synthesis and evaluation of derivatives and analogs of

244
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2007 Synthesis and Evaluation of Derivatives and Analogs of Xanthene Dyes Xiangyang Xu Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: hps://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemistry Commons is Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contact[email protected]. Recommended Citation Xu, Xiangyang, "Synthesis and Evaluation of Derivatives and Analogs of Xanthene Dyes" (2007). LSU Doctoral Dissertations. 2249. hps://digitalcommons.lsu.edu/gradschool_dissertations/2249

Upload: others

Post on 03-Feb-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Synthesis and Evaluation of Derivatives and Analogs of

Louisiana State UniversityLSU Digital Commons

LSU Doctoral Dissertations Graduate School

2007

Synthesis and Evaluation of Derivatives andAnalogs of Xanthene DyesXiangyang XuLouisiana State University and Agricultural and Mechanical College, [email protected]

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Chemistry Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion inLSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected].

Recommended CitationXu, Xiangyang, "Synthesis and Evaluation of Derivatives and Analogs of Xanthene Dyes" (2007). LSU Doctoral Dissertations. 2249.https://digitalcommons.lsu.edu/gradschool_dissertations/2249

Page 2: Synthesis and Evaluation of Derivatives and Analogs of

SYNTHESIS AND EVALUATION OF DERIVATIVES AND ANALOGS OF XANTHENE DYES

A Dissertation

Submitted to the Graduate Faculty of the Louisiana State University and

Agricultural and Mechanical College in partial fulfillment of the

requirement for the degree of Doctor of Philosophy

in

The Department of Chemistry

By Xiangyang Xu

B.E., Central South University, 1996 M.E., University of Science and Technology of China, 2002

August, 2007

Page 3: Synthesis and Evaluation of Derivatives and Analogs of

ACKNOWLEDGMENTS First, I would like to express my sincere gratitude to my advisor, Dr. Robert M.

Strongin, for his guidance, support, and encouragement. His inspiration and patience

helped me to stay focused on my goals.

I would also like to thank Dr. William Crowe, Dr. David Spivak, Dr. Robert Cook

and Dr. Kenneth Rose being my committee members. I fully appreciate their patience and

time reading my dissertation and giving valuable advices.

Then, I would like to thank the members of the Dr. Strongin’s Research Group,

from the past to the present, Dr. Jorge Escobedo, Dr. Oleksandr Rusin, Dr. Nadia St.

Luce, Dr. Rolanda Johnson, Dr. Kyu Kwang Kim, Dr. Weihua Wang, Onur Alpturk,

Youjun Yang, Shan Jiang, George Samoei, for their willingness to help me. I enjoyed the

time we shared together in LSU. The acknowledgement would also go to Dr. Frank

Fronczek, Dr. Dale Trelevean for their help on my research.

Finally, to the rest of my friends and family, thank you for all your support and

love.

ii

Page 4: Synthesis and Evaluation of Derivatives and Analogs of

TABLE OF CONTENTS

ACKNOWLEDGMENTS……………………………………………………………….ii LIST OF ABBREVIATIONS…………………………………………………..….……..vi ABSTRACT…………………………………………………………………...…………xi CHAPTER 1 INTRODUCTION……………………………………………….………1

1.1 Definition of Xanthene Dyes………………….………………………....1 1.2 Properties of Xanthene Dyes……………………………….…...……….1 1.2.1 Xanthene Dye Spectral Properties……………………………….1 1.2.2 Photochemical Properties of the Xanthene Dyes………………...6 1.3 Synthesis of Xanthene Dyes………….………….………………………13 1.4 Application of Some Xanthene Dyes ..………………………….……….17 1.5 References………………………………………………………..….…...18

CHAPTER 2 COLORIMETRIC AND FLUOROMETRIC DETECTION OF

CYSTEINE AND HOMOCYSTEINE..………………………………..22 2.1 Background……………………………………………………………....22

2.1.1 Homocysteine……………………………………………………22 2.1.2 Cysteine…………………………………………………………..23 2.2 General Thiol Detection Methods ………………………………..……...24 2.3 Formation of N-thiazolidines ………….………………………………...26 2.4 Multistep Synthesis of Fluorescein Dialdehyde …………....……….…..27 2.5 Reimer-Tiemann Reaction and Its Applications ………………………...28 2.6 Results and Discussion…………………………………………………..30 2.7 Experimental……………………………………………………………..39 2.8 Conclusion..………………………………………………………..……41 2.9 References…………………………………………………………..……41

