-W(1) 177.1(11) O(7)-C(14)-W(1) 178.4(11)

_______________________________________________________________________ Table B.5. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 6. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Cr(1) 11260(1) 7861(1) 3347(1) 23(1) P(1) 9714(1) 8875(1) 3583(1) 21(1) N(1) 7598(2) 9455(2) 3296(1) 26(1) N(2) 8958(2) 10792(2) 3469(1) 27(1) N(3) 8018(2) 9472(2) 4372(1) 24(1) O(1) 7906(2) 11937(2) 3928(1) 38(1) O(2) 8554(2) 10014(2) 5280(1) 35(1) O(3) 13285(2) 6743(2) 2908(1) 37(1) O(4) 12839(2) 9616(2) 3398(1) 42(1) O(5) 11812(3) 7330(2) 4632(1) 65(1) O(6) 10521(2) 8196(2) 2066(1) 43(1) O(7) 9847(2) 6005(2) 3323(1) 61(1) C(1) 9968(3) 10183(2) 3420(1) 26(1) C(2) 9049(2) 8877(2) 4325(1) 24(1) C(3) 8424(2) 8707(2) 3140(1) 26(1) C(4) 7970(3) 10430(2) 3136(1) 31(1) C(5) 7160(2) 9347(2) 3895(1) 27(1) C(6) 8836(3) 11549(2) 3856(1) 28(1) C(7) 7836(3) 9974(2) 4886(1) 27(1) C(8) 9867(3) 11908(2) 4181(1) 34(1) C(9) 6708(3) 10477(3) 4964(2) 41(1) C(10) 12506(3) 7149(2) 3086(1) 26(1)

216

C(11) 12230(3) 8975(2) 3380(1) 28(1) C(12) 11601(3) 7559(2) 4156(2) 36(1) C(13) 10824(3) 8093(2) 2543(2) 29(1) C(14) 10345(3) 6719(2) 3335(2) 36(1) _______________________________________________________________________ Table B.6. Bond lengths [Å] and angles [°] for 6. _______________________________________________________________________ Cr(1)-C(10) 1.863(4) Cr(1)-C(12) 1.902(4) Cr(1)-C(13) 1.902(4) Cr(1)-C(14) 1.903(4) Cr(1)-C(11) 1.910(4) Cr(1)-P(1) 2.3562(19) P(1)-C(2) 1.839(3) P(1)-C(3) 1.836(3) P(1)-C(1) 1.853(3) N(1)-C(4) 1.451(4) N(1)-C(3) 1.458(4) N(1)-C(5) 1.447(4) N(2)-C(6) 1.359(4) N(2)-C(1) 1.462(4) N(2)-C(4) 1.473(4) N(3)-C(7) 1.359(4) N(3)-C(2) 1.471(4) N(3)-C(5) 1.484(4) O(1)-C(6) 1.233(4) O(2)-C(7) 1.227(4) O(3)-C(10) 1.148(4) O(4)-C(11) 1.136(4) O(5)-C(12) 1.140(4) O(6)-C(13) 1.136(4) O(7)-C(14) 1.141(4) C(6)-C(8) 1.504(5) C(7)-C(9) 1.512(5) C(10)-Cr(1)-C(12) 91.00(14) C(10)-Cr(1)-C(13) 90.22(14) C(12)-Cr(1)-C(13) 175.55(14) C(10)-Cr(1)-C(14) 90.89(15) C(12)-Cr(1)-C(14) 87.43(15) C(13)-Cr(1)-C(14) 88.26(14) C(10)-Cr(1)-C(11) 87.37(15)

C(12)-Cr(1)-C(11) 90.53(14) C(13)-Cr(1)-C(11) 93.81(13) C(14)-Cr(1)-C(11) 177.30(14) C(10)-Cr(1)-P(1) 173.55(10) C(12)-Cr(1)-P(1) 94.56(11) C(13)-Cr(1)-P(1) 84.48(10) C(14)-Cr(1)-P(1) 92.62(13) C(11)-Cr(1)-P(1) 89.31(12) C(2)-P(1)-C(3) 97.62(15) C(2)-P(1)-C(1) 104.26(14) C(3)-P(1)-C(1) 98.58(14) C(2)-P(1)-Cr(1) 122.43(10) C(3)-P(1)-Cr(1) 116.78(11) C(1)-P(1)-Cr(1) 113.53(11) C(4)-N(1)-C(3) 112.6(2) C(4)-N(1)-C(5) 115.5(2) C(3)-N(1)-C(5) 113.0(2) C(6)-N(2)-C(1) 124.7(3) C(6)-N(2)-C(4) 119.7(3) C(1)-N(2)-C(4) 114.8(2) C(7)-N(3)-C(2) 118.2(2) C(7)-N(3)-C(5) 124.1(2) C(2)-N(3)-C(5) 116.9(2) N(2)-C(1)-P(1) 113.8(2) N(3)-C(2)-P(1) 114.93(19) N(1)-C(3)-P(1) 109.9(2) N(1)-C(4)-N(2) 115.2(2) N(1)-C(5)-N(3) 114.3(2) O(1)-C(6)-N(2) 120.6(3) O(1)-C(6)-C(8) 121.3(3) N(2)-C(6)-C(8) 118.2(3) O(2)-C(7)-N(3) 121.5(3) O(2)-C(7)-C(9) 120.5(3) N(3)-C(7)-C(9) 117.9(3) O(3)-C(10)-Cr(1) 177.0(3)

217

O(4)-C(11)-Cr(1) 177.6(3) O(5)-C(12)-Cr(1) 176.6(3)

O(6)-C(13)-Cr(1) 176.4(3) O(7)-C(14)-Cr(1) 176.4(3)

_______________________________________________________________________ Table B.7. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ P(1) 10249(1) 1860(1) 4656(1) 21(1) N(1) 11830(2) 1485(2) 3711(1) 24(1) N(2) 11196(3) 3603(2) 3914(1) 23(1) N(3) 8975(3) 1677(2) 3573(1) 25(1) O(1) 9213(3) 4934(2) 3871(1) 45(1) O(2) 8275(2) 2156(2) 2674(1) 35(1) O(3) 9878(2) 1621(2) 5265(1) 28(1) C(1) 10870(3) 3397(2) 4520(1) 26(1) C(2) 8604(3) 1554(3) 4177(1) 29(1) C(3) 11789(3) 1038(2) 4305(1) 26(1) C(4) 12311(3) 2737(2) 3665(1) 25(1) C(5) 10467(3) 1141(2) 3379(1) 26(1) C(6) 10264(3) 4390(2) 3622(1) 29(1) C(7) 7953(3) 2141(2) 3186(1) 25(1) C(8) 10561(4) 4584(3) 3000(1) 36(1) C(9) 6441(3) 2665(3) 3400(1) 33(1) _______________________________________________________________________ Table B.8. Bond lengths [Å] and angles [°] for 2. _______________________________________________________________________ P(1)-O(3) 1.492(3) P(1)-C(3) 1.797(3) P(1)-C(1) 1.816(3) P(1)-C(2) 1.827(3) N(1)-C(5) 1.448(4) N(1)-C(4) 1.456(4) N(1)-C(3) 1.483(4) N(2)-C(6) 1.365(4) N(2)-C(1) 1.471(4) N(2)-C(4) 1.474(4) N(3)-C(7) 1.360(4) N(3)-C(2) 1.461(4)

N(3)-C(5) 1.475(4) O(1)-C(6) 1.227(4) O(2)-C(7) 1.236(4) C(6)-C(8) 1.500(5) C(7)-C(9) 1.499(4) O(3)-P(1)-C(3) 120.30(13) O(3)-P(1)-C(1) 113.43(13) C(3)-P(1)-C(1) 100.76(15) O(3)-P(1)-C(2) 113.33(14) C(3)-P(1)-C(2) 100.42(16) C(1)-P(1)-C(2) 106.84(14)

218

C(5)-N(1)-C(4) 115.9(2) C(5)-N(1)-C(3) 113.6(2) C(4)-N(1)-C(3) 113.4(2) C(6)-N(2)-C(1) 118.5(2) C(6)-N(2)-C(4) 126.4(2) C(1)-N(2)-C(4) 113.9(2) C(7)-N(3)-C(2) 123.3(2) C(7)-N(3)-C(5) 119.7(2) C(2)-N(3)-C(5) 116.6(2) N(2)-C(1)-P(1) 111.80(18)

N(3)-C(2)-P(1) 114.57(19) N(1)-C(3)-P(1) 106.19(18) N(1)-C(4)-N(2) 114.5(2) N(1)-C(5)-N(3) 114.5(2) O(1)-C(6)-N(2) 120.0(3) O(1)-C(6)-C(8) 121.1(3) N(2)-C(6)-C(8) 119.0(3) O(2)-C(7)-N(3) 121.1(3) O(2)-C(7)-C(9) 120.8(3) N(3)-C(7)-C(9) 118.1(3)

_______________________________________________________________________

219

APPENDIX C

BOND DISTANCES AND ANGLES CORRESPONDING TO SOLID STATE

STRUCTURES IN CHAPTER IV*

Table C.1. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 2.THF. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Cr(1) 2131(1) 5447(1) 892(1) 20(1) N(1) 1196(3) 5251(2) -324(4) 21(1) N(2) 1790(3) 6159(2) 364(4) 23(1) O(1) 2416(3) 4740(2) 1185(4) 25(1) O(2) 3034(3) 5701(2) 1930(4) 23(1) O(3) 2916(3) 5449(2) -397(4) 25(1) Br(1) 1205(1) 5512(1) 2334(1) 42(1) C(1) 768(4) 5686(2) -869(6) 24(2) C(2) 979(4) 4788(2) -574(6) 24(2) C(3) 1368(4) 4328(2) -126(6) 23(2) C(4) 2072(4) 4320(2) 733(6) 25(2) C(5) 2407(4) 3832(2) 1100(6) 24(2) C(6) 2055(4) 3411(2) 588(6) 23(2) C(7) 1362(4) 3404(3) -290(6) 28(2) C(8) 1039(4) 3860(2) -597(6) 26(2) C(9) 1057(5) 2899(3) -864(6) 30(2) C(10) 251(5) 2974(3) -1667(7) 37(2) C(11) 900(5) 2496(2) 39(7) 35(2) C(12) 1714(5) 2692(3) -1536(7) 47(2) C(13) 3135(4) 3808(2) 2093(6) 30(2) C(14) 2875(5) 4038(3) 3187(6) 37(2) C(15) 3882(4) 4084(3) 1756(7) 37(2) C(16) 3401(5) 3248(3) 2373(7) 41(2) C(17) 1088(4) 6165(2) -521(5) 21(2) _______________ * Appear in the order in which they are described in the chapter.

220

C(18) 2131(4) 6567(2) 823(5) 20(2) C(19) 2800(4) 6603(2) 1732(6) 22(2) C(20) 3216(4) 6168(2) 2298(6) 24(2) C(21) 3824(4) 6257(2) 3261(5) 21(2) C(22) 4035(4) 6755(2) 3563(6) 26(2) C(23) 3680(4) 7189(2) 2993(6) 25(2) C(24) 3057(4) 7098(2) 2086(6) 24(2) C(25) 3928(4) 7737(2) 3347(6) 28(2) C(26) 4161(5) 8028(3) 2310(6) 35(2) C(27) 3206(5) 8001(3) 3783(7) 47(2) C(28) 4662(6) 7748(3) 4299(7) 48(2) C(29) 4244(4) 5800(3) 3964(6) 29(2) C(30) 4849(5) 5973(3) 4989(6) 38(2) C(31) 3588(5) 5479(3) 4437(6) 36(2) C(32) 4721(5) 5476(3) 3179(6) 31(2) C(33) 726(4) 6604(2) -1010(6) 25(2) C(34) 42(4) 6565(3) -1829(6) 28(2) C(35) -277(4) 6097(3) -2182(6) 28(2) C(36) 95(4) 5657(3) -1703(6) 27(2) C(37) 2692(6) 5361(5) -1589(8) 77(3) C(38) 3470(5) 5392(3) -2111(7) 46(2) C(39) 4118(5) 5285(4) -1140(7) 63(3) C(40) 3792(5) 5407(4) -139(8) 64(3) C(1S) 4048(10) 3159(5) 7794(15) 113(5) C(2S) 3782(15) 3202(6) 6748(13) 145(8) C(3S) 3064(11) 3475(11) 6556(18) 170(10) C(4S) 3133(9) 3838(6) 7550(20) 145(8) C(5S) 884(8) 4284(6) 6400(11) 103(4) C(6S) 1006(11) 4145(5) 5213(11) 123(6) C(7S) 1490(16) 4603(5) 4921(14) 186(12) C(8S) 1420(12) 4970(5) 5659(12) 135(7) C(9S) 1626(6) 6420(3) 6007(8) 51(2) C(10S) 1800(13) 6399(5) 4833(10) 154(8) C(11S) 1642(6) 6874(3) 4273(7) 59(3) C(12S) 1494(4) 7225(2) 5123(5) 14(1) O(1S) 3796(10) 3600(6) 8517(11) 193(6) O(2S) 1300(12) 4719(6) 6681(9) 205(7) O(3S) 1241(5) 6952(3) 6040(9) 109(3) _______________________________________________________________________

221

Table C.2. Bond lengths [Å] and angles [°] for 2.THF. _______________________________________________________________________ Cr(1)-O(2) 1.898(4) Cr(1)-O(1) 1.927(4) Cr(1)-N(1) 2.006(5) Cr(1)-N(2) 2.019(5) Cr(1)-O(3) 2.117(5) Cr(1)-Br(1) 2.4320(16) N(1)-C(2) 1.284(8) N(1)-C(1) 1.439(8) N(2)-C(18) 1.286(8) N(2)-C(17) 1.436(8) O(1)-C(4) 1.314(8) O(2)-C(20) 1.317(7) O(3)-C(37) 1.413(10) O(3)-C(40) 1.429(10) C(1)-C(36) 1.368(9) C(1)-C(17) 1.398(9) C(2)-C(3) 1.427(9) C(3)-C(8) 1.418(9) C(3)-C(4) 1.421(9) C(4)-C(5) 1.431(9) C(5)-C(6) 1.345(9) C(5)-C(13) 1.546(9) C(6)-C(7) 1.422(9) C(7)-C(8) 1.335(9) C(7)-C(9) 1.534(9) C(9)-C(11) 1.542(10) C(9)-C(12) 1.521(10) C(9)-C(10) 1.522(10) C(13)-C(15) 1.522(10) C(13)-C(14) 1.531(10) C(13)-C(16) 1.551(9) C(17)-C(33) 1.381(9) C(18)-C(19) 1.420(9) C(19)-C(20) 1.440(9) C(19)-C(24) 1.407(9) C(20)-C(21) 1.416(9) C(21)-C(22) 1.382(9) C(21)-C(29) 1.556(9) C(22)-C(23) 1.401(9) C(23)-C(24) 1.386(9) C(23)-C(25) 1.532(9) C(25)-C(28) 1.521(10)

C(25)-C(27) 1.520(11) C(25)-C(26) 1.528(10) C(29)-C(31) 1.528(10) C(29)-C(30) 1.515(9) C(29)-C(32) 1.543(10) C(33)-C(34) 1.372(9) C(34)-C(35) 1.373(9) C(35)-C(36) 1.385(9) C(37)-C(38) 1.492(12) C(38)-C(39) 1.470(12) C(39)-C(40) 1.393(12) C(1S)-C(2S) 1.247(16) C(1S)-O(1S) 1.523(17) C(2S)-C(3S) 1.37(2) C(3S)-C(4S) 1.50(2) C(4S)-O(1S) 1.58(2) C(5S)-O(2S) 1.343(16) C(5S)-C(6S) 1.479(17) C(6S)-C(7S) 1.503(19) C(7S)-C(8S) 1.308(17) C(8S)-O(2S) 1.405(15) C(9S)-C(10S) 1.445(15) C(9S)-O(3S) 1.530(10) C(10S)-C(11S) 1.414(14) C(11S)-C(12S) 1.401(10) C(12S)-O(3S) 1.401(11) O(2)-Cr(1)-O(1) 94.25(18) O(2)-Cr(1)-N(1) 173.2(2) O(1)-Cr(1)-N(1) 91.3(2) O(2)-Cr(1)-N(2) 91.7(2) O(1)-Cr(1)-N(2) 172.4(2) N(1)-Cr(1)-N(2) 82.4(2) O(2)-Cr(1)-O(3) 87.69(19) O(1)-Cr(1)-O(3) 88.47(19) N(1)-Cr(1)-O(3) 88.5(2) N(2)-Cr(1)-O(3) 87.1(2) O(2)-Cr(1)-Br(1) 92.06(15) O(1)-Cr(1)-Br(1) 95.88(15) N(1)-Cr(1)-Br(1) 91.31(16) N(2)-Cr(1)-Br(1) 88.59(16) O(3)-Cr(1)-Br(1) 175.65(13)

222

C(2)-N(1)-C(1) 122.9(6) C(2)-N(1)-Cr(1) 124.2(5) C(1)-N(1)-Cr(1) 112.8(4) C(18)-N(2)-C(17) 123.4(5) C(18)-N(2)-Cr(1) 123.6(4) C(17)-N(2)-Cr(1) 112.9(4) C(4)-O(1)-Cr(1) 130.8(4) C(20)-O(2)-Cr(1) 130.9(4) C(37)-O(3)-C(40) 108.0(6) C(37)-O(3)-Cr(1) 127.3(5) C(40)-O(3)-Cr(1) 122.9(5) C(36)-C(1)-C(17) 119.4(6) C(36)-C(1)-N(1) 124.4(6) C(17)-C(1)-N(1) 116.2(6) N(1)-C(2)-C(3) 128.1(6) C(8)-C(3)-C(4) 119.2(6) C(8)-C(3)-C(2) 117.4(6) C(4)-C(3)-C(2) 123.3(6) O(1)-C(4)-C(3) 122.2(6) O(1)-C(4)-C(5) 120.1(6) C(3)-C(4)-C(5) 117.7(6) C(6)-C(5)-C(4) 118.3(6) C(6)-C(5)-C(13) 122.6(6) C(4)-C(5)-C(13) 119.1(6) C(5)-C(6)-C(7) 125.6(6) C(8)-C(7)-C(6) 115.4(6) C(8)-C(7)-C(9) 124.1(6) C(6)-C(7)-C(9) 120.5(6) C(7)-C(8)-C(3) 123.6(6) C(7)-C(9)-C(11) 111.3(6) C(7)-C(9)-C(12) 108.9(6) C(11)-C(9)-C(12) 108.1(6) C(7)-C(9)-C(10) 111.1(6) C(11)-C(9)-C(10) 107.3(6) C(12)-C(9)-C(10) 110.0(6) C(15)-C(13)-C(5) 110.4(6) C(15)-C(13)-C(14) 111.0(6) C(5)-C(13)-C(14) 109.7(6) C(15)-C(13)-C(16) 107.0(6) C(5)-C(13)-C(16) 111.2(6) C(14)-C(13)-C(16) 107.4(6) C(33)-C(17)-C(1) 120.2(6) C(33)-C(17)-N(2) 124.2(6) C(1)-C(17)-N(2) 115.5(5)

N(2)-C(18)-C(19) 127.8(6) C(20)-C(19)-C(24) 119.3(6) C(20)-C(19)-C(18) 123.9(6) C(24)-C(19)-C(18) 116.8(6) O(2)-C(20)-C(21) 121.1(6) O(2)-C(20)-C(19) 120.9(6) C(21)-C(20)-C(19) 118.1(6) C(22)-C(21)-C(20) 118.9(6) C(22)-C(21)-C(29) 120.9(6) C(20)-C(21)-C(29) 120.3(5) C(21)-C(22)-C(23) 124.7(6) C(24)-C(23)-C(22) 116.0(6) C(24)-C(23)-C(25) 120.4(6) C(22)-C(23)-C(25) 123.6(6) C(23)-C(24)-C(19) 122.8(6) C(23)-C(25)-C(28) 111.6(6) C(23)-C(25)-C(27) 109.1(6) C(28)-C(25)-C(27) 108.5(6) C(23)-C(25)-C(26) 109.8(5) C(28)-C(25)-C(26) 108.2(6) C(27)-C(25)-C(26) 109.6(6) C(31)-C(29)-C(30) 106.9(6) C(31)-C(29)-C(32) 110.8(6) C(30)-C(29)-C(32) 107.9(6) C(31)-C(29)-C(21) 109.5(6) C(30)-C(29)-C(21) 112.4(6) C(32)-C(29)-C(21) 109.3(6) C(34)-C(33)-C(17) 119.2(6) C(33)-C(34)-C(35) 121.1(6) C(36)-C(35)-C(34) 119.5(6) C(1)-C(36)-C(35) 120.5(6) O(3)-C(37)-C(38) 106.2(7) C(39)-C(38)-C(37) 103.8(7) C(40)-C(39)-C(38) 106.7(8) C(39)-C(40)-O(3) 109.5(7) C(2S)-C(1S)-O(1S) 113.2(15) C(1S)-C(2S)-C(3S) 112(2) C(2S)-C(3S)-C(4S) 103.6(16) C(3S)-C(4S)-O(1S) 106.0(14) O(2S)-C(5S)-C(6S) 107.9(11) C(5S)-C(6S)-C(7S) 99.4(10) C(8S)-C(7S)-C(6S) 109.7(14) C(7S)-C(8S)-O(2S) 104.9(13) C(10S)-C(9S)-O(3S) 101.3(8)