CHAPTER 3 SELECTIVE DETECTION OF CYSTEINE AND DEVELOPMENT OF

NIR SENSOR……………………………………………………….…...44 PART I SELECTIVE DETECTION OF CYSTEINE .......................…...44 3.1 Background………... …………………………………………………....44 3.2 Synthesis of Mono- and Di- α,β-unsaturated Fluorescein Aldehydes…47 3.3 Results and Discussion…………………………………………………..47 3.3.1 Addition of Cysteine to Conjugated Aldehydes..………………..47

3.3.2 Selective Detection of Cysteine with Fluoresceine-Derived Conjugated Aldehydes……..…………………………………….50

3.4 Experimental………………………………………………………….….57 PART II SYNTHESIS AND CHARACTERIZATION OF NOVEL HEPTAMETHINE CYANINE DYES AND APPLICATION IN THE DETECTION OF CYSTEINE AND HOMOCYSTEINE…………..…..58

3.5 Introduction…. …………………………………………………..…58

iii

Page 5: Synthesis and Evaluation of Derivatives and Analogs of

3.6 Results and Discussion…………………………………………………..59 3.7 Experimental……………………………………………………………..65 3.8 Conclusion……………………………………………………………….70

3.9 References………………………………………………………………..71 CHAPTER 4 A HYDROGEL FOR BIOMEDICAL APPLICATION…………………72

4.1 Introduction………………………………………………………………72 4.2 Results and Discussion…………………………………………………..72 4.3 Experimental……………………………………………………………..74 4.4 Future Work…...…………………………………………………………78 4.5 Conclusion……………………………………………………………..78 4.6 References………………………………………………………………..79

CHAPTER 5 NOVEL SYNTHESIS OF POLYHALOGENATED

DIBENZO-P-DIOXINS………………………………………………....81 5.1 Background………………………………………………………………81 5.2 Results and Discussion…………………………………………………..84 5.3 Experimental……………………………………………………………..86 5.4 Conclusion...……………………………………………………………..88 5.5 References………………………………………………………………..88

APPENDIX

A: CHARACTERIZATION DATA FOR COMPOUND 2.2…………..…..…90

B: CHARACTERIZATION DATA FOR COMPOUND 2.3………………….94 C: CHARACTERIZATION DATA FOR COMPOUND 3.1………………….98

D: CHARACTERIZATION DATA FOR COMPOUND 3.2…………….….101 E: MALDI MS OF REACTION MIXTURE OF COMPOUND 3.1 AND

CYS………………………………………………………… ……………104 F: 1H NMR OF COMPOUND 3.13…………………………….…………....105 G: CHARACTERIZATION DATA FOR COMPOUND 3.14...…………….106

H: 1H NMR OF COMPOUND 3.18………………………...………………..109 I: 1H NMR OF COMPOUND 3.15……………………………...…………...110

J: CHARACTERIZATION DATA FOR COMPOUND 3.16……...…….….111

K: CHARACTERIZATION DATA FOR COMPOUND 3.19.……………...114

L: CHARACTERIZATION DATA FOR COMPOUND 3.20.……………...116

iv

Page 6: Synthesis and Evaluation of Derivatives and Analogs of

M: CHARACTERIZATION DATA FOR COMPOUND 3.7.….…………...118 N: CHARACTERIZATION DATA FOR COMPOUND 3.8.….…………...121

O: CHARACTERIZATION DATA FOR COMPOUND 3.9.…………….....124

P: CHARACTERIZATION DATA FOR COMPOUND 4.7.…………...…...127

Q: 1H NMR OF COMPOUND 4.8.………………………………...………...130

R: 1H NMR OF COMPOUND 4.6.…………………………………..……...131

S: CHARACTERIZATION DATA FOR COMPOUND 4.5.…………...…...132

T: CHARACTERIZATION DATA FOR COMPOUND 5.2.…………...…...134

U: CHARACTERIZATION DATA FOR COMPOUND 5.6…………...…...136

V: CHARACTERIZATION DATA FOR COMPOUND 5.7.…………...…..138

W: CHARACTERIZATION DATA FOR COMPOUND 5.8.…………..…..140

X: CRYSTALLOGRAPHIC DATA FOR COMPOUND 2.2………………..142

Y: CRYSTALLOGRAPHIC DATA FOR COMPOUND 2.1………………..153 Z: CRYSTALLOGRAPHIC DATA FOR COMPOUND 2.3………………..165

AA: CRYSTALLOGRAPHIC DATA FOR COMPOUND 3.7……………..178

BB: CRYSTALLOGRAPHIC DATA FOR COMPOUND 3.8……………...193

CC: CRYSTALLOGRAPHIC DATA FOR COMPOUND 3.9……………...211

DD: LETTERS OF PERMISSION…………………………………….……229

VITA……………………………………………………………………………………231

v

Page 7: Synthesis and Evaluation of Derivatives and Analogs of

LIST OF ABBREVIATIONS

BBr3 Boron tribromide BHC Brominated hydrocarbon

ºC Degrees Celsius

CaH2 Calcium Hydride

Cal. Calculated

CDCl3 Dueterated Chloroform

CHC Chlorinated hydrocarbon

C6H5Cl Chlorobenzene

CHCl3 Chloroform

CH2Cl2 Dichloromethane

CH3CN Acetonitrile

CH3OD Dueterated Methanol

CH3OH Methanol

13C NMR Carbon-13 Neclear Magnetic Resonance

(CH3)4Si Tetramethyl silane

CH3SO3H Methanesulfonic acid

CO Carbon Monoxide

Cys Cysteine

DCFH 2’,7’-Dichlorodihydrofluorescein

DCM Dichloromethane

DDQ 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

vi

Page 8: Synthesis and Evaluation of Derivatives and Analogs of

DHR 123 Dihydrorhodamine 123

DHR-6G Dihydrorhodamine 6G

D2O Dueterium oxide

DMACA 4-(Dimethylamino)-cinnamaldehyde

DMF N-N-Dimethylformamide

DMSO Dimethyl sulfoxide

EtOAc Ethyl acetate

Et2O Diethyl ether

EtOH Ethanol

FAB Fast Atom Bombardment

FT-IR Fourier Transform Infrared

g Grams

h Hours

HCL Hydrochloric acid

HCN Hydrocyanic Acid

Hcy Homocysteine

HIV Human Immunodeficiency Virus

H2O Water

H2O2 Hydrogen Peroxide

HPLC High-Performance Liquid Chromatography

1H NMR 1-d Proton Nuclear Magnetic Resonance

HPF 6-hydroxy-9-phenyl-fluorone

HRMS High-Resolution Mass Spectrometry

vii

Page 9: Synthesis and Evaluation of Derivatives and Analogs of

H2SO4 Sulfuric Acid

ISC Intersystem Crossing

M Molar (moles/Liter)

mBrB Monobromobimane

mM Millimolar (mmoles/Liter)

MgSO4 Magnesium Sulfate

MALDI Matrix-Assisted Laser Desorption Ionization

MeOH Methanol

mg Milligrams

mL Milliliters

mmol Millimoles

MS Mass Spectrometry

MW Molecular Weight

NaBH4 Sodium Borohydride

NaOt-Bu Sodium tert-butoxide

Na2CO3 Sodium Carbonate

NaHCO3 Sodium Bicarbonate

NaOH Sodium Hydroxide

Na2SO4 Sodium Sulfate

NBA N-Bromoacetamide

NBD-F 4-Fluoro-7-Nitrobenzofurazan

NIR Near-infrared

NMR Nuclear Magnetic Resonance

viii

Page 10: Synthesis and Evaluation of Derivatives and Analogs of

O2 Oxygen

OH Hydroxide

OPA O-phthalaldehyde

ORTEP Oak Ridge Thermal Ellipsoid Plot

PAAm Polyacrylamide

PBDD Polybrominated-dibenzon-p-dioxin

PCDD Polychlorinated dibenzo-p-dioxin

PMMA Poly-methylmethacrylate

ppm Parts Per Million

PTZ Phenothiazene

PXDD Polyhalogenated dibenzo-p-dioxin

RDS Rate Determining Step

Rf Ratio to Solvent Front

ROS Reactive Oxygen Species

rt Room Temperature

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

TCDF 2,3,7,8-tetrachlorodibenzofuran

THF Tetrahydrofuran

tHcy Total Homocysteine

TLC Thin-Layer Chromatography

µM Micromolar (micromoles/Liter)

UV Ultraviolet

UV-Vis Ultraviolet-Visible

ix

Page 11: Synthesis and Evaluation of Derivatives and Analogs of

XDD Halogenated dibenzo-p-dioxin

XHC Halogenated hydrocarbon

ZnCl2 Zinc Chloride

λ Wavelength

x

Page 12: Synthesis and Evaluation of Derivatives and Analogs of

ABSTRACT

Xanthene dyes are one of the oldest synthetic dyes. Fluorescein was first

synthesized by von Baeyer in 1871. Since its discovery, it has been extensively studied.