223

C(9S)-C(10S)-C(11S) 111.1(9) C(12S)-C(11S)-C(10S) 106.5(8) O(3S)-C(12S)-C(11S) 108.1(6)

C(1S)-O(1S)-C(4S) 96.6(12) C(5S)-O(2S)-C(8S) 108.3(11) C(12S)-O(3S)-C(9S) 106.1(7)

_______________________________________________________________________ Table C.3. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 2.CH3CN. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Cr(1) 9291(1) 6999(1) 10077(1) 16(1) N(1) 9326(4) 5998(4) 9520(3) 16(2) N(2) 7986(4) 6711(4) 10030(3) 17(2) N(3) 8907(4) 7484(4) 8994(4) 17(2) O(1) 10520(3) 7210(3) 9985(3) 20(1) O(2) 9110(4) 7965(3) 10565(3) 17(1) Br(1) 9625(1) 6350(1) 11293(1) 49(1) C(1) 8480(5) 5594(5) 9408(4) 18(2) C(2) 10028(6) 5725(5) 9243(4) 20(2) C(3) 10884(5) 6090(5) 9288(4) 18(2) C(4) 11103(6) 6812(5) 9657(4) 20(2) C(5) 11987(5) 7107(4) 9666(4) 15(2) C(6) 12585(5) 6690(5) 9290(4) 20(2) C(7) 12381(6) 5985(5) 8910(4) 20(2) C(8) 11538(5) 5700(5) 8928(4) 18(2) C(9) 13067(6) 5610(5) 8458(5) 24(2) C(10) 12792(6) 4768(5) 8242(5) 33(2) C(11) 14001(6) 5574(5) 8927(5) 30(2) C(12) 13090(7) 6074(6) 7734(5) 38(2) C(13) 12258(5) 7854(4) 10089(5) 19(2) C(14) 11684(6) 8535(5) 9743(5) 27(2) C(15) 12158(6) 7763(5) 10939(5) 29(2) C(16) 13237(6) 8078(5) 10051(5) 30(2) C(17) 7768(5) 5993(4) 9676(4) 15(2) C(18) 7384(6) 7145(5) 10284(4) 21(2) C(19) 7537(6) 7872(4) 10666(4) 18(2) C(20) 8399(6) 8229(4) 10831(4) 18(2) C(21) 8459(5) 8910(5) 11280(4) 18(2) C(22) 7676(5) 9233(5) 11482(5) 23(2) C(23) 6807(6) 8912(5) 11278(5) 25(2) C(24) 6775(6) 8225(5) 10891(5) 25(2)

224

C(25) 5988(6) 9347(5) 11469(6) 35(2) C(26) 6087(7) 9516(7) 12319(6) 52(3) C(27) 5143(7) 8876(6) 11262(7) 48(3) C(28) 5895(7) 10117(6) 11030(7) 49(3) C(29) 9383(5) 9308(5) 11543(5) 20(2) C(30) 9302(6) 9989(5) 12055(5) 25(2) C(31) 9790(6) 9575(5) 10840(5) 24(2) C(32) 10002(6) 8716(5) 11989(5) 25(2) C(33) 6923(6) 5660(5) 9584(4) 22(2) C(34) 6785(6) 4938(5) 9249(5) 21(2) C(35) 7498(6) 4550(5) 8999(4) 22(2) C(36) 8347(6) 4874(5) 9080(4) 19(2) C(37) 8597(7) 7596(6) 8399(7) 46(3) C(38) 8217(7) 7771(6) 7622(5) 38(3) C(1S) 6381(14) 7363(9) 8488(10) 140(9) C(2S) 6060(20) 7920(30) 8658(14) 630(70) C(3S) 2185(8) 6870(6) 2803(5) 35(2) C(4S) 2853(8) 6601(6) 2831(6) 45(3) C(5S) 3787(10) 642(11) 1552(9) 106(6) C(6S) 3124(10) 748(12) 1141(8) 101(6) C(7S) 5023(7) 6582(6) 1239(7) 37(3) C(8S) 4713(9) 6621(7) 1990(6) 63(4) N(1S) 5055(14) 7787(12) 9020(10) 164(7) N(2S) 1303(7) 7241(6) 2760(6) 63(3) N(3S) 2359(10) 577(7) 657(8) 117(5) N(4S) 5247(6) 6551(5) 664(6) 46(2) _______________________________________________________________________ Table C.4. Bond lengths [Å] and angles [°] for 2.CH3CN. _______________________________________________________________________ Cr(1)-O(1) 1.913(5) Cr(1)-O(2) 1.924(5) Cr(1)-N(1) 2.004(6) Cr(1)-N(2) 2.015(7) Cr(1)-N(3) 2.100(7) Cr(1)-Br(1) 2.4191(18) N(1)-C(2) 1.313(10) N(1)-C(1) 1.441(10) N(2)-C(18) 1.305(10) N(2)-C(17) 1.415(10) N(3)-C(37) 1.108(13) O(1)-C(4) 1.313(10) O(2)-C(20) 1.309(9)

C(1)-C(36) 1.382(11) C(1)-C(17) 1.412(11) C(2)-C(3) 1.428(11) C(3)-C(8) 1.415(11) C(3)-C(4) 1.432(11) C(4)-C(5) 1.423(11) C(5)-C(6) 1.393(11) C(5)-C(13) 1.526(11) C(6)-C(7) 1.411(12) C(7)-C(8) 1.366(11) C(7)-C(9) 1.533(11) C(9)-C(12) 1.519(12) C(9)-C(11) 1.531(12)

225

C(9)-C(10) 1.553(12) C(13)-C(16) 1.532(11) C(13)-C(14) 1.541(11) C(13)-C(15) 1.540(11) C(17)-C(33) 1.384(11) C(18)-C(19) 1.435(11) C(19)-C(24) 1.405(12) C(19)-C(20) 1.430(12) C(20)-C(21) 1.422(11) C(21)-C(22) 1.394(11) C(21)-C(29) 1.564(11) C(22)-C(23) 1.421(12) C(23)-C(24) 1.373(12) C(23)-C(25) 1.522(12) C(25)-C(26) 1.521(13) C(25)-C(27) 1.512(13) C(25)-C(28) 1.543(14) C(29)-C(30) 1.506(11) C(29)-C(32) 1.531(11) C(29)-C(31) 1.531(12) C(33)-C(34) 1.390(11) C(34)-C(35) 1.387(12) C(35)-C(36) 1.385(11) C(37)-C(38) 1.447(16) C(1S)-C(2S) 1.135(19) C(2S)-N(1S) 1.74(5) C(3S)-C(4S) 1.102(13) C(3S)-N(2S) 1.466(15) C(5S)-C(6S) 1.166(14) C(6S)-N(3S) 1.369(18) C(7S)-N(4S) 1.116(13) C(7S)-C(8S) 1.469(17) O(1)-Cr(1)-O(2) 93.9(2) O(1)-Cr(1)-N(1) 91.9(2) O(2)-Cr(1)-N(1) 173.3(2) O(1)-Cr(1)-N(2) 172.1(2) O(2)-Cr(1)-N(2) 92.2(2) N(1)-Cr(1)-N(2) 81.7(3) O(1)-Cr(1)-N(3) 89.6(2) O(2)-Cr(1)-N(3) 91.2(2) N(1)-Cr(1)-N(3) 85.5(2) N(2)-Cr(1)-N(3) 85.3(3) O(1)-Cr(1)-Br(1) 94.59(17)

O(2)-Cr(1)-Br(1) 91.91(16) N(1)-Cr(1)-Br(1) 90.92(18) N(2)-Cr(1)-Br(1) 90.18(18) N(3)-Cr(1)-Br(1) 174.62(18) C(2)-N(1)-C(1) 120.8(7) C(2)-N(1)-Cr(1) 125.1(6) C(1)-N(1)-Cr(1) 114.1(5) C(18)-N(2)-C(17) 122.2(7) C(18)-N(2)-Cr(1) 124.0(5) C(17)-N(2)-Cr(1) 113.7(5) C(37)-N(3)-Cr(1) 164.6(8) C(4)-O(1)-Cr(1) 130.4(5) C(20)-O(2)-Cr(1) 129.8(5) C(36)-C(1)-C(17) 120.8(7) C(36)-C(1)-N(1) 124.9(7) C(17)-C(1)-N(1) 114.2(7) N(1)-C(2)-C(3) 125.7(8) C(8)-C(3)-C(4) 119.7(7) C(8)-C(3)-C(2) 116.0(7) C(4)-C(3)-C(2) 124.3(7) O(1)-C(4)-C(3) 122.6(7) O(1)-C(4)-C(5) 119.0(7) C(3)-C(4)-C(5) 118.4(7) C(6)-C(5)-C(4) 118.0(7) C(6)-C(5)-C(13) 122.1(7) C(4)-C(5)-C(13) 119.9(7) C(5)-C(6)-C(7) 124.6(8) C(8)-C(7)-C(6) 116.4(7) C(8)-C(7)-C(9) 123.4(7) C(6)-C(7)-C(9) 120.0(7) C(7)-C(8)-C(3) 122.8(7) C(12)-C(9)-C(11) 110.6(7) C(12)-C(9)-C(7) 108.0(7) C(11)-C(9)-C(7) 111.6(7) C(12)-C(9)-C(10) 109.2(7) C(11)-C(9)-C(10) 106.7(7) C(7)-C(9)-C(10) 110.7(7) C(5)-C(13)-C(16) 112.8(7) C(5)-C(13)-C(14) 111.2(6) C(16)-C(13)-C(14) 106.1(7) C(5)-C(13)-C(15) 109.6(7) C(16)-C(13)-C(15) 107.0(7) C(14)-C(13)-C(15) 110.0(7) C(33)-C(17)-N(2) 125.1(7)

226

C(33)-C(17)-C(1) 118.8(7) N(2)-C(17)-C(1) 116.2(7) N(2)-C(18)-C(19) 126.7(8) C(24)-C(19)-C(20) 120.2(7) C(24)-C(19)-C(18) 115.7(7) C(20)-C(19)-C(18) 124.0(7) O(2)-C(20)-C(21) 120.0(7) O(2)-C(20)-C(19) 122.4(7) C(21)-C(20)-C(19) 117.5(7) C(20)-C(21)-C(22) 119.1(7) C(20)-C(21)-C(29) 121.3(7) C(22)-C(21)-C(29) 119.5(7) C(21)-C(22)-C(23) 123.8(8) C(24)-C(23)-C(22) 115.9(8) C(24)-C(23)-C(25) 124.6(8) C(22)-C(23)-C(25) 119.5(7) C(23)-C(24)-C(19) 123.1(8) C(23)-C(25)-C(26) 110.0(8) C(23)-C(25)-C(27) 110.9(8)

C(26)-C(25)-C(27) 108.0(9) C(23)-C(25)-C(28) 109.8(8) C(26)-C(25)-C(28) 108.6(9) C(27)-C(25)-C(28) 109.5(8) C(30)-C(29)-C(32) 108.1(7) C(30)-C(29)-C(31) 109.0(7) C(32)-C(29)-C(31) 109.9(7) C(30)-C(29)-C(21) 112.6(7) C(32)-C(29)-C(21) 107.9(7) C(31)-C(29)-C(21) 109.3(6) C(34)-C(33)-C(17) 120.5(8) C(33)-C(34)-C(35) 119.8(8) C(34)-C(35)-C(36) 120.7(8) C(1)-C(36)-C(35) 119.3(8) N(3)-C(37)-C(38) 177.5(12) C(1S)-C(2S)-N(1S) 114(5) C(4S)-C(3S)-N(2S) 178.9(12) C(5S)-C(6S)-N(3S) 158(2) N(4S)-C(7S)-C(8S) 179.1(12)

_______________________________________________________________________ Table C.5. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 2.OPBu3. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Cr(1) 6823(1) 174(1) 1443(1) 23(1) N(1) 5800(2) -397(2) 1602(2) 23(1) N(2) 6287(2) 1056(2) 1855(2) 22(1) O(1) 7289(2) -740(2) 1114(1) 28(1) O(2) 7754(2) 814(2) 1312(2) 28(1) O(3) 7283(2) -175(2) 2222(2) 31(1) O(4) 6257(2) 455(2) 683(1) 29(1) P(1) 7354(1) -223(1) 2870(1) 37(1) P(2) 6070(1) 1075(1) 231(1) 28(1) C(1) 5224(3) 94(3) 1865(2) 24(1) C(2) 5662(3) -1135(3) 1475(2) 24(1) C(3) 6220(3) -1669(3) 1230(2) 24(1) C(4) 7013(3) -1459(3) 1078(2) 26(1) C(5) 7529(3) -2064(3) 866(2) 29(1)

227

C(6) 7205(3) -2798(3) 779(2) 31(1) C(7) 6405(3) -3013(3) 891(2) 30(1) C(8) 5937(3) -2442(3) 1124(2) 28(1) C(9) 6094(4) -3845(3) 725(2) 35(1) C(10) 5227(4) -3963(3) 885(3) 44(2) C(11) 6130(4) -3942(4) 60(3) 54(2) C(12) 6634(4) -4469(3) 1033(3) 43(2) C(13) 8409(3) -1877(3) 750(2) 35(1) C(14) 8466(4) -1239(3) 281(2) 40(2) C(15) 8862(4) -1593(4) 1313(3) 43(2) C(16) 8866(4) -2588(4) 528(3) 51(2) C(17) 5501(3) 859(3) 2019(2) 24(1) C(18) 6642(3) 1720(3) 2004(2) 24(1) C(19) 7424(3) 1970(3) 1844(2) 26(1) C(20) 7952(3) 1511(3) 1509(2) 25(1) C(21) 8725(3) 1846(3) 1386(2) 27(1) C(22) 8885(3) 2598(3) 1570(2) 29(1) C(23) 8364(3) 3072(3) 1879(2) 29(1) C(24) 7661(3) 2744(3) 2021(2) 27(1) C(25) 8622(3) 3909(3) 2053(3) 38(2) C(26) 8843(4) 4363(4) 1504(3) 62(2) C(27) 7925(4) 4357(3) 2312(3) 42(2) C(28) 9351(4) 3900(4) 2476(3) 62(2) C(29) 9337(3) 1346(3) 1071(2) 33(1) C(30) 9538(4) 593(4) 1410(3) 48(2) C(31) 10130(3) 1799(4) 1011(3) 45(2) C(32) 8999(4) 1143(4) 458(2) 42(2) C(33) 4439(3) -128(3) 1985(2) 27(1) C(34) 3951(3) 391(3) 2263(2) 27(1) C(35) 4231(3) 1124(3) 2429(2) 25(1) C(36) 4998(3) 1361(3) 2312(2) 24(1) C(37) 7860(4) 621(4) 3190(3) 47(2) C(38) 8682(4) 780(4) 2971(3) 56(2) C(39) 9025(5) 1563(5) 3237(5) 102(3) C(40) 9814(8) 1707(6) 3026(5) 143(5) C(41) 6410(4) -255(3) 3225(3) 42(2) C(42) 5859(4) -970(3) 3127(2) 38(1) C(43) 5070(3) -893(3) 3419(2) 37(1) C(44) 4509(4) -1579(3) 3294(3) 46(2) C(45) 7933(4) -1091(3) 3070(3) 42(2) C(46) 7713(4) -1830(3) 2713(3) 43(2) C(47) 8317(4) -2483(3) 2834(3) 46(2) C(48) 8082(4) -3233(4) 2507(3) 55(2) C(49) 6565(4) 1989(3) 416(2) 36(1)

228

C(50) 6368(4) 2680(3) 20(3) 50(2) C(51) 6902(6) 3379(4) 139(3) 80(3) C(52) 7672(8) 3301(8) 15(7) 200(8) C(53) 6370(3) 764(3) -470(2) 30(1) C(54) 7272(3) 609(3) -495(2) 37(1) C(55) 7509(4) 283(4) -1071(2) 41(2) C(56) 8403(4) 165(4) -1099(3) 55(2) C(57) 5007(3) 1254(3) 118(2) 33(1) C(58) 4560(3) 1556(3) 637(2) 36(1) C(59) 3665(3) 1676(3) 490(2) 33(1) C(60) 3222(4) 2035(4) 979(3) 43(2) Br(1) 6284(1) 2707(1) 3342(1) 37(1) C(1S) 9745(15) 5183(18) 10012(8) 268(14) C(2S) 9199(10) 5486(11) 9557(6) 171(7) C(3S) 8570(30) 5482(13) 9763(13) 520(40) _______________________________________________________________________ Table C.6. Bond lengths [Å] and angles [°] for 2.OPBu3. _______________________________________________________________________ Cr(1)-O(1) 1.910(3) Cr(1)-O(2) 1.925(3) Cr(1)-N(1) 2.004(4) Cr(1)-O(3) 2.005(3) Cr(1)-O(4) 2.003(3) Cr(1)-N(2) 2.008(4) N(1)-C(2) 1.305(6) N(1)-C(1) 1.428(6) N(2)-C(18) 1.309(6) N(2)-C(17) 1.417(6) O(1)-C(4) 1.306(6) O(2)-C(20) 1.304(6) O(3)-P(1) 1.495(4) O(4)-P(2) 1.504(4) P(1)-C(37) 1.801(6) P(1)-C(45) 1.806(6) P(1)-C(41) 1.806(6) P(2)-C(53) 1.796(5) P(2)-C(57) 1.794(6) P(2)-C(49) 1.797(6) C(1)-C(33) 1.396(7) C(1)-C(17) 1.419(7) C(2)-C(3) 1.434(7) C(3)-C(4) 1.424(7)

C(3)-C(8) 1.412(7) C(4)-C(5) 1.439(7) C(5)-C(6) 1.369(7) C(5)-C(13) 1.530(8) C(6)-C(7) 1.412(8) C(7)-C(8) 1.371(7) C(7)-C(9) 1.547(7) C(9)-C(10) 1.516(8) C(9)-C(12) 1.537(8) C(9)-C(11) 1.548(8) C(13)-C(14) 1.538(8) C(13)-C(16) 1.529(8) C(13)-C(15) 1.542(8) C(17)-C(36) 1.392(7) C(18)-C(19) 1.431(7) C(19)-C(20) 1.431(7) C(19)-C(24) 1.425(7) C(20)-C(21) 1.443(7) C(21)-C(22) 1.369(7) C(21)-C(29) 1.535(7) C(22)-C(23) 1.403(7) C(23)-C(24) 1.348(7) C(23)-C(25) 1.534(7) C(25)-C(28) 1.513(9)

229

C(25)-C(27) 1.532(8) C(25)-C(26) 1.544(9) C(29)-C(32) 1.534(8) C(29)-C(30) 1.527(8) C(29)-C(31) 1.536(8) C(33)-C(34) 1.377(7) C(34)-C(35) 1.378(7) C(35)-C(36) 1.374(7) C(37)-C(38) 1.504(9) C(38)-C(39) 1.560(10) C(39)-C(40) 1.441(14) C(41)-C(42) 1.529(8) C(42)-C(43) 1.508(8) C(43)-C(44) 1.509(8) C(45)-C(46) 1.535(8) C(46)-C(47) 1.511(8) C(47)-C(48) 1.521(9) C(49)-C(50) 1.514(8) C(50)-C(51) 1.498(9) C(51)-C(52) 1.330(15) C(53)-C(54) 1.522(7) C(54)-C(55) 1.511(8) C(55)-C(56) 1.500(8) C(57)-C(58) 1.529(7) C(58)-C(59) 1.518(7) C(59)-C(60) 1.509(7) C(1S)-C(1S)#1 1.05(3) C(1S)-C(2S) 1.444(19) C(1S)-C(3S) 2.06(5) C(2S)-C(3S) 1.17(3) O(1)-Cr(1)-O(2) 93.05(15) O(1)-Cr(1)-N(1) 92.43(15) O(2)-Cr(1)-N(1) 174.46(16) O(1)-Cr(1)-O(3) 88.46(14) O(2)-Cr(1)-O(3) 92.24(15) N(1)-Cr(1)-O(3) 88.70(15) O(1)-Cr(1)-O(4) 91.50(14) O(2)-Cr(1)-O(4) 93.97(15) N(1)-Cr(1)-O(4) 85.09(15) O(3)-Cr(1)-O(4) 173.78(15) O(1)-Cr(1)-N(2) 173.73(16) O(2)-Cr(1)-N(2) 91.74(15) N(1)-Cr(1)-N(2) 82.86(16)