Fluorescein can exist as four different ionic forms (cationic form, neutral form,

monoanionic form and dianionic form). Under physiological conditions (pH 7.4),

fluorescein mainly exists as the dianionic form which grants it large quantum yield and

excellent solubility in water. This renders fluorescein and its derivatives useful for

studies in biological media.

Cysteine (Cys) and homocysteine (Hcy) are of the few amino acids which contain

sulfur and both of them are believed to be related to some diseases. Cardiovascular

diseases, Alzheimer’s disease and neutral tube defects are reported to be associated with

elevated levels of homocysteine in blood plasma. Low levels of cysteine are associated

with slowed growth, hair depigmentation, liver damage, etc. The reason for Cys and Hcy

being connected with diseases is still unclear. Herein, we designed and synthesized

fluorescein-based dyes for detecting Hcy and Cys in the visible spectral region with the

highest selectivity.

Optical sensors in the near-infrared (NIR) spectral range have captured the

attention of researchers interested in studying chemical and biological processes in live

tissues because absorption and scattering by endogenous biomolecules are minimal.

Three heptamehtine cyanine-based dyes were designed and synthesized for the detection

or labeling of Cys and Hcy. Biocompatible hydrogels have been studied in many fields,

e.g., drug delivery system, separation processes or sensors (fluorescent polymers). A

xi

Page 13: Synthesis and Evaluation of Derivatives and Analogs of

fluorescein-based hydrogel with potential application for detection of Cys and Hcy were

designed and underwent synthesized.

Dibenzo-p-dioxin is a structural analog of xanthene but is notorious for the

toxicicty of the halogenated members, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin

(TCDD). Since polyhalogenated dibenzo-p-dioxins (PXDDs) have been shown to be a

significant threat to public health, measuring the concentrations of PXDDs in the

environment as well as understanding their mechanism of formation and environmental

fate is needed. Here we designed a novel synthesis with control halogen substitution

patterns in order to result in a large number of PXDDs.

xii

Page 14: Synthesis and Evaluation of Derivatives and Analogs of

CHAPTER 1

INTRODUCTION

1.1 Definition of Xanthene Dyes

Any dyes that include a xanthene molecule structure (Figure 1.1), an aromatic

cyclic ether with an oxygen between the two aromatic rings, are called xanthene dyes.1-3

R1 O R2

1

R3 Figure 1.1: General xanthene dye structure, in which R1, R2 are normally paired as electron donor and acceptor (e.g., –OH and =O,

-NH + and –NR , R could be any substituent, e.g.,-H -Ph, etc. 2 2 3 Based on the different electron donor-acceptor pairs on the commonly xanthene

dyes. Xanthene dyes can be divided into two subgroups. The first one includes hydroxyl

group as donor and keto group as acceptor, such as 3-hydroxy-6-fluorone,4 fluorescein5-6

and the related derivatives; e.g., eosin Y,7 rose Bengal,8 phloxine9 and 6-hydroxy-9-

phenylfluorone.10-11 The other subgroup includes amines as electron donor and

quaternary ammonium as acceptor. Examples include the pyronine9 series and

rhodamine series of compounds; e.g., rhodamine 11012 and rhodamine B.13 Some well

known xanthene dyes are shown in Figure 1.2.

1.2 Properties of Xanthene Dyes

Xanthene dyes include many of the oldest synthetic dyes. Fluorescein was first

synthesized by von Baeyer in 1871.5-6 Since its discovery, it has been extensively

studied.14-19

1.2.1 Xanthene Dye Spectral Properties

In 1958, Zanker, et al.16 found that fluorescein can exist in aqueous solutions as

four different ionic forms (cationic, neutral, anionic, dianionic) (Figure 1.3). This renders

Page 15: Synthesis and Evaluation of Derivatives and Analogs of

Figure 1.2. Some Well Known Xanthene dyes.