O(3)-Cr(1)-N(2) 87.31(15) O(4)-Cr(1)-N(2) 92.21(15) C(2)-N(1)-C(1) 122.9(4) C(2)-N(1)-Cr(1) 124.4(4) C(1)-N(1)-Cr(1) 112.7(3) C(18)-N(2)-C(17) 122.7(4) C(18)-N(2)-Cr(1) 124.3(3) C(17)-N(2)-Cr(1) 112.8(3) C(4)-O(1)-Cr(1) 129.7(3) C(20)-O(2)-Cr(1) 130.4(3) P(1)-O(3)-Cr(1) 156.8(2) P(2)-O(4)-Cr(1) 147.6(2) O(3)-P(1)-C(37) 112.2(3) O(3)-P(1)-C(45) 108.3(2) C(37)-P(1)-C(45) 108.5(3) O(3)-P(1)-C(41) 115.5(3) C(37)-P(1)-C(41) 103.4(3) C(45)-P(1)-C(41) 108.7(3) O(4)-P(2)-C(53) 111.2(2) O(4)-P(2)-C(57) 112.6(2) C(53)-P(2)-C(57) 103.7(2) O(4)-P(2)-C(49) 111.5(2) C(53)-P(2)-C(49) 108.9(3) C(57)-P(2)-C(49) 108.7(3) C(33)-C(1)-C(17) 119.3(5) C(33)-C(1)-N(1) 125.3(4) C(17)-C(1)-N(1) 115.3(4) N(1)-C(2)-C(3) 126.0(5) C(4)-C(3)-C(8) 119.6(5) C(4)-C(3)-C(2) 124.2(4) C(8)-C(3)-C(2) 116.2(5) O(1)-C(4)-C(3) 122.9(5) O(1)-C(4)-C(5) 118.6(5) C(3)-C(4)-C(5) 118.5(5) C(6)-C(5)-C(4) 117.8(5) C(6)-C(5)-C(13) 122.3(5) C(4)-C(5)-C(13) 120.0(5) C(5)-C(6)-C(7) 125.1(5) C(8)-C(7)-C(6) 116.4(5) C(8)-C(7)-C(9) 123.9(5) C(6)-C(7)-C(9) 119.7(5) C(7)-C(8)-C(3) 122.5(5) C(10)-C(9)-C(7) 111.5(5) C(10)-C(9)-C(12) 109.5(5)

230

C(7)-C(9)-C(12) 109.8(5) C(10)-C(9)-C(11) 108.3(5) C(7)-C(9)-C(11) 108.2(5) C(12)-C(9)-C(11) 109.4(5) C(5)-C(13)-C(14) 111.3(5) C(5)-C(13)-C(16) 112.8(5) C(14)-C(13)-C(16) 105.8(5) C(5)-C(13)-C(15) 110.1(5) C(14)-C(13)-C(15) 109.1(5) C(16)-C(13)-C(15) 107.5(5) C(36)-C(17)-N(2) 124.6(4) C(36)-C(17)-C(1) 119.3(5) N(2)-C(17)-C(1) 116.1(4) N(2)-C(18)-C(19) 126.1(5) C(20)-C(19)-C(24) 119.4(5) C(20)-C(19)-C(18) 124.4(5) C(24)-C(19)-C(18) 116.1(4) O(2)-C(20)-C(19) 122.3(4) O(2)-C(20)-C(21) 119.9(4) C(19)-C(20)-C(21) 117.7(4) C(22)-C(21)-C(20) 117.8(5) C(22)-C(21)-C(29) 122.8(5) C(20)-C(21)-C(29) 119.4(4) C(21)-C(22)-C(23) 125.4(5) C(24)-C(23)-C(22) 116.7(5) C(24)-C(23)-C(25) 123.6(5) C(22)-C(23)-C(25) 119.7(5) C(23)-C(24)-C(19) 122.7(5) C(23)-C(25)-C(28) 111.2(5) C(23)-C(25)-C(27) 111.0(5) C(28)-C(25)-C(27) 110.3(5) C(23)-C(25)-C(26) 108.9(5) C(28)-C(25)-C(26) 108.6(5) C(27)-C(25)-C(26) 106.8(5)

C(32)-C(29)-C(30) 110.1(5) C(32)-C(29)-C(21) 110.0(4) C(30)-C(29)-C(21) 110.7(5) C(32)-C(29)-C(31) 107.5(5) C(30)-C(29)-C(31) 107.6(5) C(21)-C(29)-C(31) 110.8(4) C(1)-C(33)-C(34) 119.7(5) C(35)-C(34)-C(33) 120.8(5) C(34)-C(35)-C(36) 120.8(5) C(17)-C(36)-C(35) 120.0(5) C(38)-C(37)-P(1) 114.5(4) C(37)-C(38)-C(39) 109.8(6) C(40)-C(39)-C(38) 109.3(9) C(42)-C(41)-P(1) 118.7(4) C(41)-C(42)-C(43) 112.9(5) C(44)-C(43)-C(42) 112.8(5) C(46)-C(45)-P(1) 115.0(4) C(47)-C(46)-C(45) 111.4(5) C(46)-C(47)-C(48) 112.0(5) C(50)-C(49)-P(2) 116.6(4) C(51)-C(50)-C(49) 113.6(6) C(52)-C(51)-C(50) 116.4(10) C(54)-C(53)-P(2) 113.9(4) C(55)-C(54)-C(53) 113.6(5) C(56)-C(55)-C(54) 113.0(5) C(58)-C(57)-P(2) 117.2(4) C(57)-C(58)-C(59) 112.2(4) C(60)-C(59)-C(58) 113.3(5) C(1S)#1-C(1S)-C(2S) 130(3) C(1S)#1-C(1S)-C(3S) 151(4) C(2S)-C(1S)-C(3S) 33.3(8) C(3S)-C(2S)-C(1S) 104(3) C(2S)-C(3S)-C(1S) 43(2)

_______________________________________________________________________

231

Table C.7. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 7a. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Cr(1A) 7401(1) 3510(1) 6665(1) 20(1) Cr(1B) 7376(1) 8472(1) 3393(1) 19(1) Cl(1A) 7488(1) 3279(1) 5698(1) 30(1) Cl(1B) 7465(1) 8805(1) 4362(1) 27(1) N(1A) 7552(4) 2517(5) 6829(4) 23(2) N(2A) 8345(4) 3671(4) 6830(4) 20(2) N(3A) 6471(4) 3357(4) 6530(4) 19(2) N(1B) 7409(4) 9462(4) 3188(4) 23(2) N(2B) 8321(4) 8424(5) 3474(3) 19(2) N(3B) 6436(4) 8517(4) 3297(4) 15(2) O(1A) 7254(3) 4409(3) 6526(3) 21(2) O(2A) 7337(3) 3667(3) 7487(3) 23(2) O(1B) 7342(3) 7580(3) 3574(3) 21(2) O(2B) 7316(3) 8238(3) 2571(3) 18(2) C(1A) 7699(5) 2004(6) 6871(5) 32(3) C(2A) 7901(5) 1330(5) 6942(5) 53(4) C(3A) 8580(5) 4236(6) 6834(4) 27(3) C(4A) 8259(5) 4851(5) 6710(5) 23(3) C(5A) 8638(5) 5400(6) 6726(5) 42(4) C(6A) 8382(5) 6013(5) 6603(5) 32(3) C(7A) 7779(5) 6054(5) 6471(5) 26(3) C(8A) 7375(5) 5532(6) 6443(5) 24(3) C(9A) 7623(5) 4914(6) 6569(5) 22(3) C(10A) 8783(5) 3133(5) 6871(5) 22(3) C(11A) 8899(5) 2786(6) 7391(4) 24(3) C(12A) 9263(5) 2232(5) 7406(5) 30(3) C(13A) 9499(6) 2063(7) 6911(5) 55(4) C(14A) 9419(5) 2437(6) 6396(5) 39(4) C(15A) 9052(5) 2972(6) 6366(5) 32(3) C(16A) 9021(5) 3424(6) 5832(5) 34(3) C(17A) 8927(5) 3050(6) 5248(5) 45(4) C(18A) 9613(5) 3830(6) 5880(5) 48(4) C(19A) 8701(5) 3016(5) 7962(5) 30(3) C(20A) 8309(5) 2517(6) 8238(5) 42(4) C(21A) 9271(5) 3187(6) 8418(5) 47(4) C(22A) 6722(5) 5664(5) 6318(5) 25(3) C(23A) 6334(5) 5450(5) 6720(5) 21(3)

232

C(24A) 5734(5) 5634(5) 6647(5) 24(3) C(25A) 5508(5) 6011(5) 6176(5) 27(3) C(26A) 5861(5) 6213(5) 5761(5) 30(3) C(27A) 6470(5) 6033(5) 5851(5) 26(3) C(28A) 6103(5) 3602(5) 6866(5) 26(3) C(29A) 6291(5) 3957(5) 7395(5) 20(3) C(30A) 5831(5) 4262(5) 7644(5) 30(3) C(31A) 5967(5) 4621(5) 8157(5) 28(3) C(32A) 6543(5) 4687(5) 8426(5) 28(3) C(33A) 7026(5) 4362(6) 8208(5) 27(2) C(34A) 6908(5) 3998(6) 7683(5) 27(2) C(35A) 6152(5) 2995(6) 6038(5) 20(3) C(36A) 5973(5) 3312(6) 5485(5) 27(3) C(37A) 5666(5) 2976(6) 5010(5) 27(3) C(38A) 5551(5) 2304(6) 5088(5) 33(3) C(39A) 5717(5) 1994(6) 5632(5) 32(3) C(40A) 6023(5) 2346(5) 6115(5) 21(3) C(41A) 6131(5) 2014(5) 6718(5) 23(3) C(42A) 6312(5) 1325(5) 6662(5) 46(4) C(43A) 5546(5) 2025(5) 7001(4) 37(3) C(44A) 6099(5) 4029(5) 5422(5) 30(3) C(45A) 6340(5) 4180(6) 4847(5) 46(4) C(46A) 5526(5) 4417(5) 5454(5) 36(3) C(47A) 7649(5) 4431(5) 8525(6) 32(3) C(48A) 8115(5) 4618(5) 8214(5) 25(3) C(49A) 8705(6) 4712(5) 8525(6) 37(3) C(50A) 8791(6) 4651(5) 9127(5) 31(3) C(51A) 8337(5) 4483(5) 9423(5) 32(3) C(52A) 7780(5) 4354(5) 9128(5) 29(3) C(1B) 7499(5) 9985(6) 3158(5) 29(3) C(2B) 7654(5) 10679(5) 3096(5) 38(4) C(3B) 8609(5) 7877(6) 3496(4) 27(3) C(4B) 8353(5) 7241(5) 3520(5) 22(3) C(5B) 8773(5) 6725(6) 3507(5) 33(3) C(6B) 8595(5) 6104(6) 3541(5) 35(3) C(7B) 7996(5) 5974(6) 3555(5) 29(3) C(8B) 7545(5) 6461(6) 3552(5) 26(3) C(9B) 7746(5) 7108(5) 3547(5) 22(3) C(10B) 8721(5) 8993(5) 3514(5) 21(3) C(11B) 8785(4) 9312(5) 3000(5) 22(3) C(12B) 9123(5) 9893(5) 3051(5) 27(3) C(13B) 9372(5) 10119(5) 3611(5) 30(3) C(14B) 9326(5) 9760(6) 4107(5) 29(3) C(15B) 9005(5) 9201(5) 4074(5) 18(3)

233

C(16B) 9019(5) 8791(6) 4620(5) 31(3) C(17B) 8903(5) 9166(5) 5165(5) 37(3) C(18B) 9622(4) 8436(6) 4757(5) 38(3) C(19B) 8555(5) 9049(6) 2387(5) 29(3) C(20B) 9095(5) 8862(6) 2075(5) 45(4) C(21B) 8166(4) 9517(6) 1987(5) 38(4) C(22B) 6913(5) 6273(5) 3544(5) 25(3) C(23B) 6727(5) 5908(5) 3987(5) 32(3) C(24B) 6146(5) 5664(5) 3948(5) 29(3) C(25B) 5738(5) 5826(5) 3456(5) 32(3) C(26B) 5904(5) 6209(5) 3025(5) 30(3) C(27B) 6483(5) 6434(5) 3055(5) 23(3) C(28B) 6103(5) 8237(5) 2843(5) 20(3) C(29B) 6283(5) 7901(5) 2367(5) 27(3) C(30B) 5823(5) 7567(5) 1991(5) 25(3) C(31B) 5954(5) 7233(6) 1504(5) 36(4) C(32B) 6548(5) 7237(5) 1391(5) 25(3) C(33B) 7017(5) 7554(5) 1740(5) 21(3) C(34B) 6898(5) 7891(5) 2251(5) 25(3) C(35B) 6081(4) 8830(5) 3669(5) 14(3) C(36B) 5971(4) 8532(5) 4199(5) 22(3) C(37B) 5611(4) 8831(5) 4560(5) 20(3) C(38B) 5331(5) 9398(5) 4392(5) 26(3) C(39B) 5428(4) 9718(5) 3885(5) 25(3) C(40B) 5810(5) 9429(6) 3518(5) 22(3) C(41B) 5868(5) 9762(5) 2940(5) 29(3) C(42B) 6027(5) 10503(5) 3028(5) 40(4) C(43B) 5274(5) 9708(5) 2500(5) 30(3) C(44B) 6237(5) 7846(5) 4354(5) 23(3) C(45B) 6437(5) 7757(5) 5019(4) 29(3) C(46B) 5770(4) 7346(5) 4121(5) 34(3) C(47B) 7637(5) 7515(5) 1597(5) 27(3) C(48B) 7738(5) 7648(6) 1017(5) 34(4) C(49B) 8295(5) 7561(6) 863(5) 35(3) C(50B) 8777(5) 7347(5) 1264(5) 34(3) C(51B) 8701(5) 7208(5) 1866(5) 34(3) C(52B) 8127(5) 7293(5) 2001(5) 29(3) C(1S) 9187(11) 6900(14) 5452(12) 250(30) C(2S) 9122(12) 7412(13) 6099(10) 150(30) C(3S) 8614(14) 7733(13) 6183(11) 210(20) C(4S) 8161(13) 7670(20) 5748(18) 370(30) C(5S) 8209(14) 7290(20) 5303(16) 270(30) C(6S) 8648(13) 6974(13) 5220(9) 300(20) C(7S) 9700(10) 6614(12) 5633(14) 330(20)

234

C(8S) 8464(7) 4788(7) 4729(6) 81(3) C(9S) 9062(7) 4941(7) 4656(6) 80(3) C(10S) 9316(8) 4615(6) 4183(6) 80(3) C(11S) 8946(7) 4215(7) 3798(7) 77(3) C(12S) 8352(7) 4109(7) 3885(6) 77(3) C(13S) 8103(7) 4412(6) 4333(6) 79(3) C(14S) 8190(7) 5110(6) 5191(5) 95(4) C(15S) 7151(7) 995(9) 4926(8) 170(6) C(16S) 7569(8) 582(7) 4692(8) 168(6) C(17S) 8166(8) 730(8) 4833(8) 174(6) C(18S) 8410(7) 1199(8) 5187(7) 171(6) C(19S) 7977(8) 1619(8) 5430(8) 168(6) C(20S) 7372(7) 1510(8) 5272(8) 164(6) C(21S) 6546(7) 863(9) 4756(9) 192(8) Table C.8. Bond lengths [Å] and angles [°] for 7a. _______________________________________________________________________ Cr(1A)-O(1A) 1.916(7) Cr(1A)-O(2A) 1.948(6) Cr(1A)-N(3A) 2.082(8) Cr(1A)-N(1A) 2.113(10) Cr(1A)-N(2A) 2.115(9) Cr(1A)-Cl(1A) 2.314(3) Cr(1B)-O(1B) 1.902(7) Cr(1B)-O(2B) 1.940(7) Cr(1B)-N(3B) 2.085(8) Cr(1B)-N(2B) 2.096(8) Cr(1B)-N(1B) 2.113(9) Cr(1B)-Cl(1B) 2.316(3) N(1A)-C(1A) 1.116(13) N(2A)-C(3A) 1.286(12) N(2A)-C(10A) 1.480(12) N(3A)-C(28A) 1.316(11) N(3A)-C(35A) 1.455(12) N(1B)-C(1B) 1.108(12) N(2B)-C(3B) 1.303(12) N(2B)-C(10B) 1.477(12) N(3B)-C(28B) 1.323(12) N(3B)-C(35B) 1.410(11) O(1A)-C(9A) 1.330(12) O(2A)-C(34A) 1.312(12) O(1B)-C(9B) 1.341(11) O(2B)-C(34B) 1.315(12)

C(1A)-C(2A) 1.471(15) C(3A)-C(4A) 1.471(14) C(4A)-C(9A) 1.417(14) C(4A)-C(5A) 1.417(14) C(5A)-C(6A) 1.408(14) C(6A)-C(7A) 1.341(13) C(7A)-C(8A) 1.406(14) C(8A)-C(9A) 1.410(14) C(8A)-C(22A) 1.473(14) C(10A)-C(11A) 1.388(13) C(10A)-C(15A) 1.427(13) C(11A)-C(12A) 1.407(14) C(11A)-C(19A) 1.527(13) C(12A)-C(13A) 1.371(13) C(13A)-C(14A) 1.407(15) C(14A)-C(15A) 1.376(14) C(15A)-C(16A) 1.541(14) C(16A)-C(17A) 1.540(14) C(16A)-C(18A) 1.560(14) C(19A)-C(20A) 1.553(13) C(19A)-C(21A) 1.566(14) C(22A)-C(27A) 1.371(14) C(22A)-C(23A) 1.431(13) C(23A)-C(24A) 1.381(13) C(24A)-C(25A) 1.372(13) C(25A)-C(26A) 1.394(13)

235

C(26A)-C(27A) 1.396(13) C(28A)-C(29A) 1.432(14) C(29A)-C(30A) 1.403(12) C(29A)-C(34A) 1.442(13) C(30A)-C(31A) 1.391(14) C(31A)-C(32A) 1.349(14) C(32A)-C(33A) 1.427(13) C(33A)-C(34A) 1.416(15) C(33A)-C(47A) 1.482(14) C(35A)-C(40A) 1.394(14) C(35A)-C(36A) 1.435(14) C(36A)-C(37A) 1.390(14) C(36A)-C(44A) 1.526(15) C(37A)-C(38A) 1.436(14) C(38A)-C(39A) 1.408(14) C(39A)-C(40A) 1.421(14) C(40A)-C(41A) 1.535(14) C(41A)-C(42A) 1.497(13) C(41A)-C(43A) 1.548(12) C(44A)-C(46A) 1.524(13) C(44A)-C(45A) 1.535(13) C(47A)-C(52A) 1.385(14) C(47A)-C(48A) 1.403(12) C(48A)-C(49A) 1.417(14) C(49A)-C(50A) 1.376(14) C(50A)-C(51A) 1.350(13) C(51A)-C(52A) 1.354(14) C(1B)-C(2B) 1.496(14) C(3B)-C(4B) 1.444(14) C(4B)-C(9B) 1.396(13) C(4B)-C(5B) 1.428(13) C(5B)-C(6B) 1.355(14) C(6B)-C(7B) 1.373(13) C(7B)-C(8B) 1.428(14) C(8B)-C(9B) 1.417(14) C(8B)-C(22B) 1.464(14) C(10B)-C(11B) 1.381(14) C(10B)-C(15B) 1.419(14) C(11B)-C(12B) 1.419(14) C(11B)-C(19B) 1.530(14) C(12B)-C(13B) 1.408(14) C(13B)-C(14B) 1.380(14) C(14B)-C(15B) 1.360(14) C(15B)-C(16B) 1.515(14)

C(16B)-C(17B) 1.532(13) C(16B)-C(18B) 1.528(13) C(19B)-C(21B) 1.521(14) C(19B)-C(20B) 1.546(12) C(22B)-C(23B) 1.383(13) C(22B)-C(27B) 1.408(14) C(23B)-C(24B) 1.385(13) C(24B)-C(25B) 1.386(14) C(25B)-C(26B) 1.366(13) C(26B)-C(27B) 1.369(13) C(28B)-C(29B) 1.410(13) C(29B)-C(30B) 1.421(14) C(29B)-C(34B) 1.440(13) C(30B)-C(31B) 1.387(13) C(31B)-C(32B) 1.391(13) C(32B)-C(33B) 1.390(14) C(33B)-C(34B) 1.428(14) C(33B)-C(47B) 1.474(13) C(35B)-C(40B) 1.403(13) C(35B)-C(36B) 1.422(13) C(36B)-C(37B) 1.388(12) C(36B)-C(44B) 1.564(14) C(37B)-C(38B) 1.362(13) C(38B)-C(39B) 1.388(13) C(39B)-C(40B) 1.422(12) C(40B)-C(41B) 1.523(13) C(41B)-C(43B) 1.550(14) C(41B)-C(42B) 1.585(14) C(44B)-C(46B) 1.514(13) C(44B)-C(45B) 1.541(13) C(47B)-C(52B) 1.404(14) C(47B)-C(48B) 1.415(13) C(48B)-C(49B) 1.358(13) C(49B)-C(50B) 1.385(15) C(50B)-C(51B) 1.451(14) C(51B)-C(52B) 1.377(13) C(1S)-C(6S) 1.254(16) C(1S)-C(7S) 1.304(16) C(1S)-C(2S) 1.852(15) C(2S)-C(3S) 1.36(2) C(3S)-C(4S) 1.319(18) C(4S)-C(5S) 1.314(19) C(5S)-C(6S) 1.222(17) C(8S)-C(13S) 1.369(15)

236

C(8S)-C(9S) 1.409(14) C(8S)-C(14S) 1.466(13) C(9S)-C(10S) 1.466(13) C(10S)-C(11S) 1.393(14) C(11S)-C(12S) 1.391(14) C(12S)-C(13S) 1.393(13) C(15S)-C(20S) 1.380(15) C(15S)-C(21S) 1.381(15) C(15S)-C(16S) 1.432(16) C(16S)-C(17S) 1.363(16) C(17S)-C(18S) 1.333(15) C(18S)-C(19S) 1.475(15) C(19S)-C(20S) 1.366(16) O(1A)-Cr(1A)-O(2A) 87.9(3) O(1A)-Cr(1A)-N(3A) 88.9(3) O(2A)-Cr(1A)-N(3A) 87.3(3) O(1A)-Cr(1A)-N(1A) 178.9(3) O(2A)-Cr(1A)-N(1A) 91.3(3) N(3A)-Cr(1A)-N(1A) 90.4(3) O(1A)-Cr(1A)-N(2A) 91.1(3) O(2A)-Cr(1A)-N(2A) 90.9(3) N(3A)-Cr(1A)-N(2A) 178.2(3) N(1A)-Cr(1A)-N(2A) 89.7(3) O(1A)-Cr(1A)-Cl(1A) 94.5(2) O(2A)-Cr(1A)-Cl(1A) 177.6(2) N(3A)-Cr(1A)-Cl(1A) 92.9(3) N(1A)-Cr(1A)-Cl(1A) 86.3(2) N(2A)-Cr(1A)-Cl(1A) 88.9(2) O(1B)-Cr(1B)-O(2B) 88.3(3) O(1B)-Cr(1B)-N(3B) 89.6(3) O(2B)-Cr(1B)-N(3B) 89.1(3) O(1B)-Cr(1B)-N(2B) 90.4(3) O(2B)-Cr(1B)-N(2B) 89.8(3) N(3B)-Cr(1B)-N(2B) 178.9(3) O(1B)-Cr(1B)-N(1B) 179.6(4) O(2B)-Cr(1B)-N(1B) 91.5(3) N(3B)-Cr(1B)-N(1B) 90.0(3) N(2B)-Cr(1B)-N(1B) 89.9(4) O(1B)-Cr(1B)-Cl(1B) 94.6(2) O(2B)-Cr(1B)-Cl(1B) 177.0(2) N(3B)-Cr(1B)-Cl(1B) 91.7(2) N(2B)-Cr(1B)-Cl(1B) 89.4(2) N(1B)-Cr(1B)-Cl(1B) 85.6(3)

C(1A)-N(1A)-Cr(1A) 169.9(10) C(3A)-N(2A)-C(10A) 115.1(9) C(3A)-N(2A)-Cr(1A) 122.7(8) C(10A)-N(2A)-Cr(1A) 121.7(7) C(28A)-N(3A)-C(35A) 112.4(9) C(28A)-N(3A)-Cr(1A) 123.5(8) C(35A)-N(3A)-Cr(1A) 124.0(6) C(1B)-N(1B)-Cr(1B) 168.4(10) C(3B)-N(2B)-C(10B) 113.8(9) C(3B)-N(2B)-Cr(1B) 122.1(8) C(10B)-N(2B)-Cr(1B) 124.0(7) C(28B)-N(3B)-C(35B) 112.3(8) C(28B)-N(3B)-Cr(1B) 120.3(7) C(35B)-N(3B)-Cr(1B) 127.4(7) C(9A)-O(1A)-Cr(1A) 131.8(7) C(34A)-O(2A)-Cr(1A) 125.8(7) C(9B)-O(1B)-Cr(1B) 130.6(6) C(34B)-O(2B)-Cr(1B) 128.7(7) N(1A)-C(1A)-C(2A) 178.5(15) N(2A)-C(3A)-C(4A) 127.2(11) C(9A)-C(4A)-C(5A) 120.5(11) C(9A)-C(4A)-C(3A) 124.6(11) C(5A)-C(4A)-C(3A) 114.8(11) C(6A)-C(5A)-C(4A) 119.8(11) C(7A)-C(6A)-C(5A) 117.9(11) C(6A)-C(7A)-C(8A) 125.4(11) C(7A)-C(8A)-C(9A) 117.5(11) C(7A)-C(8A)-C(22A) 118.4(10) C(9A)-C(8A)-C(22A) 124.0(11) O(1A)-C(9A)-C(8A) 118.7(10) O(1A)-C(9A)-C(4A) 122.4(10) C(8A)-C(9A)-C(4A) 118.8(11) C(11A)-C(10A)-C(15A) 122.3(10) C(11A)-C(10A)-N(2A) 118.9(10) C(15A)-C(10A)-N(2A) 118.7(10) C(10A)-C(11A)-C(12A) 118.6(10) C(10A)-C(11A)-C(19A) 122.6(11) C(12A)-C(11A)-C(19A) 118.5(10) C(13A)-C(12A)-C(11A) 118.8(11) C(12A)-C(13A)-C(14A) 122.9(12) C(15A)-C(14A)-C(13A) 119.2(11) C(14A)-C(15A)-C(10A) 117.9(11) C(14A)-C(15A)-C(16A) 119.2(10) C(10A)-C(15A)-C(16A) 122.3(10)

237

C(17A)-C(16A)-C(15A) 111.9(10) C(17A)-C(16A)-C(18A) 109.8(9) C(15A)-C(16A)-C(18A) 109.6(10) C(11A)-C(19A)-C(20A) 113.5(9) C(11A)-C(19A)-C(21A) 109.6(9) C(20A)-C(19A)-C(21A) 109.3(9) C(27A)-C(22A)-C(23A) 117.5(10) C(27A)-C(22A)-C(8A) 122.6(10) C(23A)-C(22A)-C(8A) 119.7(11) C(24A)-C(23A)-C(22A) 120.5(11) C(25A)-C(24A)-C(23A) 119.4(10) C(24A)-C(25A)-C(26A) 122.3(10) C(25A)-C(26A)-C(27A) 117.3(11) C(22A)-C(27A)-C(26A) 123.0(11) N(3A)-C(28A)-C(29A) 124.8(10) C(30A)-C(29A)-C(28A) 116.1(10) C(30A)-C(29A)-C(34A) 119.8(11) C(28A)-C(29A)-C(34A) 124.1(10) C(31A)-C(30A)-C(29A) 120.4(11) C(32A)-C(31A)-C(30A) 121.2(11) C(31A)-C(32A)-C(33A) 120.7(11) C(34A)-C(33A)-C(32A) 119.9(10) C(34A)-C(33A)-C(47A) 120.9(10) C(32A)-C(33A)-C(47A) 119.2(11) O(2A)-C(34A)-C(33A) 121.3(10) O(2A)-C(34A)-C(29A) 120.6(11) C(33A)-C(34A)-C(29A) 117.8(11) C(40A)-C(35A)-C(36A) 121.4(11) C(40A)-C(35A)-N(3A) 119.0(10) C(36A)-C(35A)-N(3A) 119.5(10) C(37A)-C(36A)-C(35A) 120.5(12) C(37A)-C(36A)-C(44A) 119.4(11) C(35A)-C(36A)-C(44A) 120.1(11) C(36A)-C(37A)-C(38A) 117.9(11) C(39A)-C(38A)-C(37A) 121.8(12) C(38A)-C(39A)-C(40A) 119.6(11) C(35A)-C(40A)-C(39A) 118.8(11) C(35A)-C(40A)-C(41A) 122.8(10) C(39A)-C(40A)-C(41A) 118.0(10) C(42A)-C(41A)-C(40A) 111.1(9) C(42A)-C(41A)-C(43A) 107.8(9) C(40A)-C(41A)-C(43A) 110.2(9) C(46A)-C(44A)-C(36A) 110.0(9) C(46A)-C(44A)-C(45A) 109.9(10)

C(36A)-C(44A)-C(45A) 112.1(10) C(52A)-C(47A)-C(48A) 118.8(11) C(52A)-C(47A)-C(33A) 121.7(10) C(48A)-C(47A)-C(33A) 119.4(11) C(47A)-C(48A)-C(49A) 119.1(11) C(50A)-C(49A)-C(48A) 118.4(11) C(51A)-C(50A)-C(49A) 121.9(12) C(50A)-C(51A)-C(52A) 120.2(12) C(51A)-C(52A)-C(47A) 121.4(11) N(1B)-C(1B)-C(2B) 176.4(13) N(2B)-C(3B)-C(4B) 126.9(11) C(9B)-C(4B)-C(5B) 120.0(11) C(9B)-C(4B)-C(3B) 125.3(11) C(5B)-C(4B)-C(3B) 114.7(10) C(6B)-C(5B)-C(4B) 120.8(11) C(5B)-C(6B)-C(7B) 119.1(11) C(6B)-C(7B)-C(8B) 123.5(11) C(9B)-C(8B)-C(7B) 116.6(10) C(9B)-C(8B)-C(22B) 124.1(10) C(7B)-C(8B)-C(22B) 119.4(10) O(1B)-C(9B)-C(4B) 121.6(10) O(1B)-C(9B)-C(8B) 118.4(10) C(4B)-C(9B)-C(8B) 120.0(10) C(11B)-C(10B)-C(15B) 122.8(10) C(11B)-C(10B)-N(2B) 118.1(10) C(15B)-C(10B)-N(2B) 119.1(9) C(10B)-C(11B)-C(12B) 117.4(11) C(10B)-C(11B)-C(19B) 123.7(10) C(12B)-C(11B)-C(19B) 118.8(10) C(13B)-C(12B)-C(11B) 119.4(11) C(14B)-C(13B)-C(12B) 120.7(11) C(15B)-C(14B)-C(13B) 121.2(12) C(14B)-C(15B)-C(10B) 118.2(10) C(14B)-C(15B)-C(16B) 119.2(11) C(10B)-C(15B)-C(16B) 122.3(10) C(15B)-C(16B)-C(17B) 114.2(10) C(15B)-C(16B)-C(18B) 110.5(8) C(17B)-C(16B)-C(18B) 109.1(10) C(21B)-C(19B)-C(11B) 114.5(10) C(21B)-C(19B)-C(20B) 107.1(9) C(11B)-C(19B)-C(20B) 109.9(9) C(23B)-C(22B)-C(27B) 118.3(11) C(23B)-C(22B)-C(8B) 122.3(11) C(27B)-C(22B)-C(8B) 119.3(10)

238

C(22B)-C(23B)-C(24B) 122.3(12) C(25B)-C(24B)-C(23B) 117.5(11) C(26B)-C(25B)-C(24B) 121.2(11) C(25B)-C(26B)-C(27B) 121.3(12) C(26B)-C(27B)-C(22B) 119.2(11) N(3B)-C(28B)-C(29B) 129.8(11) C(28B)-C(29B)-C(30B) 116.7(11) C(28B)-C(29B)-C(34B) 122.8(11) C(30B)-C(29B)-C(34B) 120.4(10) C(31B)-C(30B)-C(29B) 120.9(11) C(30B)-C(31B)-C(32B) 118.2(11) C(33B)-C(32B)-C(31B) 123.6(11) C(32B)-C(33B)-C(34B) 119.5(10) C(32B)-C(33B)-C(47B) 119.9(10) C(34B)-C(33B)-C(47B) 120.5(10) O(2B)-C(34B)-C(33B) 121.8(10) O(2B)-C(34B)-C(29B) 120.5(11) C(33B)-C(34B)-C(29B) 117.3(10) C(40B)-C(35B)-N(3B) 121.3(9) C(40B)-C(35B)-C(36B) 118.3(10) N(3B)-C(35B)-C(36B) 120.3(10) C(37B)-C(36B)-C(35B) 120.7(10) C(37B)-C(36B)-C(44B) 120.3(10) C(35B)-C(36B)-C(44B) 119.0(9) C(38B)-C(37B)-C(36B) 120.0(11) C(37B)-C(38B)-C(39B) 121.9(10) C(38B)-C(39B)-C(40B) 118.8(10) C(35B)-C(40B)-C(39B) 120.2(10) C(35B)-C(40B)-C(41B) 121.9(10) C(39B)-C(40B)-C(41B) 117.7(10) C(40B)-C(41B)-C(43B) 111.2(9) C(40B)-C(41B)-C(42B) 112.1(10) C(43B)-C(41B)-C(42B) 107.9(9) C(46B)-C(44B)-C(45B) 110.7(9)

C(46B)-C(44B)-C(36B) 108.9(9) C(45B)-C(44B)-C(36B) 112.4(9) C(52B)-C(47B)-C(48B) 118.1(11) C(52B)-C(47B)-C(33B) 122.4(10) C(48B)-C(47B)-C(33B) 119.2(11) C(49B)-C(48B)-C(47B) 120.1(11) C(48B)-C(49B)-C(50B) 121.6(11) C(49B)-C(50B)-C(51B) 120.6(11) C(52B)-C(51B)-C(50B) 115.9(11) C(51B)-C(52B)-C(47B) 123.7(11) C(6S)-C(1S)-C(7S) 160(3) C(6S)-C(1S)-C(2S) 95.0(12) C(7S)-C(1S)-C(2S) 100.1(16) C(3S)-C(2S)-C(1S) 124.4(15) C(4S)-C(3S)-C(2S) 114.3(18) C(3S)-C(4S)-C(5S) 120.2(14) C(6S)-C(5S)-C(4S) 127.6(18) C(1S)-C(6S)-C(5S) 138.0(16) C(13S)-C(8S)-C(9S) 121.6(15) C(13S)-C(8S)-C(14S) 118.3(14) C(9S)-C(8S)-C(14S) 119.5(13) C(8S)-C(9S)-C(10S) 117.6(15) C(11S)-C(10S)-C(9S) 119.3(16) C(12S)-C(11S)-C(10S) 119.5(16) C(13S)-C(12S)-C(11S) 122.0(16) C(8S)-C(13S)-C(12S) 119.4(16) C(20S)-C(15S)-C(21S) 124.7(15) C(20S)-C(15S)-C(16S) 119.0(10) C(21S)-C(15S)-C(16S) 116.2(15) C(17S)-C(16S)-C(15S) 116.4(12) C(18S)-C(17S)-C(16S) 127.6(13) C(17S)-C(18S)-C(19S) 115.5(11) C(20S)-C(19S)-C(18S) 118.8(11) C(19S)-C(20S)-C(15S) 122.5(12)

_______________________________________________________________________

239

Table C.9. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 8. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Cr(1) 5747(1) 5598(1) 1016(1) 19(1) Cl(1) 5747(2) 5655(2) -348(2) 102(1) O(1) 6581(2) 4677(2) 611(2) 24(1) O(2) 4958(2) 6562(2) 1498(2) 22(1) N(1) 5566(3) 5185(2) 2302(2) 24(1) N(2) 7308(3) 6967(2) 1498(2) 25(1) C(1) 6353(3) 3760(3) 746(2) 27(1) C(2) 6692(4) 2997(3) 51(3) 33(1) C(3) 6540(5) 2041(3) 149(3) 41(1) C(4) 6038(5) 1750(3) 948(3) 50(1) C(5) 5883(7) 741(4) 1039(3) 67(2) C(6) 5393(8) 445(4) 1798(4) 79(2) C(7) 5035(7) 1146(4) 2487(3) 71(2) C(8) 5155(6) 2124(4) 2418(3) 57(2) C(9) 5681(5) 2473(3) 1654(3) 43(1) C(10) 5847(4) 3499(3) 1546(3) 32(1) C(11) 5551(4) 4256(3) 2288(3) 31(1) C(12) 5209(3) 5751(3) 3180(2) 27(1) C(13) 4020(4) 5530(3) 3212(3) 30(1) C(14) 3704(4) 6127(3) 4044(3) 35(1) C(15) 4541(4) 6903(3) 4814(3) 37(1) C(16) 5702(4) 7071(3) 4789(3) 37(1) C(17) 6065(4) 6498(3) 3978(3) 33(1) C(18) 3045(4) 4630(3) 2421(3) 33(1) C(19) 2301(5) 3777(4) 2850(3) 54(1) C(20) 2284(4) 5031(4) 1946(3) 47(1) C(21) 7343(4) 6638(4) 3998(3) 42(1) C(22) 8183(5) 7732(6) 4702(5) 79(2) C(23) 7536(6) 5737(6) 4269(4) 66(2) C(24) 5316(3) 7486(3) 2212(2) 22(1) C(25) 4440(3) 7872(3) 2576(2) 27(1) C(26) 4736(4) 8844(3) 3290(3) 29(1) C(27) 5917(4) 9515(3) 3713(3) 30(1) C(28) 6201(4) 10528(3) 4440(3) 41(1) C(29) 7335(5) 11182(4) 4850(4) 64(2) C(30) 8220(5) 10842(5) 4533(5) 87(3) C(31) 7965(4) 9855(4) 3814(4) 66(2)

240

C(32) 6814(4) 9164(3) 3381(3) 34(1) C(33) 6499(3) 8129(3) 2613(3) 27(1) C(34) 7406(3) 7866(3) 2163(3) 31(1) C(35) 8298(3) 7091(3) 955(3) 33(1) C(36) 8441(3) 7706(3) 331(3) 37(1) C(37) 9390(4) 7815(4) -195(3) 53(1) C(38) 10165(4) 7350(6) -91(4) 67(2) C(39) 10024(4) 6782(5) 544(4) 63(2) C(40) 9098(4) 6631(4) 1086(3) 42(1) C(41) 7669(4) 8307(3) 250(3) 42(1) C(42) 7271(5) 8181(4) -801(4) 50(1) C(43) 8307(6) 9520(4) 838(5) 68(2) C(44) 9038(4) 6101(4) 1857(3) 46(1) C(45) 9907(5) 6911(4) 2776(4) 54(1) C(46) 9292(5) 5079(5) 1504(5) 73(2) C(49A) 1898(13) 7240(18) 6907(11) 46(2) Cl(2A) 1146(9) 6286(6) 5757(6) 46(2) Cl(3A) 1097(7) 7793(6) 7679(5) 46(2) C(49B) 1699(18) 7470(20) 6720(20) 99(4) Cl(2B) 1116(12) 6368(9) 5569(10) 99(4) Cl(3B) 681(10) 7904(6) 7270(10) 99(4) C(49C) 1870(19) 7290(50) 6780(30) 88(4) Cl(2C) 846(13) 6177(11) 5826(9) 88(4) Cl(3C) 856(12) 7456(16) 7538(9) 88(4) C(50A) 1539(10) 9833(9) 2332(8) 50(1) Cl(4A) 2055(2) 9762(2) 3445(2) 50(1) Cl(5A) 780(2) 10699(2) 2575(2) 50(1) C(50B) 1210(80) 9350(60) 1970(50) 26(4) Cl(4B) 2426(13) 8883(12) 2106(14) 26(4) Cl(5B) 1002(10) 10066(12) 3202(13) 26(4) C(50C) 1260(40) 9370(30) 1990(30) 59(2) Cl(4C) 2465(6) 9141(9) 2214(6) 59(2) Cl(5C) 1088(5) 10360(9) 2966(6) 59(2) _______________________________________________________________________ Table C.10. Bond lengths [Å] and angles [°] for 8. _______________________________________________________________________ Cr(1)-O(1) 1.921(2) Cr(1)-O(2) 1.938(2) Cr(1)-Cl(1)#1 1.999(3) Cr(1)-Cl(1) 2.002(2) Cr(1)-N(2) 2.089(3) Cr(1)-N(1) 2.106(3)

Cl(1)-Cr(1)#1 1.999(3) O(1)-C(1) 1.300(4) O(2)-C(24) 1.312(4) N(1)-C(11) 1.305(5) N(1)-C(12) 1.459(4) N(2)-C(34) 1.307(4)

241

N(2)-C(35) 1.458(4) C(1)-C(10) 1.411(5) C(1)-C(2) 1.435(5) C(2)-C(3) 1.351(5) C(3)-C(4) 1.423(7) C(4)-C(5) 1.419(6) C(4)-C(9) 1.420(6) C(5)-C(6) 1.368(9) C(6)-C(7) 1.389(8) C(7)-C(8) 1.374(6) C(8)-C(9) 1.420(7) C(9)-C(10) 1.450(5) C(10)-C(11) 1.433(5) C(12)-C(13) 1.397(6) C(12)-C(17) 1.403(5) C(13)-C(14) 1.404(5) C(13)-C(18) 1.526(5) C(14)-C(15) 1.380(6) C(15)-C(16) 1.376(7) C(16)-C(17) 1.401(5) C(17)-C(21) 1.523(7) C(18)-C(20) 1.516(7) C(18)-C(19) 1.535(6) C(21)-C(22) 1.531(7) C(21)-C(23) 1.539(7) C(24)-C(33) 1.410(5) C(24)-C(25) 1.432(5) C(25)-C(26) 1.363(5) C(26)-C(27) 1.420(6) C(27)-C(28) 1.413(5) C(27)-C(32) 1.417(6) C(28)-C(29) 1.367(7) C(29)-C(30) 1.389(8) C(30)-C(31) 1.387(6) C(31)-C(32) 1.399(6) C(32)-C(33) 1.455(5) C(33)-C(34) 1.425(5) C(35)-C(36) 1.405(6) C(35)-C(40) 1.413(6) C(36)-C(37) 1.402(6) C(36)-C(41) 1.524(7) C(37)-C(38) 1.381(9) C(38)-C(39) 1.370(10) C(39)-C(40) 1.393(7)