OHO OH

O

O

OH2N NH2

O

O

OHO OH

O

O

Br Br

Br Br

OHO OH

O

O

Br Br

O2N NO2

Eosin-BEosin-Y

ON N

O

O

Rhodamine B

ONaO OBr Br

Br Br

Phloxine-B

COONaCl

ClCl

Cl

ONaO OI I

I ICOONa

Erythrosin-B

ONaO OI I

I ICOONaCl

ClCl

Cl

Rose bengal

Fluorescein

Rhodamine 110

O NN

Rosamine

O O

3-Hydroxy-6-Fluorone

O NN

Pyronine Y

HO

2

Page 16: Synthesis and Evaluation of Derivatives and Analogs of

its absorption and fluorescence properties pH dependent.17-18 Among the four ionic

forms, each possesses specific spectral properties. The cationic form and the dianionic

form only occur in strongly acidic (pH < 2) or strongly basic (pH > 8) aqueous

conditions, respectively. The neutral form exists as three isomers (red quinoid, colorless

lactone, and yellow zwitterion) at pH ~3.3. Among the three neutral isomers, the quinoid

and lactone forms are believed to be the major forms. When the aqueous solution pH is

around 5.5, fluorescein mainly exists as a monoanion (carboxylate monoanion or

OHO OH

O

O

O

HO OH

COOH

OHO OH

COO

OHO O

COOH

OHO O

COO

OO O

COOH

OO O

COO

quinoid lactone zwitterion

carboxylate phenolate

neutral

cation

anion

dianion

Figure 1.3. Fluorescein’s four different ionic forms.

3

Page 17: Synthesis and Evaluation of Derivatives and Analogs of

4

phenoxylate monoanion), between them the carboxylate monoanion is believed to be the

major form.

The previous studies also show that the four different fluorescein forms would

give different absorption spectra (Figure 1.4). 17-18 Under basic conditions (pH > 8), the

dianion displays the greatest absorption at 490 nm and a shoulder at 475 nm. Under

mildly acidic conditions (pH ~ 5.5), the monoanion form has relatively weaker

absorptions at 472 nm and 453 nm. In highly acidic media (pH < 2), the cationic form

shows a specific, low absorption at 437 nm. Under carefully controlled aqueous

conditions at pH exactly 3.3, the neutral form shows the relatively weakest absorptions at

434 nm and a shoulder at 472 nm. In strongly acidic conditions, the cationic form is

relatively not as highly conjugated which allows the compound to absorb at the shortest

wavelength. In the neutral form, fluorescein can exist as a poorly-conjugated lactone and

in a conjugated quinonoid form; therefore, the compound can absorb at two different

wavelengths. The dianion form is highly conjugated, and thus shows the highest

absorption at the longest wavelength. In the monoanion form, there are two isomers.

One is the carboxylate form which is similar to the conjugated dianion and shows

absorption at longer wavelengths. Another is the phenoxylate form which is similar to

the neutral quinonoid form and absorbs at a relatively shorter wavelength (see Figure 1.4

for more quantitative data).

Another type of xanthene dye, 6-hydroxy-9-phenyl-fluorone (HPF),16-17 was

studied by Zanker and Peter in 1958.16 They reported that HPF can occur in three forms:

cationic, neutral and anionic (Figure 1.5). When the pH is < 1.5, HPF exists as a cation.

Under strongly basic conditions (pH>10.2), HPF exists as an anion. Under mildly acidic

conditions (pH~4.8), HPF mainly exist in the neutral form.

Page 18: Synthesis and Evaluation of Derivatives and Analogs of

5

OHO OH

COOH

OHO O

COOH

OHO O

COO

O O O

COO

pH<2 pH~3.3 pH~5.5 pH>8

F(+1) F(0) F(-1) F(-2)

neutralcation anion dianion

Figure 1.4. Absorption spectra of four different fluorescein ionic forms.14

OHO OH OHO O O O O

neutralcation anion

pH<1.5 pH~4.8 pH>10.2

F(+1) F(0) F(-1)

Figure 1.5. 6-Hydroxy-9-phenyl-fluorone’s three different ionic forms.