C(40)-C(44) 1.512(8) C(41)-C(42) 1.528(7) C(41)-C(43) 1.547(6) C(44)-C(46) 1.536(6) C(44)-C(45) 1.537(6) C(49A)-Cl(3A) 1.717(13) C(49A)-Cl(2A) 1.767(12) C(49B)-Cl(3B) 1.717(15) C(49B)-Cl(2B) 1.807(15) C(49C)-Cl(3C) 1.720(16) C(49C)-Cl(2C) 1.776(16) C(50A)-Cl(5A) 1.769(11) C(50A)-Cl(4A) 1.768(11) C(50B)-Cl(5B) 1.84(8) C(50B)-Cl(4B) 1.89(10) C(50C)-Cl(5C) 1.74(4) C(50C)-Cl(4C) 1.69(5) O(1)-Cr(1)-O(2) 176.73(10) O(1)-Cr(1)-Cl(1)#1 89.21(11) O(2)-Cr(1)-Cl(1)#1 93.12(11) O(1)-Cr(1)-Cl(1) 85.52(10) O(2)-Cr(1)-Cl(1) 97.15(10) Cl(1)#1-Cr(1)-Cl(1) 79.74(11) O(1)-Cr(1)-N(2) 91.67(12) O(2)-Cr(1)-N(2) 86.41(11) Cl(1)#1-Cr(1)-N(2) 170.45(11) Cl(1)-Cr(1)-N(2) 90.85(11) O(1)-Cr(1)-N(1) 87.96(11) O(2)-Cr(1)-N(1) 89.74(11) Cl(1)#1-Cr(1)-N(1) 89.97(11) Cl(1)-Cr(1)-N(1) 167.87(11) N(2)-Cr(1)-N(1) 99.56(12) Cr(1)#1-Cl(1)-Cr(1) 100.26(11) C(1)-O(1)-Cr(1) 126.6(2) C(24)-O(2)-Cr(1) 130.2(2) C(11)-N(1)-C(12) 114.1(3) C(11)-N(1)-Cr(1) 119.7(2) C(12)-N(1)-Cr(1) 125.0(2) C(34)-N(2)-C(35) 112.9(3) C(34)-N(2)-Cr(1) 123.6(2) C(35)-N(2)-Cr(1) 121.9(2) O(1)-C(1)-C(10) 124.1(3) O(1)-C(1)-C(2) 116.8(3)

242

C(10)-C(1)-C(2) 119.0(3) C(3)-C(2)-C(1) 121.4(4) C(2)-C(3)-C(4) 121.3(4) C(5)-C(4)-C(9) 119.9(5) C(5)-C(4)-C(3) 120.5(4) C(9)-C(4)-C(3) 119.6(4) C(6)-C(5)-C(4) 121.2(5) C(5)-C(6)-C(7) 119.1(4) C(8)-C(7)-C(6) 121.4(5) C(7)-C(8)-C(9) 121.3(5) C(4)-C(9)-C(8) 116.9(4) C(4)-C(9)-C(10) 119.0(4) C(8)-C(9)-C(10) 124.1(4) C(1)-C(10)-C(11) 121.2(3) C(1)-C(10)-C(9) 119.8(3) C(11)-C(10)-C(9) 119.0(4) N(1)-C(11)-C(10) 128.6(3) C(13)-C(12)-C(17) 121.5(3) C(13)-C(12)-N(1) 119.3(3) C(17)-C(12)-N(1) 119.3(3) C(12)-C(13)-C(14) 118.1(4) C(12)-C(13)-C(18) 123.5(3) C(14)-C(13)-C(18) 118.3(4) C(15)-C(14)-C(13) 121.1(4) C(16)-C(15)-C(14) 119.8(4) C(15)-C(16)-C(17) 121.4(4) C(16)-C(17)-C(12) 118.0(4) C(16)-C(17)-C(21) 120.3(4) C(12)-C(17)-C(21) 121.6(3) C(20)-C(18)-C(13) 113.1(3) C(20)-C(18)-C(19) 110.9(4) C(13)-C(18)-C(19) 109.8(3) C(17)-C(21)-C(22) 112.7(4) C(17)-C(21)-C(23) 111.1(4) C(22)-C(21)-C(23) 109.3(5) O(2)-C(24)-C(33) 124.2(3) O(2)-C(24)-C(25) 117.1(3) C(33)-C(24)-C(25) 118.7(3) C(26)-C(25)-C(24) 121.1(4)

C(25)-C(26)-C(27) 121.9(3) C(28)-C(27)-C(32) 120.3(4) C(28)-C(27)-C(26) 120.7(4) C(32)-C(27)-C(26) 119.0(3) C(29)-C(28)-C(27) 121.2(4) C(28)-C(29)-C(30) 118.9(4) C(31)-C(30)-C(29) 121.0(5) C(30)-C(31)-C(32) 121.6(5) C(31)-C(32)-C(27) 117.0(4) C(31)-C(32)-C(33) 123.9(4) C(27)-C(32)-C(33) 119.1(4) C(24)-C(33)-C(34) 120.2(3) C(24)-C(33)-C(32) 120.2(3) C(34)-C(33)-C(32) 118.7(3) N(2)-C(34)-C(33) 127.8(3) C(36)-C(35)-C(40) 122.0(4) C(36)-C(35)-N(2) 117.8(4) C(40)-C(35)-N(2) 120.2(4) C(37)-C(36)-C(35) 117.5(5) C(37)-C(36)-C(41) 119.1(4) C(35)-C(36)-C(41) 123.3(3) C(38)-C(37)-C(36) 121.2(5) C(39)-C(38)-C(37) 120.0(4) C(38)-C(39)-C(40) 122.1(5) C(39)-C(40)-C(35) 117.1(5) C(39)-C(40)-C(44) 120.6(5) C(35)-C(40)-C(44) 121.9(4) C(36)-C(41)-C(42) 114.0(4) C(36)-C(41)-C(43) 110.5(4) C(42)-C(41)-C(43) 108.8(4) C(40)-C(44)-C(46) 113.0(5) C(40)-C(44)-C(45) 109.2(4) C(46)-C(44)-C(45) 109.8(4) Cl(3A)-C(49A)-Cl(2A) 117.1(10) Cl(3B)-C(49B)-Cl(2B) 114.6(13) Cl(3C)-C(49C)-Cl(2C) 95.6(12) Cl(5A)-C(50A)-Cl(4A) 109.6(6) Cl(5B)-C(50B)-Cl(4B) 108(4) Cl(5C)-C(50C)-Cl(4C) 113.1(19)

_______________________________________________________________________

243

APPENDIX D

BOND DISTANCES AND ANGLES CORRESPONDING TO SOLID STATE

STRUCTURES IN CHAPTER V*

Table D.1. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 1. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Fe(1) 4144(1) 1414(1) 4005(1) 31(1) N(1) 3740(6) 398(6) 4470(5) 37(1) N(2) 3437(6) 688(6) 3080(5) 37(1) O(1) 4932(4) 1683(5) 4978(4) 36(1) O(2) 5020(4) 1511(5) 3589(4) 39(1) O(3) 3265(5) 2246(5) 3734(4) 42(1) C(1) 3218(7) -230(7) 3957(6) 37(1) C(2) 3923(7) 317(8) 5174(6) 37(1) C(3) 4417(7) 878(8) 5743(6) 37(1) C(4) 4889(7) 1559(8) 5631(6) 37(1) C(5) 5353(7) 2100(7) 6218(6) 38(1) C(6) 5282(7) 1939(7) 6901(6) 38(1) C(7) 4811(7) 1281(8) 7033(6) 38(1) C(8) 4396(7) 731(8) 6462(6) 38(1) C(9) 4713(7) 1210(7) 7782(6) 39(1) C(10) 4308(7) 2020(7) 7926(6) 40(1) C(11) 4121(7) 481(7) 7817(6) 40(1) C(12) 5645(7) 1097(7) 8389(6) 39(1) C(13) 5868(7) 2851(7) 6120(6) 38(1) C(14) 6296(7) 3344(7) 6824(6) 38(1) C(15) 6634(7) 2570(7) 5878(6) 38(1) C(16) 5244(7) 3437(7) 5525(6) 39(1) C(17) 2759(7) 150(7) 3195(6) 37(1) C(18) 3548(7) 710(7) 2482(6) 38(1) _______________ * Appear in the order in which they are described in the chapter.

244

C(19) 4227(7) 1171(7) 2329(6) 38(1) C(20) 4974(7) 1530(8) 2902(6) 39(1) C(21) 5653(7) 1926(8) 2718(6) 40(1) C(22) 5524(7) 1951(7) 1987(6) 40(1) C(23) 4784(7) 1627(8) 1390(6) 40(1) C(24) 4150(7) 1225(7) 1588(6) 39(1) C(25) 4745(7) 1700(8) 603(6) 42(1) C(26) 4655(8) 2643(7) 380(6) 43(1) C(27) 3923(7) 1265(7) 56(6) 42(1) C(28) 5576(7) 1352(8) 534(6) 44(1) C(29) 6475(7) 2272(8) 3336(6) 41(1) C(30) 6212(7) 2973(7) 3751(6) 41(1) C(31) 6962(7) 1597(7) 3865(6) 41(1) C(32) 7126(7) 2658(7) 3014(6) 41(1) C(33) 3123(7) 2952(8) 4037(6) 43(1) C(34) 3382(7) 3723(8) 3832(6) 43(1) C(35) 3248(7) 4420(8) 4201(6) 44(1) C(36) 2890(7) 4371(8) 4737(6) 44(1) C(37) 2625(7) 3643(8) 4908(6) 44(1) C(38) 2717(7) 2905(8) 4564(6) 44(1) C(39) 2366(7) 2134(8) 4741(7) 46(1) C(40) 1798(7) 1630(8) 4172(7) 47(1) C(41) 1384(8) 931(8) 4323(7) 48(1) C(42) 1580(7) 713(8) 5059(7) 48(1) C(43) 2119(7) 1207(8) 5619(7) 48(1) C(44) 2514(7) 1895(8) 5472(7) 47(1) C(45) 3770(7) 3806(8) 3263(6) 43(1) C(46) 3531(7) 3298(8) 2642(6) 43(1) C(47) 3872(7) 3441(8) 2102(6) 43(1) C(48) 4441(7) 4081(8) 2144(6) 43(1) C(49) 4677(7) 4590(8) 2763(6) 43(1) C(50) 4378(7) 4452(8) 3327(7) 43(1) C(1S) 2144(11) 9389(10) 7851(9) 78(2) Cl(1') 1709(6) 8871(5) 8135(5) 78(2) Cl(2') 1382(17) 9814(15) 6830(13) 108(4) Cl(1S) 2253(5) 10096(5) 8449(5) 78(2) Cl(2S) 1350(20) 9435(17) 6962(15) 108(4) _______________________________________________________________________

245

Table D.2. Bond lengths [Å] and angles [°] for 1. _______________________________________________________________________ Fe(1)-O(3) 1.876(8) Fe(1)-O(2) 1.887(6) Fe(1)-O(1) 1.894(7) Fe(1)-N(2) 2.091(9) Fe(1)-N(1) 2.094(9) N(1)-C(2) 1.301(12) N(1)-C(1) 1.448(13) N(2)-C(18) 1.249(12) N(2)-C(17) 1.478(13) O(1)-C(4) 1.321(11) O(2)-C(20) 1.316(12) O(3)-C(33) 1.343(13) C(1)-C(17) 1.518(14) C(2)-C(3) 1.420(15) C(3)-C(4) 1.399(15) C(3)-C(8) 1.439(14) C(4)-C(5) 1.409(15) C(5)-C(6) 1.407(14) C(5)-C(13) 1.520(15) C(6)-C(7) 1.386(15) C(7)-C(8) 1.384(14) C(7)-C(9) 1.536(14) C(9)-C(10) 1.535(15) C(9)-C(11) 1.532(15) C(9)-C(12) 1.531(14) C(13)-C(14) 1.511(14) C(13)-C(15) 1.549(13) C(13)-C(16) 1.540(14) C(18)-C(19) 1.447(14) C(19)-C(24) 1.409(14) C(19)-C(20) 1.419(15) C(20)-C(21) 1.429(14) C(21)-C(22) 1.364(14) C(21)-C(29) 1.520(15) C(22)-C(23) 1.416(15) C(23)-C(24) 1.384(14) C(23)-C(25) 1.520(15) C(25)-C(28) 1.505(14) C(25)-C(27) 1.521(15) C(25)-C(26) 1.572(15) C(29)-C(31) 1.501(15) C(29)-C(32) 1.546(14)

C(29)-C(30) 1.542(14) C(33)-C(38) 1.418(15) C(33)-C(34) 1.418(16) C(34)-C(35) 1.397(15) C(34)-C(45) 1.475(15) C(35)-C(36) 1.377(14) C(36)-C(37) 1.335(15) C(37)-C(38) 1.402(15) C(38)-C(39) 1.460(16) C(39)-C(40) 1.400(15) C(39)-C(44) 1.411(15) C(40)-C(41) 1.398(15) C(41)-C(42) 1.396(15) C(42)-C(43) 1.367(16) C(43)-C(44) 1.363(15) C(45)-C(46) 1.391(15) C(45)-C(50) 1.402(15) C(46)-C(47) 1.381(14) C(47)-C(48) 1.364(15) C(48)-C(49) 1.392(15) C(49)-C(50) 1.379(14) C(1S)-Cl(1') 1.340(15) C(1S)-Cl(1S) 1.594(16) C(1S)-Cl(2S) 1.73(3) C(1S)-Cl(2') 2.02(3) Cl(1')-Cl(1S) 2.154(12) Cl(1')-Cl(2S) 2.33(2) Cl(2')-Cl(2S) 0.67(2) O(3)-Fe(1)-O(2) 115.4(3) O(3)-Fe(1)-O(1) 105.5(3) O(2)-Fe(1)-O(1) 95.0(3) O(3)-Fe(1)-N(2) 92.9(3) O(2)-Fe(1)-N(2) 85.7(3) O(1)-Fe(1)-N(2) 159.1(3) O(3)-Fe(1)-N(1) 110.9(3) O(2)-Fe(1)-N(1) 131.3(3) O(1)-Fe(1)-N(1) 86.8(3) N(2)-Fe(1)-N(1) 77.3(4) C(2)-N(1)-C(1) 120.1(10) C(2)-N(1)-Fe(1) 123.7(8) C(1)-N(1)-Fe(1) 116.2(7)

246

C(18)-N(2)-C(17) 122.4(10) C(18)-N(2)-Fe(1) 124.7(8) C(17)-N(2)-Fe(1) 112.9(6) C(4)-O(1)-Fe(1) 132.5(7) C(20)-O(2)-Fe(1) 132.8(7) C(33)-O(3)-Fe(1) 135.9(7) N(1)-C(1)-C(17) 109.6(9) N(1)-C(2)-C(3) 126.8(12) C(4)-C(3)-C(8) 119.9(11) C(4)-C(3)-C(2) 123.7(10) C(8)-C(3)-C(2) 116.4(11) O(1)-C(4)-C(3) 120.1(10) O(1)-C(4)-C(5) 119.1(11) C(3)-C(4)-C(5) 120.7(10) C(6)-C(5)-C(4) 116.7(11) C(6)-C(5)-C(13) 120.7(10) C(4)-C(5)-C(13) 122.5(10) C(7)-C(6)-C(5) 124.5(11) C(8)-C(7)-C(6) 118.1(10) C(8)-C(7)-C(9) 121.9(11) C(6)-C(7)-C(9) 119.8(10) C(7)-C(8)-C(3) 120.0(11) C(10)-C(9)-C(11) 109.2(9) C(10)-C(9)-C(7) 108.4(9) C(11)-C(9)-C(7) 113.0(10) C(10)-C(9)-C(12) 108.7(9) C(11)-C(9)-C(12) 108.7(9) C(7)-C(9)-C(12) 108.8(9) C(14)-C(13)-C(5) 112.7(9) C(14)-C(13)-C(15) 106.9(9) C(5)-C(13)-C(15) 110.1(9) C(14)-C(13)-C(16) 107.9(9) C(5)-C(13)-C(16) 110.6(9) C(15)-C(13)-C(16) 108.4(9) N(2)-C(17)-C(1) 105.8(8) N(2)-C(18)-C(19) 126.6(11) C(24)-C(19)-C(20) 120.3(10) C(24)-C(19)-C(18) 117.8(10) C(20)-C(19)-C(18) 121.9(10) O(2)-C(20)-C(21) 121.0(10) O(2)-C(20)-C(19) 120.0(10) C(21)-C(20)-C(19) 119.0(10) C(22)-C(21)-C(20) 116.8(10) C(22)-C(21)-C(29) 124.2(10)

C(20)-C(21)-C(29) 119.0(10) C(21)-C(22)-C(23) 126.8(11) C(24)-C(23)-C(22) 115.0(10) C(24)-C(23)-C(25) 124.7(10) C(22)-C(23)-C(25) 120.3(10) C(23)-C(24)-C(19) 122.1(11) C(28)-C(25)-C(23) 111.4(9) C(28)-C(25)-C(27) 109.5(9) C(23)-C(25)-C(27) 111.4(9) C(28)-C(25)-C(26) 109.1(9) C(23)-C(25)-C(26) 108.6(10) C(27)-C(25)-C(26) 106.7(9) C(31)-C(29)-C(21) 110.7(10) C(31)-C(29)-C(32) 108.3(9) C(21)-C(29)-C(32) 110.2(9) C(31)-C(29)-C(30) 110.2(9) C(21)-C(29)-C(30) 110.8(9) C(32)-C(29)-C(30) 106.5(10) O(3)-C(33)-C(38) 118.7(11) O(3)-C(33)-C(34) 120.0(10) C(38)-C(33)-C(34) 121.4(12) C(35)-C(34)-C(33) 116.0(10) C(35)-C(34)-C(45) 120.7(12) C(33)-C(34)-C(45) 123.2(11) C(36)-C(35)-C(34) 122.6(12) C(37)-C(36)-C(35) 120.6(12) C(36)-C(37)-C(38) 121.6(11) C(33)-C(38)-C(37) 117.8(12) C(33)-C(38)-C(39) 123.0(12) C(37)-C(38)-C(39) 119.2(10) C(40)-C(39)-C(44) 117.0(12) C(40)-C(39)-C(38) 120.1(11) C(44)-C(39)-C(38) 122.7(12) C(39)-C(40)-C(41) 121.4(12) C(42)-C(41)-C(40) 118.8(12) C(43)-C(42)-C(41) 120.3(13) C(42)-C(43)-C(44) 120.8(12) C(43)-C(44)-C(39) 121.6(12) C(46)-C(45)-C(50) 117.9(11) C(46)-C(45)-C(34) 123.3(11) C(50)-C(45)-C(34) 118.8(11) C(45)-C(46)-C(47) 120.7(12) C(48)-C(47)-C(46) 122.3(12) C(47)-C(48)-C(49) 117.0(11)

247

C(50)-C(49)-C(48) 122.5(12) C(49)-C(50)-C(45) 119.6(12) Cl(1')-C(1S)-Cl(1S) 94.1(10) Cl(1')-C(1S)-Cl(2S) 97.9(14) Cl(1S)-C(1S)-Cl(2S) 122.7(13) Cl(1')-C(1S)-Cl(2') 113.7(13) Cl(1S)-C(1S)-Cl(2') 109.7(11) Cl(2S)-C(1S)-Cl(2') 18.6(12)

C(1S)-Cl(1')-Cl(1S) 47.6(7) C(1S)-Cl(1')-Cl(2S) 47.3(11) Cl(1S)-Cl(1')-Cl(2S) 81.1(9) Cl(2S)-Cl(2')-C(1S) 55(4) C(1S)-Cl(1S)-Cl(1') 38.4(6) Cl(2')-Cl(2S)-C(1S) 107(6) Cl(2')-Cl(2S)-Cl(1') 135(5) C(1S)-Cl(2S)-Cl(1') 34.8(7)