Page 19: Synthesis and Evaluation of Derivatives and Analogs of

1.2.2 Photochemical Properties of the Xanthene Dyes

Figure 1.6 shows the structures of fluorescein and its derivatives, eosin, rose

bengal and erythrosine. The difference among them is that the hydrogen atoms on the

xanthene ring, or the 9-phenyl ring of fluorescein, are replaced by halogen atoms and

give other various fluorescein derivatives. Eosin is a fluorescein-based dye with bromines

on the 2, 4, 5, and 7 positions, and rose bengal has iodines on the 2, 4, 5, 7, and chlorines

on 3’-6’ positions. Erythrosin is the parent compound of rose bengal with no chlorines

on the 3’-6’ positions. These halogenated derivatives show unique properties as

compared to fluorescein. When exposed to light, the halogenated fluorescein compounds

undergo intersystem crossing (ISC) to the triplet state. Thus the halogenated fluoresceins

show a large absorbance but very low fluorescence, while fluorescein shows almost a unit

fluorescence quantum yield. The photophysical properties8 of them are shown below.

(Table 1.1).

Table 1.1: Photoproperties of fluorescein and its halogenated derivatives 8

Compound λmax nm φfl φst

Fluorescein 491 0.93 0.03

Eosin 514 0.63 0.3

Erythrosin 525 0.08 0.6

Rose Bengal 548 0.08 0.76

6

Page 20: Synthesis and Evaluation of Derivatives and Analogs of

Figure 1.6. Fluorescein and its halogenated derivatives.

Eosin

ONaO OI I

I ICOONa

Erythrosin

ONaO OI I

I ICOONaCl

ClCl

Cl

Rose bengal

Fluorescein

ONaO OBr Br

Br BrCOONa

OHO O

COOH

7

Page 21: Synthesis and Evaluation of Derivatives and Analogs of

• Quenching of dyes and formation of singlet oxygen and superoxide radical anion

Because of the halogenated fluorescein dyes’ excited triplet state, both singlet

oxygen20 and superoxide radical anion21 can be formed under the combination of light

and oxygen.22 The ratio of superoxide radical anion to singlet oxygen, which are

generated from the reaction, is believed to be around 1:3. Two different mechanisms are

responsible for each of them (Scheme 1.1 and 1.2).

Dye hv Dye1 *

Dye1 * Dye3 *ISC

Dye3 * 3O21O2Dye +

+

+

Scheme 1.1: Mechanism of formation of singlet oxgen.

Dye hv Dye1 *

Dye1 * Dye3 *ISC

Dye3 * Dye +

+

+ Dye Dye

Dye O2+ Dye O2+

Scheme 1.2: Mechanism of formation of superoxide radical anion.

Since Windaus et al.23 who first reported proof that dyes can be used as a

sensitizer in 1928, the halogenated fluoresceins have drawn a lot of attention and found

enormous applications, e.g. Rose Bengal already was used as sensitizer to produce singlet

oxygen during a photooxidation reaction.22, 24-25

The generation of superoxide radical anion from Rose Bengal was first reported

8

Page 22: Synthesis and Evaluation of Derivatives and Analogs of

9

by Neckers et al.26 However, Kochevar et al. found that the formation of superoxide

radical anion in aqueous solution or a biological enviroment is limited to certain

conditions, i.e. which needs the concentration O2 should be low enough not to be

quenched by triplet dye to form a single oxygen but high enough to react with the

semireduced radical anion dye and form the superoxide radical anion.27

• Radical formation from dye oxidation-photoinitiator

In 1988, Neckers et al. found that the Rose Bengal monoanion or dianion salt

including counterions, such as iodonium (IPh2+) ion would undergo photobleaching and

produce radicals as initiator for polymerization.28 The reason is that the reduction

potential of the counter ion is lower than the oxidation potential of the dye. Thus, a single

electron would transfer from the higher potential xanthene dye to the lower potential

counter ion. From the observations (color changes and product separation), Neckers et al.

thought that dye photobleaching could occur in two ways. The monoanionic rose bengal

salt forms a quinoid orange form (Scheme 1.3), and the dianionic rose bengal salt forms a

lactone which is colorless (Scheme 1.4). The two different reactions are shown below.

• Radical formation from dye reduction-photoinitiator

Xanthene dyes also can undergo photoreduction reactions.29 The reason is also

based on the relative electrochemical potential of dye and counter ion. If the

electrochemical potential of the counter ion, e.g iodonium ion, is higher than the dye’s

electrochemical potential, the dye will go through a photooxidation reaction. If the

electrochemical potential of the counter ion, e.g. tertiary amine, is lower than the dye’s

electrochemical potential, a photoreduction reaction will occur. For Rose Bengal,

Davidson, Tretheway, and Neckers found that it can be bleached with light and a

reducing reagent (tertiary amine or hydride).29-30 In 1986, Phillips et al.31 found that

Page 23: Synthesis and Evaluation of Derivatives and Analogs of

Cl Cl

10

Scheme 1.3: Photobleaching of monoanionic rose bengal iodonium salt.