_______________________________________________________________________ Table D.3. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Fe(1) 5424(1) 6147(1) 8639(1) 27(1) N(1) 5817(2) 6130(3) 7963(1) 25(1) N(2) 5200(2) 4401(4) 8333(1) 29(1) O(1) 5619(1) 7873(3) 8649(1) 30(1) O(2) 4661(1) 6482(3) 8570(1) 26(1) O(3) 6135(1) 5270(3) 8825(1) 36(1) O(4) 5283(1) 6110(3) 9336(1) 30(1) C(1) 5765(2) 4966(4) 7687(2) 30(1) C(2) 6146(2) 6977(5) 7813(2) 30(1) C(3) 6248(2) 8188(4) 8028(2) 27(1) C(4) 5975(2) 8597(4) 8436(2) 26(1) C(5) 6079(2) 9848(5) 8610(2) 29(1) C(6) 6442(2) 10570(5) 8372(2) 29(1) C(7) 6725(2) 10175(5) 7961(2) 30(1) C(8) 6617(2) 8987(4) 7800(2) 27(1) C(9) 7112(2) 11079(4) 7722(2) 31(1) C(10) 7396(2) 10466(5) 7298(2) 39(1) C(11) 6786(2) 12227(5) 7536(2) 43(2) C(12) 7544(2) 11512(6) 8073(2) 52(2) C(13) 5770(2) 10345(4) 9041(2) 34(1) C(14) 5169(2) 10438(5) 8908(2) 44(2) C(15) 5839(2) 9486(5) 9474(2) 41(1) C(16) 5959(3) 11650(5) 9181(2) 49(2) C(17) 5614(2) 3895(4) 8020(2) 33(1) C(18) 4736(2) 3868(4) 8368(2) 27(1) C(19) 4281(2) 4429(4) 8611(2) 26(1)

248

C(20) 4263(2) 5732(5) 8703(2) 27(1) C(21) 3796(2) 6221(4) 8931(2) 26(1) C(22) 3399(2) 5387(5) 9056(2) 32(1) C(23) 3408(2) 4078(5) 8969(2) 32(1) C(24) 3851(2) 3646(5) 8732(2) 31(1) C(25) 2943(2) 3194(5) 9119(2) 36(1) C(26) 3166(3) 2163(6) 9436(2) 64(2) C(27) 2684(3) 2653(6) 8687(2) 62(2) C(28) 2506(2) 3899(6) 9396(3) 66(2) C(29) 3756(2) 7630(5) 9048(2) 31(1) C(30) 3218(2) 7968(5) 9283(2) 46(2) C(31) 3800(2) 8441(5) 8600(2) 40(1) C(32) 4201(2) 7995(5) 9399(2) 38(1) C(33) 5391(2) 6333(5) 10157(2) 40(1) C(34) 5596(2) 5933(5) 9690(2) 34(1) C(35) 6112(2) 5400(5) 9650(2) 38(1) C(36) 6347(2) 5078(5) 9228(2) 34(1) C(37) 6892(2) 4469(5) 9219(2) 45(2) N(1S) 5000 -1167(7) 7500 79(3) C(1S) 5000 88(10) 7500 94(5) C(2S) 4790(13) 1144(11) 7541(15) 290(30) _______________________________________________________________________ Table D.4. Bond lengths [Å] and angles [°] for 2. _______________________________________________________________________ Fe(1)-O(1) 1.898(3) Fe(1)-O(2) 1.934(3) Fe(1)-O(4) 2.006(3) Fe(1)-O(3) 2.060(3) Fe(1)-N(2) 2.124(4) Fe(1)-N(1) 2.154(4) N(1)-C(2) 1.288(6) N(1)-C(1) 1.471(6) N(2)-C(18) 1.287(6) N(2)-C(17) 1.461(6) O(1)-C(4) 1.320(5) O(2)-C(20) 1.325(5) O(3)-C(36) 1.273(6) O(4)-C(34) 1.282(6) C(1)-C(17) 1.527(7) C(2)-C(3) 1.446(7) C(3)-C(8) 1.409(6) C(3)-C(4) 1.411(7)

C(4)-C(5) 1.442(7) C(5)-C(6) 1.363(6) C(5)-C(13) 1.539(7) C(6)-C(7) 1.426(7) C(7)-C(8) 1.369(7) C(7)-C(9) 1.522(7) C(9)-C(12) 1.529(8) C(9)-C(10) 1.539(7) C(9)-C(11) 1.555(7) C(13)-C(16) 1.518(7) C(13)-C(15) 1.537(7) C(13)-C(14) 1.538(7) C(18)-C(19) 1.453(6) C(19)-C(24) 1.395(7) C(19)-C(20) 1.411(7) C(20)-C(21) 1.429(6) C(21)-C(22) 1.374(6) C(21)-C(29) 1.538(7)

249

C(22)-C(23) 1.415(7) C(23)-C(24) 1.370(7) C(23)-C(25) 1.549(7) C(25)-C(27) 1.494(8) C(25)-C(26) 1.520(8) C(25)-C(28) 1.537(8) C(29)-C(30) 1.536(7) C(29)-C(32) 1.532(7) C(29)-C(31) 1.540(7) C(33)-C(34) 1.482(7) C(34)-C(35) 1.404(7) C(35)-C(36) 1.377(7) C(36)-C(37) 1.498(7) N(1S)-C(1S) 1.335(12) C(1S)-C(2S)#1 1.243(19) C(1S)-C(2S) 1.243(19) C(2S)-C(2S)#1 1.07(8) O(1)-Fe(1)-O(2) 94.12(13) O(1)-Fe(1)-O(4) 92.92(13) O(2)-Fe(1)-O(4) 85.88(13) O(1)-Fe(1)-O(3) 102.53(14) O(2)-Fe(1)-O(3) 160.81(13) O(4)-Fe(1)-O(3) 83.84(14) O(1)-Fe(1)-N(2) 156.61(15) O(2)-Fe(1)-N(2) 82.30(14) O(4)-Fe(1)-N(2) 109.78(14) O(3)-Fe(1)-N(2) 85.99(15) O(1)-Fe(1)-N(1) 84.52(14) O(2)-Fe(1)-N(1) 111.00(14) O(4)-Fe(1)-N(1) 163.04(14) O(3)-Fe(1)-N(1) 80.38(14) N(2)-Fe(1)-N(1) 75.38(15) C(2)-N(1)-C(1) 117.9(4) C(2)-N(1)-Fe(1) 125.3(3) C(1)-N(1)-Fe(1) 116.2(3) C(18)-N(2)-C(17) 121.1(4) C(18)-N(2)-Fe(1) 125.8(3) C(17)-N(2)-Fe(1) 112.7(3) C(4)-O(1)-Fe(1) 136.8(3) C(20)-O(2)-Fe(1) 126.1(3) C(36)-O(3)-Fe(1) 130.7(3) C(34)-O(4)-Fe(1) 131.8(3) N(1)-C(1)-C(17) 108.6(4)

N(1)-C(2)-C(3) 126.4(4) C(8)-C(3)-C(4) 120.3(4) C(8)-C(3)-C(2) 117.2(4) C(4)-C(3)-C(2) 122.4(4) O(1)-C(4)-C(3) 121.2(4) O(1)-C(4)-C(5) 120.1(4) C(3)-C(4)-C(5) 118.7(4) C(6)-C(5)-C(4) 117.9(4) C(6)-C(5)-C(13) 122.1(4) C(4)-C(5)-C(13) 120.0(4) C(5)-C(6)-C(7) 124.5(5) C(8)-C(7)-C(6) 116.7(4) C(8)-C(7)-C(9) 123.8(4) C(6)-C(7)-C(9) 119.5(4) C(7)-C(8)-C(3) 122.0(5) C(7)-C(9)-C(12) 110.0(4) C(7)-C(9)-C(10) 111.8(4) C(12)-C(9)-C(10) 108.3(4) C(7)-C(9)-C(11) 108.6(4) C(12)-C(9)-C(11) 110.2(4) C(10)-C(9)-C(11) 107.9(4) C(16)-C(13)-C(5) 111.5(4) C(16)-C(13)-C(15) 107.6(5) C(5)-C(13)-C(15) 112.0(4) C(16)-C(13)-C(14) 107.6(4) C(5)-C(13)-C(14) 108.2(4) C(15)-C(13)-C(14) 109.8(4) N(2)-C(17)-C(1) 106.0(4) N(2)-C(18)-C(19) 123.6(4) C(24)-C(19)-C(20) 121.1(5) C(24)-C(19)-C(18) 117.8(4) C(20)-C(19)-C(18) 121.0(4) O(2)-C(20)-C(19) 121.1(4) O(2)-C(20)-C(21) 121.0(4) C(19)-C(20)-C(21) 117.8(4) C(22)-C(21)-C(20) 117.8(4) C(22)-C(21)-C(29) 121.8(4) C(20)-C(21)-C(29) 120.4(4) C(21)-C(22)-C(23) 125.3(5) C(24)-C(23)-C(22) 115.5(5) C(24)-C(23)-C(25) 122.1(5) C(22)-C(23)-C(25) 122.4(5) C(23)-C(24)-C(19) 122.4(5) C(27)-C(25)-C(26) 111.1(5)

250

C(27)-C(25)-C(28) 107.9(5) C(26)-C(25)-C(28) 107.7(5) C(27)-C(25)-C(23) 109.1(4) C(26)-C(25)-C(23) 109.3(4) C(28)-C(25)-C(23) 111.8(4) C(30)-C(29)-C(32) 106.5(4) C(30)-C(29)-C(21) 112.2(4) C(32)-C(29)-C(21) 109.9(4) C(30)-C(29)-C(31) 106.9(4) C(32)-C(29)-C(31) 109.9(4) C(21)-C(29)-C(31) 111.2(4)

O(4)-C(34)-C(35) 123.0(5) O(4)-C(34)-C(33) 116.7(5) C(35)-C(34)-C(33) 120.4(5) C(36)-C(35)-C(34) 124.2(5) O(3)-C(36)-C(35) 124.3(5) O(3)-C(36)-C(37) 115.1(5) C(35)-C(36)-C(37) 120.6(5) C(2S)#1-C(1S)-C(2S) 51(3) C(2S)#1-C(1S)-N(1S) 154.6(17) C(2S)-C(1S)-N(1S) 154.6(17) C(2S)#1-C(2S)-C(1S) 64.6(17)

_______________________________________________________________________ Table D.5. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 3. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Fe(1) 153(1) 4947(1) 1566(1) 18(1) N(1) -176(1) 3778(1) 1231(1) 20(1) N(2) -576(1) 5132(1) 485(2) 20(1) O(1) 896(1) 4453(1) 1786(1) 23(1) O(2) 391(1) 6008(1) 1382(1) 23(1) O(3) 0 5025(2) 2500 23(1) C(1) -792(1) 3760(2) 741(2) 25(1) C(2) 99(1) 3142(2) 1532(2) 22(1) C(3) 697(1) 3109(2) 2084(2) 21(1) C(4) 1074(1) 3780(2) 2204(2) 22(1) C(5) 1646(1) 3703(2) 2775(2) 25(1) C(6) 1809(1) 2979(2) 3189(2) 26(1) C(7) 1446(1) 2313(2) 3087(2) 24(1) C(8) 893(1) 2400(2) 2524(2) 23(1) C(9) 1636(1) 1551(2) 3612(2) 27(1) C(10) 1403(2) 1580(2) 4332(2) 38(1) C(11) 1403(2) 801(2) 3086(2) 44(1) C(12) 2298(2) 1472(2) 3979(2) 39(1) C(13) 2061(1) 4418(2) 2948(2) 33(1) C(14) 1813(2) 5119(2) 3299(3) 46(1) C(15) 2159(2) 4675(3) 2151(3) 50(1) C(16) 2651(2) 4213(2) 3599(3) 51(1) C(17) -915(1) 4423(2) 93(2) 23(1)

251

C(18) -744(1) 5815(2) 145(2) 23(1) C(19) -459(1) 6574(2) 399(2) 23(1) C(20) 96(1) 6643(2) 1022(2) 22(1) C(21) 333(1) 7425(2) 1246(2) 25(1) C(22) 13(2) 8065(2) 810(2) 30(1) C(23) -533(2) 8008(2) 176(2) 30(1) C(24) -757(1) 7254(2) -15(2) 28(1) C(25) -845(2) 8761(2) -254(2) 41(1) C(26) -1438(2) 8572(2) -895(2) 46(1) C(27) -924(2) 9334(3) 401(3) 62(1) C(28) -478(2) 9178(2) -697(2) 45(1) C(29) 915(1) 7539(2) 1956(2) 30(1) C(30) 878(2) 7193(2) 2768(2) 33(1) C(31) 1404(1) 7130(2) 1745(2) 33(1) C(32) 1073(2) 8425(2) 2115(2) 40(1) C(1S) 2500 2500 0 142(6) C(2S) 2399(10) 3954(10) 304(15) 347(15) O(1S) 2523(3) 3240(6) 564(3) 122(3) O(2S) 2313(5) 3084(7) -2(10) 221(5) _______________________________________________________________________ Table D.6. Bond lengths [Å] and angles [°] for 3. _______________________________________________________________________ Fe(1)-O(3) 1.7653(10) Fe(1)-O(1) 1.917(2) Fe(1)-O(2) 1.926(2) Fe(1)-N(2) 2.100(3) Fe(1)-N(1) 2.116(3) N(1)-C(2) 1.267(4) N(1)-C(1) 1.453(4) N(2)-C(18) 1.282(4) N(2)-C(17) 1.469(4) O(1)-C(4) 1.322(4) O(2)-C(20) 1.311(4) O(3)-Fe(1)#1 1.7653(10) C(1)-C(17) 1.519(4) C(2)-C(3) 1.444(4) C(3)-C(8) 1.397(4) C(3)-C(4) 1.421(4) C(4)-C(5) 1.411(4) C(5)-C(6) 1.388(4) C(5)-C(13) 1.531(4) C(6)-C(7) 1.397(4)

C(7)-C(8) 1.372(4) C(7)-C(9) 1.534(4) C(9)-C(10) 1.526(5) C(9)-C(11) 1.532(5) C(9)-C(12) 1.530(5) C(13)-C(16) 1.527(5) C(13)-C(14) 1.535(5) C(13)-C(15) 1.524(5) C(18)-C(19) 1.440(4) C(19)-C(20) 1.412(4) C(19)-C(24) 1.403(4) C(20)-C(21) 1.428(4) C(21)-C(22) 1.382(5) C(21)-C(29) 1.531(5) C(22)-C(23) 1.404(5) C(23)-C(24) 1.368(5) C(23)-C(25) 1.522(5) C(25)-C(26) 1.521(6) C(25)-C(28) 1.530(5) C(25)-C(27) 1.534(5)

252

C(29)-C(32) 1.531(5) C(29)-C(30) 1.534(5) C(29)-C(31) 1.529(5) C(1S)-O(2S) 1.078(12) C(1S)-O(2S)#2 1.078(12) C(1S)-O(1S) 1.556(8) C(1S)-O(1S)#2 1.556(8) C(2S)-O(1S) 1.27(2) C(2S)-O(2S) 1.534(17) O(1S)-O(2S) 0.960(17) O(3)-Fe(1)-O(1) 109.92(7) O(3)-Fe(1)-O(2) 104.60(10) O(1)-Fe(1)-O(2) 96.10(9) O(3)-Fe(1)-N(2) 113.58(8) O(1)-Fe(1)-N(2) 134.26(9) O(2)-Fe(1)-N(2) 86.30(9) O(3)-Fe(1)-N(1) 97.50(10) O(1)-Fe(1)-N(1) 84.44(9) O(2)-Fe(1)-N(1) 156.18(9) N(2)-Fe(1)-N(1) 76.67(9) C(2)-N(1)-C(1) 121.2(3) C(2)-N(1)-Fe(1) 124.4(2) C(1)-N(1)-Fe(1) 113.42(18) C(18)-N(2)-C(17) 117.9(2) C(18)-N(2)-Fe(1) 124.9(2) C(17)-N(2)-Fe(1) 117.20(18) C(4)-O(1)-Fe(1) 125.83(17) C(20)-O(2)-Fe(1) 132.15(19) Fe(1)-O(3)-Fe(1)#1 171.63(17) N(1)-C(1)-C(17) 108.0(2) N(1)-C(2)-C(3) 125.0(3) C(8)-C(3)-C(4) 120.4(3) C(8)-C(3)-C(2) 117.8(3) C(4)-C(3)-C(2) 121.8(3) O(1)-C(4)-C(5) 120.9(3) O(1)-C(4)-C(3) 121.1(3) C(5)-C(4)-C(3) 118.0(3) C(6)-C(5)-C(4) 118.2(3) C(6)-C(5)-C(13) 121.8(3) C(4)-C(5)-C(13) 119.9(3) C(5)-C(6)-C(7) 124.9(3) C(8)-C(7)-C(6) 115.9(3) C(8)-C(7)-C(9) 121.5(3)

C(6)-C(7)-C(9) 122.5(3) C(7)-C(8)-C(3) 122.6(3) C(7)-C(9)-C(10) 108.8(2) C(7)-C(9)-C(11) 111.2(3) C(10)-C(9)-C(11) 109.3(3) C(7)-C(9)-C(12) 112.0(3) C(10)-C(9)-C(12) 108.3(3) C(11)-C(9)-C(12) 107.2(3) C(5)-C(13)-C(16) 111.4(3) C(5)-C(13)-C(14) 110.1(3) C(16)-C(13)-C(14) 107.0(3) C(5)-C(13)-C(15) 110.4(3) C(16)-C(13)-C(15) 108.0(3) C(14)-C(13)-C(15) 109.9(3) N(2)-C(17)-C(1) 108.6(2) N(2)-C(18)-C(19) 126.9(3) C(20)-C(19)-C(24) 120.8(3) C(20)-C(19)-C(18) 122.7(3) C(24)-C(19)-C(18) 116.6(3) O(2)-C(20)-C(19) 121.2(3) O(2)-C(20)-C(21) 120.5(3) C(19)-C(20)-C(21) 118.3(3) C(22)-C(21)-C(20) 117.5(3) C(22)-C(21)-C(29) 122.0(3) C(20)-C(21)-C(29) 120.5(3) C(21)-C(22)-C(23) 125.1(3) C(24)-C(23)-C(22) 116.3(3) C(24)-C(23)-C(25) 123.6(3) C(22)-C(23)-C(25) 120.1(3) C(23)-C(24)-C(19) 122.0(3) C(23)-C(25)-C(26) 111.7(3) C(23)-C(25)-C(28) 109.3(3) C(26)-C(25)-C(28) 108.6(3) C(23)-C(25)-C(27) 109.5(3) C(26)-C(25)-C(27) 108.8(3) C(28)-C(25)-C(27) 108.8(3) C(21)-C(29)-C(32) 111.7(3) C(21)-C(29)-C(30) 109.7(3) C(32)-C(29)-C(30) 107.2(3) C(21)-C(29)-C(31) 110.5(3) C(32)-C(29)-C(31) 107.7(3) C(30)-C(29)-C(31) 110.0(3) O(2S)-C(1S)-O(2S)#2 180.0(13) O(2S)-C(1S)-O(1S) 37.5(10)

253

O(2S)#2-C(1S)-O(1S) 142.5(10) O(2S)-C(1S)-O(1S)#2 142.5(10) O(2S)#2-C(1S)-O(1S)#2 37.5(10) O(1S)-C(1S)-O(1S)#2 180.0(4) O(1S)-C(2S)-O(2S) 38.6(8) O(2S)-O(1S)-C(2S) 85.6(15)

O(2S)-O(1S)-C(1S) 43.1(9) C(2S)-O(1S)-C(1S) 125.1(11) O(1S)-O(2S)-C(1S) 99.4(16) O(1S)-O(2S)-C(2S) 55.8(14) C(1S)-O(2S)-C(2S) 148.0(16)

_______________________________________________________________________

254

APPENDIX E

BOND DISTANCES AND ANGLES CORRESPONDING TO SOLID STATE

STRUCTURES IN CHAPTER VI*

Table E.1. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 5. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Pt(1) 6820(1) 3754(1) 8669(1) 35(1) P(1) 8145(3) 3752(6) 8294(2) 40(1) P(2) 5620(3) 3758(5) 7956(2) 33(1) P(3) 6706(5) 2396(5) 9193(3) 32(2) P(4) 6755(5) 5125(5) 9195(3) 30(2) N(1) 9270(14) 4692(17) 7629(9) 64(4) N(2) 10069(11) 3692(17) 8374(7) 54(3) N(3) 9218(14) 2881(17) 7542(8) 61(4) N(4) 3669(10) 3769(15) 7607(6) 41(3) N(5) 4615(12) 2854(14) 7010(7) 45(3) N(6) 4588(12) 4680(14) 7017(7) 44(3) N(7) 5732(11) 1260(20) 9859(6) 40(3) N(8) 7437(11) 1190(20) 10091(6) 39(3) N(9) 6628(15) 376(15) 9251(9) 37(4) N(10) 6729(15) 7179(16) 9289(10) 38(4) N(11) 7547(10) 6260(20) 10122(6) 38(3) N(12) 5826(10) 6250(20) 9881(6) 34(3) C(1) 8435(17) 4810(20) 7874(11) 64(5) C(2) 9328(12) 3650(20) 8708(8) 50(5) C(3) 8327(16) 2786(19) 7796(10) 59(5) C(4) 9249(16) 3880(20) 7265(9) 67(4) C(5) 10122(16) 4580(20) 8055(10) 60(4) C(6) 10050(16) 2860(20) 8029(10) 58(4) _______________ * Appear in the order in which they are described in the chapter.

255

C(7) 4420(12) 3779(19) 8126(7) 40(4) C(8) 5461(16) 2735(17) 7449(9) 46(5) C(9) 5424(16) 4787(18) 7439(9) 48(5) C(10) 3738(15) 2841(17) 7248(9) 43(4) C(11) 4671(13) 3767(19) 6694(8) 44(4) C(12) 3762(14) 4633(17) 7234(9) 40(4) C(13) 5700(17) 2172(18) 9560(11) 42(5) C(14) 7624(16) 2132(18) 9807(10) 37(5) C(15) 6701(13) 1210(20) 8861(7) 33(4) C(16) 6515(12) 1230(20) 10296(8) 42(4) C(17) 7412(16) 311(19) 9703(10) 39(4) C(18) 5769(17) 400(20) 9498(11) 42(4) C(19) 6788(13) 6363(19) 8890(8) 35(4) C(20) 7673(15) 5331(18) 9799(9) 34(5) C(21) 5746(15) 5277(18) 9560(10) 30(4) C(22) 7515(17) 7160(20) 9718(11) 42(4) C(23) 6605(12) 6250(20) 10331(7) 39(3) C(24) 5883(16) 7080(19) 9526(11) 38(4) C(25) 9311(19) 2100(20) 7146(11) 87(7) C(26) 2692(15) 3770(20) 7790(9) 69(6) C(27) 8236(15) 1027(19) 10572(10) 60(7) C(28) 8350(15) 6360(20) 10601(9) 64(6) S(1) 3242(4) 6388(7) 8704(2) 48(2) F(1) 2400(10) 5707(11) 8492(6) 104(6) O(1) 3401(8) 6269(16) 9295(4) 49(4) O(2) 2928(11) 7355(9) 8521(6) 59(5) O(3) 3986(9) 6009(11) 8438(6) 57(5) S(2) 9194(7) 296(8) 8656(4) 110(3) O(5) 10248(11) 310(20) 8654(10) 230(20) O(4) 9205(14) 1215(13) 8976(7) 95(7) O(6) 8778(16) 295(19) 8055(9) 146(10) S(3) 3102(5) 1102(6) 8673(2) 48(2) F(3) 2164(10) 1608(11) 8402(6) 107(6) O(7) 3152(10) 1283(17) 9250(4) 65(4) O(8) 3800(9) 1607(13) 8440(7) 80(7) O(9) 2983(11) 98(9) 8509(6) 60(5) S(4) 9859(5) 3522(7) 594(3) 79(3) F(4) 9760(30) 4660(20) 235(15) 1600(200) O(10) 9907(14) 2936(18) 150(9) 132(10) O(11) 10668(8) 3737(16) 950(6) 62(5) O(12) 9090(16) 3560(40) 818(11) 350(40) F(2) 8980(20) -531(15) 8923(10) 300(20) O(1W) 1397(13) 2207(19) 1664(8) 117(8) ______________________________________________________________________

256

Table E.2. Bond lengths [Å] and angles [°] for 5. _______________________________________________________________________ Pt(1)-P(2) 2.261(5) Pt(1)-P(1) 2.266(5) Pt(1)-P(3) 2.270(7) Pt(1)-P(4) 2.275(7) P(1)-C(3) 1.84(2) P(1)-C(1) 1.85(3) P(1)-C(2) 1.86(2) P(2)-C(8) 1.85(2) P(2)-C(7) 1.862(17) P(2)-C(9) 1.87(2) P(3)-C(15) 1.81(3) P(3)-C(13) 1.86(2) P(3)-C(14) 1.88(2) P(4)-C(20) 1.85(2) P(4)-C(21) 1.85(2) P(4)-C(19) 1.85(3) N(1)-C(4) 1.42(3) N(1)-C(1) 1.45(3) N(1)-C(5) 1.49(3) N(2)-C(6) 1.40(3) N(2)-C(5) 1.45(3) N(2)-C(2) 1.45(2) N(3)-C(25) 1.46(3) N(3)-C(4) 1.52(3) N(3)-C(3) 1.53(3) N(3)-C(6) 1.56(3) N(4)-C(12) 1.51(3) N(4)-C(7) 1.54(2) N(4)-C(10) 1.55(3) N(4)-C(26) 1.56(2) N(5)-C(11) 1.47(3) N(5)-C(10) 1.49(3) N(5)-C(8) 1.51(3) N(6)-C(12) 1.39(2) N(6)-C(9) 1.47(3) N(6)-C(11) 1.49(3) N(7)-C(13) 1.43(3) N(7)-C(16) 1.43(2) N(7)-C(18) 1.48(3) N(8)-C(14) 1.50(3) N(8)-C(16) 1.51(2) N(8)-C(17) 1.53(3)

N(8)-C(27) 1.53(2) N(9)-C(17) 1.46(3) N(9)-C(18) 1.47(3) N(9)-C(15) 1.49(3) N(10)-C(22) 1.42(3) N(10)-C(24) 1.45(3) N(10)-C(19) 1.49(3) N(11)-C(20) 1.52(3) N(11)-C(28) 1.52(2) N(11)-C(23) 1.54(2) N(11)-C(22) 1.56(3) N(12)-C(24) 1.44(3) N(12)-C(23) 1.45(2) N(12)-C(21) 1.53(3) S(1)-O(1) 1.427(11) S(1)-O(3) 1.444(11) S(1)-O(2) 1.445(12) S(1)-F(1) 1.563(15) S(2)-F(2) 1.36(2) S(2)-O(4) 1.475(15) S(2)-O(6) 1.489(16) S(2)-O(5) 1.541(16) S(3)-O(7) 1.413(11) S(3)-O(8) 1.420(13) S(3)-O(9) 1.430(12) S(3)-F(3) 1.582(15) S(4)-O(12) 1.323(15) S(4)-O(10) 1.353(13) S(4)-O(11) 1.381(12) S(4)-F(4) 1.77(3) F(4)-F(4)#1 1.72(9) P(2)-Pt(1)-P(1) 107.46(19) P(2)-Pt(1)-P(3) 108.3(3) P(1)-Pt(1)-P(3) 111.5(3) P(2)-Pt(1)-P(4) 109.4(2) P(1)-Pt(1)-P(4) 109.9(3) P(3)-Pt(1)-P(4) 110.16(19) C(3)-P(1)-C(1) 97.4(10) C(3)-P(1)-C(2) 94.9(11) C(1)-P(1)-C(2) 94.7(11) C(3)-P(1)-Pt(1) 119.1(8)

257

C(1)-P(1)-Pt(1) 120.2(8) C(2)-P(1)-Pt(1) 124.1(6) C(8)-P(2)-C(7) 97.8(11) C(8)-P(2)-C(9) 97.5(9) C(7)-P(2)-C(9) 95.0(10) C(8)-P(2)-Pt(1) 120.5(7) C(7)-P(2)-Pt(1) 118.2(6) C(9)-P(2)-Pt(1) 122.2(8) C(15)-P(3)-C(13) 96.8(10) C(15)-P(3)-C(14) 97.7(10) C(13)-P(3)-C(14) 96.1(12) C(15)-P(3)-Pt(1) 118.6(7) C(13)-P(3)-Pt(1) 122.4(9) C(14)-P(3)-Pt(1) 119.7(8) C(20)-P(4)-C(21) 97.7(11) C(20)-P(4)-C(19) 96.8(11) C(21)-P(4)-C(19) 99.3(10) C(20)-P(4)-Pt(1) 118.8(8) C(21)-P(4)-Pt(1) 118.0(9) C(19)-P(4)-Pt(1) 121.4(7) C(4)-N(1)-C(1) 114(2) C(4)-N(1)-C(5) 107(2) C(1)-N(1)-C(5) 112.9(19) C(6)-N(2)-C(5) 110.8(17) C(6)-N(2)-C(2) 111(2) C(5)-N(2)-C(2) 116(2) C(25)-N(3)-C(4) 110.6(19) C(25)-N(3)-C(3) 112(2) C(4)-N(3)-C(3) 109.9(19) C(25)-N(3)-C(6) 110(2) C(4)-N(3)-C(6) 106.0(19) C(3)-N(3)-C(6) 107.7(17) C(12)-N(4)-C(7) 111.5(17) C(12)-N(4)-C(10) 106.5(14) C(7)-N(4)-C(10) 111.6(16) C(12)-N(4)-C(26) 109.8(17) C(7)-N(4)-C(26) 109.5(13) C(10)-N(4)-C(26) 107.9(18) C(11)-N(5)-C(10) 109.5(17) C(11)-N(5)-C(8) 110.7(17) C(10)-N(5)-C(8) 112.6(16) C(12)-N(6)-C(9) 114.5(17) C(12)-N(6)-C(11) 108.0(18) C(9)-N(6)-C(11) 108.8(17)

C(13)-N(7)-C(16) 111(2) C(13)-N(7)-C(18) 113.2(15) C(16)-N(7)-C(18) 108(2) C(14)-N(8)-C(16) 111(2) C(14)-N(8)-C(17) 112.3(14) C(16)-N(8)-C(17) 107(2) C(14)-N(8)-C(27) 107.8(18) C(16)-N(8)-C(27) 111.4(14) C(17)-N(8)-C(27) 107.2(19) C(17)-N(9)-C(18) 108(2) C(17)-N(9)-C(15) 113.4(19) C(18)-N(9)-C(15) 113.2(18) C(22)-N(10)-C(24) 110(2) C(22)-N(10)-C(19) 109.7(19) C(24)-N(10)-C(19) 109.2(19) C(20)-N(11)-C(28) 109.0(18) C(20)-N(11)-C(23) 110(2) C(28)-N(11)-C(23) 111.7(13) C(20)-N(11)-C(22) 109.0(13) C(28)-N(11)-C(22) 111(2) C(23)-N(11)-C(22) 106.2(19) C(24)-N(12)-C(23) 110(2) C(24)-N(12)-C(21) 112.7(14) C(23)-N(12)-C(21) 112(2) N(1)-C(1)-P(1) 114.7(18) N(2)-C(2)-P(1) 113.9(13) N(3)-C(3)-P(1) 115.1(16) N(1)-C(4)-N(3) 115.1(18) N(2)-C(5)-N(1) 110.1(19) N(2)-C(6)-N(3) 112(2) N(4)-C(7)-P(2) 113.1(11) N(5)-C(8)-P(2) 113.1(15) N(6)-C(9)-P(2) 114.5(16) N(5)-C(10)-N(4) 110.2(17) N(5)-C(11)-N(6) 114.7(14) N(6)-C(12)-N(4) 115.3(17) N(7)-C(13)-P(3) 114.8(16) N(8)-C(14)-P(3) 111.7(15) N(9)-C(15)-P(3) 113.2(13) N(7)-C(16)-N(8) 114.0(14) N(9)-C(17)-N(8) 110.8(18) N(9)-C(18)-N(7) 112(2) N(10)-C(19)-P(4) 114.6(14) N(11)-C(20)-P(4) 113.9(14)

258

N(12)-C(21)-P(4) 109.8(14) N(10)-C(22)-N(11) 115(2) N(12)-C(23)-N(11) 112.8(13) N(12)-C(24)-N(10) 116.5(19) O(1)-S(1)-O(3) 113.2(10) O(1)-S(1)-O(2) 114.0(12) O(3)-S(1)-O(2) 114.5(10) O(1)-S(1)-F(1) 105.0(9) O(3)-S(1)-F(1) 104.3(8) O(2)-S(1)-F(1) 104.4(8) F(2)-S(2)-O(4) 116.0(11) F(2)-S(2)-O(6) 112.1(12) O(4)-S(2)-O(6) 119.1(15) F(2)-S(2)-O(5) 108.4(12) O(4)-S(2)-O(5) 93.7(15)

O(6)-S(2)-O(5) 104.6(15) O(7)-S(3)-O(8) 112.4(11) O(7)-S(3)-O(9) 115.4(13) O(8)-S(3)-O(9) 114.7(11) O(7)-S(3)-F(3) 104.0(9) O(8)-S(3)-F(3) 104.5(8) O(9)-S(3)-F(3) 104.1(8) O(12)-S(4)-O(10) 120.1(16) O(12)-S(4)-O(11) 115.7(13) O(10)-S(4)-O(11) 118.5(12) O(12)-S(4)-F(4) 99.1(14) O(10)-S(4)-F(4) 97.9(12) O(11)-S(4)-F(4) 96.8(12) F(4)#1-F(4)-S(4) 142(4)

_______________________________________________________________________ Table E.3. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 7. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Pt(1) 1861(1) 7687(1) 3284(1) 8(1) P(1) 1889(2) 8629(2) 2041(2) 10(1) P(2) 3143(2) 6687(2) 3246(2) 11(1) P(3) 2179(2) 8871(2) 4692(2) 10(1) P(4) 248(2) 6573(2) 3172(2) 9(1) N(1) 1951(9) 8768(9) 69(7) 15(2) N(2) 1106(10) 10074(9) 1005(8) 19(2) N(3) 3084(9) 10290(9) 1253(8) 19(2) N(4) 4237(9) 5412(11) 2061(9) 23(2) N(5) 5278(9) 6530(10) 3551(9) 21(2) N(6) 3959(9) 4930(9) 3668(9) 18(2) N(7) 1631(9) 10606(8) 5839(8) 16(2) N(8) 2162(8) 9222(8) 6733(7) 12(2) N(9) 3508(9) 10453(9) 6088(8) 17(2) N(10) -1137(9) 5057(10) 3905(9) 21(2) N(11) -1143(9) 4712(9) 2131(8) 17(2) N(12) -1983(8) 6142(8) 2900(8) 13(2) C(1) 1863(10) 7999(9) 751(8) 12(2) C(2) 2949(10) 9522(10) 274(9) 15(2)

259

C(3) 3107(10) 9687(10) 2091(9) 16(2) C(4) 901(11) 9469(10) 1811(10) 17(2) C(5) 1066(11) 9350(11) 82(9) 18(2) C(6) 2096(13) 10841(10) 1224(10) 22(3) C(7) 3066(10) 5484(10) 3837(10) 16(2) C(8) 4574(10) 7305(11) 3710(11) 19(3) C(9) 3345(12) 6054(12) 2034(10) 22(3) C(10) 5289(11) 6136(13) 2523(10) 23(3) C(11) 5003(11) 5629(11) 4074(10) 21(3) C(12) 3952(12) 4512(11) 2656(11) 22(3) C(13) 1943(10) 8342(9) 5836(8) 13(2) C(14) 1377(10) 9933(10) 4872(9) 15(2) C(15) 3513(10) 9755(11) 5146(9) 16(2) C(16) 1406(10) 10018(10) 6616(9) 13(2) C(17) 3325(11) 9843(11) 6853(9) 19(3) C(18) 2763(11) 11160(10) 6013(9) 17(2) C(19) -61(10) 5437(11) 2151(10) 18(2) C(20) -88(11) 5776(12) 4150(10) 21(3) C(21) -1036(10) 7020(10) 2994(10) 15(2) C(22) -1198(11) 4242(10) 3078(12) 25(3) C(23) -2033(10) 5355(11) 2037(10) 17(2) C(24) -2003(10) 5641(11) 3769(10) 19(3) C(25) 4364(17) 4965(18) 1043(12) 43(5) C(26) 4063(13) 11117(13) 1352(12) 31(3) C(27) 1976(12) 8728(11) 7627(9) 20(3) C(28) -1321(13) 3822(13) 1267(14) 37(4) I(1) 4019(3) 7044(4) 6758(4) 155(2) I(2) 5129(3) 8183(4) 995(3) 149(1) I(3) 8675(1) 6543(1) 9737(1) 27(1) I(4) 8866(1) 7474(1) 6458(1) 21(1) O(1S) 2354(9) 1490(8) 8801(8) 26(2) O(2S) 3756(10) 1880(9) 3862(9) 33(3) O(3S) 3963(11) 6772(11) 9004(11) 44(3) _______________________________________________________________________ Table E.4. Bond lengths [Å] and angles [°] for 7. _______________________________________________________________________ Pt(1)-P(3) 2.253(3) Pt(1)-P(1) 2.260(3) Pt(1)-P(2) 2.262(3) Pt(1)-P(4) 2.264(3) P(1)-C(4) 1.839(13) P(1)-C(1) 1.859(12)

P(1)-C(3) 1.859(12) P(2)-C(9) 1.835(13) P(2)-C(7) 1.848(13) P(2)-C(8) 1.865(13) P(3)-C(14) 1.857(12) P(3)-C(13) 1.862(12)

260

P(3)-C(15) 1.860(13) P(4)-C(19) 1.838(13) P(4)-C(21) 1.843(13) P(4)-C(20) 1.867(14) N(1)-C(2) 1.429(17) N(1)-C(5) 1.468(17) N(1)-C(1) 1.470(15) N(2)-C(6) 1.429(19) N(2)-C(5) 1.465(17) N(2)-C(4) 1.481(16) N(3)-C(26) 1.468(18) N(3)-C(3) 1.499(16) N(3)-C(2) 1.538(16) N(3)-C(6) 1.558(19) N(4)-C(25) 1.491(19) N(4)-C(10) 1.509(19) N(4)-C(9) 1.527(17) N(4)-C(12) 1.536(19) N(5)-C(10) 1.455(19) N(5)-C(11) 1.468(18) N(5)-C(8) 1.468(17) N(6)-C(12) 1.437(18) N(6)-C(11) 1.472(17) N(6)-C(7) 1.475(16) N(7)-C(16) 1.438(16) N(7)-C(14) 1.462(16) N(7)-C(18) 1.472(17) N(8)-C(27) 1.506(16) N(8)-C(13) 1.522(14) N(8)-C(17) 1.535(16) N(8)-C(16) 1.546(15) N(9)-C(17) 1.432(17) N(9)-C(18) 1.438(17) N(9)-C(15) 1.481(16) N(10)-C(22) 1.43(2) N(10)-C(24) 1.460(17) N(10)-C(20) 1.461(16) N(11)-C(28) 1.502(17) N(11)-C(19) 1.516(16) N(11)-C(23) 1.531(17) N(11)-C(22) 1.54(2) N(12)-C(23) 1.443(16) N(12)-C(24) 1.458(17) N(12)-C(21) 1.477(16)

P(3)-Pt(1)-P(1) 107.97(11) P(3)-Pt(1)-P(2) 109.49(11) P(1)-Pt(1)-P(2) 110.33(11) P(3)-Pt(1)-P(4) 110.10(10) P(1)-Pt(1)-P(4) 110.43(11) P(2)-Pt(1)-P(4) 108.52(11) C(4)-P(1)-C(1) 97.1(6) C(4)-P(1)-C(3) 96.9(6) C(1)-P(1)-C(3) 96.2(6) C(4)-P(1)-Pt(1) 121.8(4) C(1)-P(1)-Pt(1) 123.0(4) C(3)-P(1)-Pt(1) 116.0(4) C(9)-P(2)-C(7) 97.5(6) C(9)-P(2)-C(8) 97.5(7) C(7)-P(2)-C(8) 97.3(6) C(9)-P(2)-Pt(1) 116.2(4) C(7)-P(2)-Pt(1) 122.1(4) C(8)-P(2)-Pt(1) 121.0(4) C(14)-P(3)-C(13) 96.3(6) C(14)-P(3)-C(15) 96.8(6) C(13)-P(3)-C(15) 97.8(6) C(14)-P(3)-Pt(1) 119.9(4) C(13)-P(3)-Pt(1) 118.0(4) C(15)-P(3)-Pt(1) 122.6(4) C(19)-P(4)-C(21) 97.1(6) C(19)-P(4)-C(20) 96.9(7) C(21)-P(4)-C(20) 96.8(6) C(19)-P(4)-Pt(1) 115.9(4) C(21)-P(4)-Pt(1) 123.2(4) C(20)-P(4)-Pt(1) 121.3(4) C(2)-N(1)-C(5) 109.4(10) C(2)-N(1)-C(1) 112.3(10) C(5)-N(1)-C(1) 110.9(10) C(6)-N(2)-C(5) 110.8(11) C(6)-N(2)-C(4) 112.1(11) C(5)-N(2)-C(4) 111.5(10) C(26)-N(3)-C(3) 110.6(11) C(26)-N(3)-C(2) 110.0(11) C(3)-N(3)-C(2) 111.1(10) C(26)-N(3)-C(6) 109.0(12) C(3)-N(3)-C(6) 109.7(10) C(2)-N(3)-C(6) 106.3(10) C(25)-N(4)-C(10) 107.6(13)