O OIPh2OII

IIROOC Cl

ClCl

hv

O OOII

II

Cl Cl

ROOC Cl

Ph PhI+ +

Cl

O OOII

IIROOC Cl

ClCl

Ph

orange

Page 24: Synthesis and Evaluation of Derivatives and Analogs of

Scheme 1.4: Photobleaching of dianionic rose bengal iodonium salt.

O OIPh2OII

IIPh2IOOC Cl

ClCl

Cl

hv

O OOII

IIPh2IOOC Cl

ClCl

Cl

Ph PhI+ +

O OOII

IIPh2IOOC Cl

ClCl

Cl

PhO OOII

II

Ph

O

O

Cl Cl

Cl

Cl

11

IPh2

O OOII

II

Ph

O

O

Ph

PhI+ Cl ClCl

O OOII

II

Ph

O

ClO

Cl ClCl Cl

Ph

coloerless

Page 25: Synthesis and Evaluation of Derivatives and Analogs of

Scheme 1.5: Photobleaching of decarboxylated eosin under the light with tribenzylamine.

O OHOBrBr

BrBr

hv

O OHOBrBr

BrBr

(PhCH2)3N

N(CH2Ph)2Ph

O OHOBrBr

BrBr N

HH

N N

+

N

HH

-H+

O OHOBrBr

BrBr N

O OHHOBrBr

BrBr PhN(CH2Ph)2

Ph

+

12

Page 26: Synthesis and Evaluation of Derivatives and Analogs of

13

2,4,5,7-tetrabromo-6-hydroxyl-9-phenyl-fluorone, another xanthene-based dye, could

also be converted to a colorless form (triarylmethane) when it was irradiated under

degassed conditions (in the presence of tribenzylamine). The reaction is shown in

Scheme 1.5.

• Chemical reduction of xanthene derivatives to leuco dye-probes for ROS

In protic solvents, xanthene dyes mainly exist in the quinonoid form. This makes

carbon-9 more electropositive. When xanthene dyes are subjected to reducing reagents,

such as NaBH4, they are reduced to the colorless leuco form (Scheme 1.6).29 Normally

the leuco form is not very stable and is readily oxidized to the starting xanthene dye.

Based on this property, the leuco dye can be used to detect reactive oxygen species

(ROS), such as singlet oxygen (1O2), hydrogen peroxide (H2O2), hydroxyl radicals (.OH)

and superoxide radical anion (O2.-).

2’,7’-Dichlorodihydrofluorescein (DCFH) was first used by Keston et al. in the

detection of the hydroperoxide.32-34 Since then, many dihydroxanthene dyes (Figure 1.7)

were invented and used in the detection of some ROS species, e.g. dihydrorhodamine 123

(DHR 123) was invented for the detection of superoxide,34 dihydrorhodamine 6G (DHR-

6G) was designed to detect smoke oxidants35 and 2,3,4,5,6-pentafluoro-dihydro-

tetramethylrosamine (RedoxSensor) was prepared as a fluorogenic indicator for oxidative

activity.36 In the review by Soh, fluorescent probes for the detection of ROS were

extensively discussed.37

1.3 Synthesis of Xanthene Dyes

The most common method used to synthesize the xanthene type of dye was

discovered by Baeyer in 1871 (Scheme 1.7).5-6 Normally at high temperature, resorcinol

or m-aminophenol condense with phthalic anhydride in the presence of an acid catalyst

Page 27: Synthesis and Evaluation of Derivatives and Analogs of

14

Figure 1.7: Some common xanthene-based fluorescent probes for the detection of ROS.

O

Cl

HO

Cl

OH

COOHH

OH2N NH2

COOCH3H

OH3CH2CHN NHCH2CH3

COOCH2CH3HH3C CH3

ON N

H

H3C

CH3

CH3

CH3

F F

FF

F

DCFH DHR 123

DHR-6G RedoxSensor

Chemical reduction of decarboxylate eosin with NaBH4.Scheme 1.6:

O OHOBrBr

BrBr Br

O

NaBH4H

Br

EtOHOHHO

BrBr

Page 28: Synthesis and Evaluation of Derivatives and Analogs of

(ZnCl2, H2SO4, CH3SO3H etc.) to form the desired xanthene dye. This method is

straightforward and convenient, but sometimes necessitates troublesome purifications.