261

C(25)-N(4)-C(9) 109.3(11) C(10)-N(4)-C(9) 110.2(11) C(25)-N(4)-C(12) 111.2(13) C(10)-N(4)-C(12) 109.6(11) C(9)-N(4)-C(12) 108.9(11) C(10)-N(5)-C(11) 110.5(12) C(10)-N(5)-C(8) 112.9(11) C(11)-N(5)-C(8) 111.5(11) C(12)-N(6)-C(11) 110.2(11) C(12)-N(6)-C(7) 112.8(11) C(11)-N(6)-C(7) 111.6(10) C(16)-N(7)-C(14) 113.3(10) C(16)-N(7)-C(18) 109.3(10) C(14)-N(7)-C(18) 110.5(10) C(27)-N(8)-C(13) 109.7(9) C(27)-N(8)-C(17) 109.4(10) C(13)-N(8)-C(17) 110.1(9) C(27)-N(8)-C(16) 109.3(9) C(13)-N(8)-C(16) 109.8(9) C(17)-N(8)-C(16) 108.6(9) C(17)-N(9)-C(18) 111.2(11) C(17)-N(9)-C(15) 111.9(10) C(18)-N(9)-C(15) 112.4(10) C(22)-N(10)-C(24) 110.2(11) C(22)-N(10)-C(20) 113.2(12) C(24)-N(10)-C(20) 112.2(11) C(28)-N(11)-C(19) 108.8(10) C(28)-N(11)-C(23) 109.0(11) C(19)-N(11)-C(23) 109.9(10) C(28)-N(11)-C(22) 110.2(12)

C(19)-N(11)-C(22) 111.0(10) C(23)-N(11)-C(22) 107.9(10) C(23)-N(12)-C(24) 111.1(10) C(23)-N(12)-C(21) 110.9(10) C(24)-N(12)-C(21) 111.7(10) N(1)-C(1)-P(1) 114.0(8) N(1)-C(2)-N(3) 113.6(10) N(3)-C(3)-P(1) 113.9(9) N(2)-C(4)-P(1) 113.1(9) N(2)-C(5)-N(1) 113.5(10) N(2)-C(6)-N(3) 112.1(10) N(6)-C(7)-P(2) 112.3(9) N(5)-C(8)-P(2) 112.0(9) N(4)-C(9)-P(2) 113.5(9) N(5)-C(10)-N(4) 111.7(10) N(6)-C(11)-N(5) 112.7(11) N(6)-C(12)-N(4) 111.9(11) N(8)-C(13)-P(3) 113.0(8) N(7)-C(14)-P(3) 113.9(9) N(9)-C(15)-P(3) 111.8(8) N(7)-C(16)-N(8) 111.8(10) N(9)-C(17)-N(8) 111.9(11) N(9)-C(18)-N(7) 114.0(10) N(11)-C(19)-P(4) 113.1(8) N(10)-C(20)-P(4) 112.5(9) N(12)-C(21)-P(4) 113.5(8) N(10)-C(22)-N(11) 111.8(10) N(12)-C(23)-N(11) 111.8(10) N(10)-C(24)-N(12) 112.7(10)

_______________________________________________________________________ Table E.5. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 8'. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Pd(1) 0 1741(1) 10052(1) 16(1) Ni(1) 0 3399(2) 7179(2) 16(1)

262

Cl(1) 1272(14) 60(20) 10740(30) 31(5) C(1) 1230(40) 270(60) 10820(80) 17(15) Cl(2) 3807(2) 2525(3) 1937(4) 33(1) S(1) 1205(2) 3568(3) 9139(4) 20(1) N(1) 1147(5) 2918(9) 5592(11) 16(2) C(9) 2375(7) 2801(11) 8003(16) 20(2) C(2) 2263(8) 3257(10) 6289(17) 25(3) C(3) 1042(8) 3608(12) 3935(15) 22(2) C(4) 0 4498(17) 3740(20) 25(3) C(6) 1049(7) 1304(9) 5448(12) 13(2) C(7) 0 794(14) 4653(18) 19(3) C(8) 5000 2627(15) 3150(20) 23(3) _______________________________________________________________________ Table E.6. Bond lengths [Å] and angles [°] for 8'. _______________________________________________________________________ Pd(1)-C(1)#1 2.12(5) Pd(1)-C(1) 2.12(5) Pd(1)-Cl(1)#1 2.275(19) Pd(1)-Cl(1) 2.275(19) Pd(1)-S(1) 2.368(3) Pd(1)-S(1)#1 2.368(3) Pd(1)-Ni(1) 2.802(2) Ni(1)-N(1)#1 1.960(8) Ni(1)-N(1) 1.960(8) Ni(1)-S(1) 2.179(3) Ni(1)-S(1)#1 2.179(3) Cl(2)-C(8) 1.764(10) S(1)-C(9) 1.847(10) N(1)-C(3) 1.500(15) N(1)-C(6) 1.508(11) N(1)-C(2) 1.512(12) C(9)-C(2) 1.466(18) C(3)-C(4) 1.528(13)

C(4)-C(3)#1 1.528(13) C(6)-C(7) 1.514(12) C(7)-C(6)#1 1.514(12) C(8)-Cl(2)#2 1.764(10) C(1)#1-Pd(1)-C(1) 90(3) C(1)#1-Pd(1)-Cl(1)#1 4(2) C(1)-Pd(1)-Cl(1)#1 88.3(11) C(1)#1-Pd(1)-Cl(1) 88.3(11) C(1)-Pd(1)-Cl(1) 4(2) Cl(1)#1-Pd(1)-Cl(1) 86.3(9) C(1)#1-Pd(1)-S(1) 173.4(15) C(1)-Pd(1)-S(1) 96.4(15) Cl(1)#1-Pd(1)-S(1) 174.5(5) Cl(1)-Pd(1)-S(1) 98.3(5) C(1)#1-Pd(1)-S(1)#1 96.4(15) C(1)-Pd(1)-S(1)#1 173.4(16) Cl(1)#1-Pd(1)-S(1)#1 98.3(5)

263

Cl(1)-Pd(1)-S(1)#1 174.5(5) S(1)-Pd(1)-S(1)#1 77.03(12) C(1)#1-Pd(1)-Ni(1) 126.7(16) C(1)-Pd(1)-Ni(1) 126.7(16) Cl(1)#1-Pd(1)-Ni(1) 125.7(5) Cl(1)-Pd(1)-Ni(1) 125.7(5) S(1)-Pd(1)-Ni(1) 48.99(7) S(1)#1-Pd(1)-Ni(1) 48.99(7) N(1)#1-Ni(1)-N(1) 91.4(5) N(1)#1-Ni(1)-S(1) 169.9(3) N(1)-Ni(1)-S(1) 90.9(2) N(1)#1-Ni(1)-S(1)#1 90.9(2) N(1)-Ni(1)-S(1)#1 169.9(3) S(1)-Ni(1)-S(1)#1 85.14(16) N(1)#1-Ni(1)-Pd(1) 115.2(2) N(1)-Ni(1)-Pd(1) 115.2(2) S(1)-Ni(1)-Pd(1) 55.06(8)

S(1)#1-Ni(1)-Pd(1) 55.06(8) C(9)-S(1)-Ni(1) 97.4(4) C(9)-S(1)-Pd(1) 111.3(3) Ni(1)-S(1)-Pd(1) 75.95(9) C(3)-N(1)-C(6) 110.4(8) C(3)-N(1)-C(2) 109.0(8) C(6)-N(1)-C(2) 107.9(7) C(3)-N(1)-Ni(1) 115.8(6) C(6)-N(1)-Ni(1) 102.8(5) C(2)-N(1)-Ni(1) 110.5(7) C(2)-C(9)-S(1) 107.1(6) C(9)-C(2)-N(1) 112.5(8) N(1)-C(3)-C(4) 113.3(10) C(3)#1-C(4)-C(3) 113.1(13) N(1)-C(6)-C(7) 114.3(8) C(6)-C(7)-C(6)#1 116.0(11) Cl(2)-C(8)-Cl(2)#2 111.6(10)

_______________________________________________________________________ Table E.7. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 9. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. _______________________________________________________________________ x y z U(eq) _______________________________________________________________________ Pd(1) 6269(2) 3615(1) 4965(1) 34(1) Pd(2) 5309(2) 2095(1) 3998(1) 36(1) O(1) 4902(12) 2973(9) 4514(11) 41(5) Ni(1A) 7061(3) 2066(2) 6243(2) 36(1) N(1A) 8434(16) 2262(11) 7138(13) 41(6) N(2A) 7650(20) 1160(13) 6463(14) 56(7) S(1A) 6566(5) 3106(3) 6263(4) 36(2) S(2A) 5528(6) 1680(4) 5350(4) 41(2) C(1) 7549(18) 4259(13) 5385(15) 39(7) C(2) 5590(20) 1239(12) 3523(16) 53(8) C(3) 3937(19) 3126(14) 4516(15) 42(7) C(4) 3062(19) 2678(13) 4114(15) 35(7)

264

C(5) 2040(20) 2857(14) 4068(15) 44(7) C(6) 1850(20) 3446(14) 4491(16) 41(7) C(7) 2730(20) 3825(13) 4895(15) 37(7) C(8) 3728(19) 3717(11) 4910(14) 24(5) C(1A) 7790(20) 3422(12) 7156(14) 38(7) C(2A) 8710(20) 3003(13) 7160(18) 51(8) C(3A) 5850(20) 784(14) 5490(20) 59(9) C(4A) 7010(30) 697(13) 5745(19) 58(9) C(5A) 9260(20) 1871(15) 6985(14) 45(8) C(6A) 8840(20) 1197(12) 6622(18) 48(8) C(7A) 8350(20) 2038(15) 7942(14) 46(8) C(8A) 8300(20) 1295(14) 8024(17) 48(8) C(9A) 7570(20) 936(14) 7291(15) 49(8) Ni(1B) 4515(3) 3556(2) 2747(2) 34(1) N(1B) 3681(18) 4358(11) 2599(13) 45(6) N(2B) 3214(16) 3216(11) 1847(12) 37(6) S(1B) 5925(5) 4052(4) 3616(4) 38(2) S(2B) 5319(5) 2613(4) 2780(4) 42(2) C(1B) 5360(20) 4901(14) 3579(16) 53(8) C(2B) 4190(20) 4821(13) 3297(19) 55(8) C(3B) 4250(20) 2239(14) 1826(17) 53(8) C(4B) 3240(20) 2496(14) 1776(15) 43(7) C(5B) 2600(20) 4165(13) 2579(15) 38(7) C(6B) 2290(20) 3456(15) 2042(16) 54(9) C(7B) 3630(30) 4722(15) 1818(17) 59(9) C(8B) 3030(20) 4316(14) 1084(19) 55(8) C(9B) 3260(20) 3589(15) 1073(16) 51(8) C(1S) 9840(20) 3471(13) 9655(15) 34(7) C(2S) 8730(20) 3511(15) 9447(15) 42(7) C(3S) 8230(20) 2962(19) 9598(15) 59(10) C(4S) 8770(20) 2363(15) 9961(15) 43(7) C(5S) 9860(20) 2346(16) 10141(17) 51(8) C(6S) 10320(20) 2880(15) 9973(13) 34(7) C(7S) 1640(30) 4085(14) 8126(17) 47(8) C(8S) 660(30) 4369(14) 7650(20) 53(8) C(9S) 450(30) 4514(15) 6760(20) 70(11) C(10S) 1260(30) 4429(18) 6450(30) 80(12) C(11S) 2210(30) 4151(16) 6980(20) 62(9) C(12S) 2410(20) 3972(13) 7780(20) 51(8) O(1W) 9438(19) 5229(12) 8955(11) 64(6) O(1S) 10345(17) 4005(10) 9515(15) 69(6) O(2S) 1839(14) 3925(10) 8957(12) 55(5) _______________________________________________________________________

265

Table E.8. Bond lengths [Å] and angles [°] for 9. _______________________________________________________________________ Pd(1)-C(1) 2.02(2) Pd(1)-O(1) 2.104(15) Pd(1)-S(1A) 2.275(7) Pd(1)-S(1B) 2.283(7) Pd(2)-C(2) 1.96(2) Pd(2)-O(1) 2.089(17) Pd(2)-S(2B) 2.271(7) Pd(2)-S(2A) 2.306(7) O(1)-C(3) 1.32(3) Ni(1A)-N(1A) 1.91(2) Ni(1A)-N(2A) 1.93(2) Ni(1A)-S(1A) 2.153(8) Ni(1A)-S(2A) 2.155(8) N(1A)-C(5A) 1.43(3) N(1A)-C(7A) 1.45(3) N(1A)-C(2A) 1.50(3) N(2A)-C(4A) 1.49(4) N(2A)-C(9A) 1.49(3) N(2A)-C(6A) 1.50(3) S(1A)-C(1A) 1.85(2) S(2A)-C(3A) 1.81(3) C(3)-C(4) 1.41(3) C(3)-C(8) 1.41(3) C(4)-C(5) 1.38(3) C(5)-C(6) 1.43(3) C(6)-C(7) 1.33(3) C(7)-C(8) 1.33(3) C(1A)-C(2A) 1.47(3) C(3A)-C(4A) 1.44(4) C(5A)-C(6A) 1.48(3) C(7A)-C(8A) 1.47(3) C(8A)-C(9A) 1.43(3) Ni(1B)-N(1B) 1.89(2) Ni(1B)-N(2B) 1.930(19) Ni(1B)-S(1B) 2.122(7) Ni(1B)-S(2B) 2.130(8) N(1B)-C(2B) 1.43(3) N(1B)-C(7B) 1.46(3) N(1B)-C(5B) 1.48(3) N(2B)-C(4B) 1.42(3) N(2B)-C(6B) 1.46(3) N(2B)-C(9B) 1.51(3)

S(1B)-C(1B) 1.82(3) S(2B)-C(3B) 1.84(3) C(1B)-C(2B) 1.46(4) C(3B)-C(4B) 1.41(3) C(5B)-C(6B) 1.62(3) C(7B)-C(8B) 1.42(4) C(8B)-C(9B) 1.46(3) C(1S)-O(1S) 1.31(3) C(1S)-C(6S) 1.34(3) C(1S)-C(2S) 1.38(3) C(2S)-C(3S) 1.34(4) C(3S)-C(4S) 1.40(4) C(4S)-C(5S) 1.36(4) C(5S)-C(6S) 1.30(3) C(7S)-O(2S) 1.34(3) C(7S)-C(12S) 1.37(3) C(7S)-C(8S) 1.37(4) C(8S)-C(9S) 1.41(4) C(9S)-C(10S) 1.38(4) C(10S)-C(11S) 1.35(4) C(11S)-C(12S) 1.31(4) C(1)-Pd(1)-O(1) 178.1(9) C(1)-Pd(1)-S(1A) 97.2(7) O(1)-Pd(1)-S(1A) 83.8(5) C(1)-Pd(1)-S(1B) 86.2(7) O(1)-Pd(1)-S(1B) 92.8(5) S(1A)-Pd(1)-S(1B) 175.8(3) C(2)-Pd(2)-O(1) 175.6(10) C(2)-Pd(2)-S(2B) 87.7(8) O(1)-Pd(2)-S(2B) 94.9(5) C(2)-Pd(2)-S(2A) 96.7(8) O(1)-Pd(2)-S(2A) 81.3(5) S(2B)-Pd(2)-S(2A) 170.9(3) C(3)-O(1)-Pd(2) 126.4(16) C(3)-O(1)-Pd(1) 124.8(16) Pd(2)-O(1)-Pd(1) 108.7(7) N(1A)-Ni(1A)-N(2A) 80.7(10) N(1A)-Ni(1A)-S(1A) 90.2(7) N(2A)-Ni(1A)-S(1A) 168.9(7) N(1A)-Ni(1A)-S(2A) 170.0(7) N(2A)-Ni(1A)-S(2A) 90.9(8)

266

S(1A)-Ni(1A)-S(2A) 97.5(3) C(5A)-N(1A)-C(7A) 109(2) C(5A)-N(1A)-C(2A) 109(2) C(7A)-N(1A)-C(2A) 112(2) C(5A)-N(1A)-Ni(1A) 108.7(16) C(7A)-N(1A)-Ni(1A) 106.0(15) C(2A)-N(1A)-Ni(1A) 111.5(16) C(4A)-N(2A)-C(9A) 110(2) C(4A)-N(2A)-C(6A) 115(2) C(9A)-N(2A)-C(6A) 107(2) C(4A)-N(2A)-Ni(1A) 110.3(17) C(9A)-N(2A)-Ni(1A) 106.4(17) C(6A)-N(2A)-Ni(1A) 108.2(18) C(1A)-S(1A)-Ni(1A) 98.6(8) C(1A)-S(1A)-Pd(1) 113.5(8) Ni(1A)-S(1A)-Pd(1) 110.4(3) C(3A)-S(2A)-Ni(1A) 97.8(9) C(3A)-S(2A)-Pd(2) 114.3(10) Ni(1A)-S(2A)-Pd(2) 106.7(3) O(1)-C(3)-C(4) 119(2) O(1)-C(3)-C(8) 123(2) C(4)-C(3)-C(8) 118(2) C(5)-C(4)-C(3) 119(2) C(4)-C(5)-C(6) 122(3) C(7)-C(6)-C(5) 115(2) C(8)-C(7)-C(6) 127(2) C(7)-C(8)-C(3) 119(2) C(2A)-C(1A)-S(1A) 107.0(17) C(1A)-C(2A)-N(1A) 111(2) C(4A)-C(3A)-S(2A) 109.2(19) C(3A)-C(4A)-N(2A) 112(2) N(1A)-C(5A)-C(6A) 111(2) C(5A)-C(6A)-N(2A) 109(2) N(1A)-C(7A)-C(8A) 114(2) C(9A)-C(8A)-C(7A) 117(2) C(8A)-C(9A)-N(2A) 112(2) N(1B)-Ni(1B)-N(2B) 83.0(9) N(1B)-Ni(1B)-S(1B) 91.6(7) N(2B)-Ni(1B)-S(1B) 171.7(7) N(1B)-Ni(1B)-S(2B) 173.5(7) N(2B)-Ni(1B)-S(2B) 90.7(7) S(1B)-Ni(1B)-S(2B) 94.5(3) C(2B)-N(1B)-C(7B) 105(2)

C(2B)-N(1B)-C(5B) 110(2) C(7B)-N(1B)-C(5B) 113(2) C(2B)-N(1B)-Ni(1B) 110.6(17) C(7B)-N(1B)-Ni(1B) 110.8(18) C(5B)-N(1B)-Ni(1B) 107.8(16) C(4B)-N(2B)-C(6B) 113(2) C(4B)-N(2B)-C(9B) 114.0(19) C(6B)-N(2B)-C(9B) 110(2) C(4B)-N(2B)-Ni(1B) 111.6(16) C(6B)-N(2B)-Ni(1B) 107.2(15) C(9B)-N(2B)-Ni(1B) 100.3(15) C(1B)-S(1B)-Ni(1B) 98.9(9) C(1B)-S(1B)-Pd(1) 107.9(9) Ni(1B)-S(1B)-Pd(1) 107.2(3) C(3B)-S(2B)-Ni(1B) 96.4(9) C(3B)-S(2B)-Pd(2) 109.3(10) Ni(1B)-S(2B)-Pd(2) 104.0(3) C(2B)-C(1B)-S(1B) 107(2) N(1B)-C(2B)-C(1B) 117(2) C(4B)-C(3B)-S(2B) 108.4(18) C(3B)-C(4B)-N(2B) 114(2) N(1B)-C(5B)-C(6B) 106(2) N(2B)-C(6B)-C(5B) 110(2) C(8B)-C(7B)-N(1B) 108(3) C(7B)-C(8B)-C(9B) 121(3) C(8B)-C(9B)-N(2B) 113(2) O(1S)-C(1S)-C(6S) 125(3) O(1S)-C(1S)-C(2S) 119(3) C(6S)-C(1S)-C(2S) 117(2) C(3S)-C(2S)-C(1S) 118(3) C(2S)-C(3S)-C(4S) 123(3) C(5S)-C(4S)-C(3S) 117(3) C(6S)-C(5S)-C(4S) 119(3) C(5S)-C(6S)-C(1S) 127(3) O(2S)-C(7S)-C(12S) 121(3) O(2S)-C(7S)-C(8S) 118(3) C(12S)-C(7S)-C(8S) 121(3) C(7S)-C(8S)-C(9S) 118(3) C(10S)-C(9S)-C(8S) 119(3) C(11S)-C(10S)-C(9S) 118(4) C(12S)-C(11S)-C(10S) 123(3) C(11S)-C(12S)-C(7S) 120(3)

_______________________________________________________________________

267

VITA

Cesar Gabriel Ortiz was born in the industrious city of Monterrey, Mexico on

February 10, 1976. At the age of five, he immigrated to the United States and attended

school in Houston, TX. He graduated from John H. Reagan High School in May of

1994, and soon thereafter enrolled at Baylor University, Waco, TX. After starting his

undergraduate career in the pre-med program, he quickly realized his love for chemistry

and after five years, graduated in the spring of 1999 with a Bachelor of Science degree in

chemistry and a minor in mathematics. In June of 1999, he began his graduate career

under the guidance of Dr. Kevin Burgess and worked on the synthesis of BODIPY®

derivatives for the sequencing of DNA. After the summer of 1999, he changed research

groups and started the organometallic investigations presented herein under the direction

of Dr. Donald J. Darensbourg. Any questions or comments may be directed by

contacting his parents at: 4302 Mayfield Dr.; Houston, TX 77088; 281-999-2293.