15

Scheme 1.7: Traditional method for synthesis of xanthene dye.

In 2002, the Lawrence group38 reported using xanthone and a lithium reagent as

the precursor to synthesize a xanthene dye (Scheme 1.8). More recently, the Nagano

group39 and the Peterson group40 have used the Grignard reagent and a xanthone to

synthesize two fluorescein analogs Tokyo green and Pennsylvania Green (Figure 1.8).

The xanthone reactions are generally more efficient and regioselective than the traditional

methods.

For a specific xanthene, 9-phenyl substituted fluorone, an efficient two-step

synthesis was developed by the Vranken group (Scheme 1.9).41 The first step of the

synthesis involved the condensation of an aryl aldehyde with a 4-substitued resorcinol in

diluted methanesulfonic acid to form a triarylmethane, followed by cyclization using the

oxidant DDQ to give the desired dye. This method is pretty mild and which could give a

light to synthesize more xanthene-type dyes.

HO OHO

O

O

HO O OH

+ZnCl2

O

O

Scheme 1.8: Novel synthesis of xanthene dyes using xanthone as a precursor.

O

O

RO OR Br

R1R2 tBuLi

+

ORO O

R1R2

H+

Page 29: Synthesis and Evaluation of Derivatives and Analogs of

Scheme 1.9: A convenient two-step synthesis of xanthene dye under mild conditions.

XY

CHO

HO OH

F

MeSO3HF

HO

F

OHOH OH

XY

DDQ

OHO O

XY

F F

Figure 1.8: Structures of Tokyo Green and Pennsylvania Green.

O

CH3

O O O

CH3

O O

F F

Tokyo Green Pennsylvania Green

Scheme 1.10: Convenient synthesis of xanthene dye through carbinol as an intermediate.

XY

COOMeMeO OMe

MgBr

MeO OMeOMe OMe

XY

OHO O

XY

+OH

THF

H+

BBr3

H+

16

Page 30: Synthesis and Evaluation of Derivatives and Analogs of

17

During the course of developing a new fluorescent sensor for the detection of

biomolecules, our group42-43 also invented a convenient two-step synthesis of 9-

arylsubstituted fluorones (Scheme 1.10). In the first step of the synthesis, the Grignard

reagent of protected resorcinol readily reacted with a substituted phenyl ester to form a

triarylmethane alcohol (triphenylcarbinol), which was then subjected to deprotection with

BBr3. A smooth cyclization occurred.

1.4 Application of Some Xanthene Dyes

The most common uses of xanthene-based dyes have been to dye textiles and

cloth, since they first appeared in the 19th century. Rhodamine B and rhodamine 6G have

strong fluorescence. They are still the most popular dyes for dyeing cloth.1

As stated above, most xanthene dyes exist in several different ionic forms in

aqueous solution; e.g. fluorescein can exist as four different ionic forms (cationic form,

neutral form, monoanionic form and dianionic form).14-19 Under physiological conditions

(pH 7.4), fluorescein mainly exists as the dianionic form which grants it a high molar

absorptivity and large quantum yield (0.92, pH > 8).44 Also the dianionic form is easily

dissolved in water. This renders fluorescein and its derivatives useful for studies in

biological media. They can be used as fluorescent probes to track the locations of

proteins in the living cell.45 They also can be used to detect certain biological molecules.

Recently, our group successfully applied xanthene-based dyes as fluorescent sensors for

homocysteine and cysteine.46-49 Moreover, we have developed other xanthene-based

sensors for the colorimetric or fluorimetric detection of sugars.50-53

Another very important use of xanthene dyes is as laser components. The

rhodamines are among the most popular organic-dye lasers. Sorokin et al. first applied

rhodmine 6G in a flashlamp-pumped dye laser.54 In 1970, Peterson et al. used rhodamine

6G in the first continuous-wave dye laser.55 Rhodamine B is used as a photosensitizer56

Page 31: Synthesis and Evaluation of Derivatives and Analogs of

18

or as a quantum counter.57 It can be used as a dye laser too.58 Fluorescein and its

derivatives also play important roles in tunable lasers.58

1.5 References

1 Neckers, D. C. J. Chem. Edu. 1987, 64(8), 649-656. 2 Shi, J. M.; Zhang, X. P.; Neckers, D. C. J. Org. Chem. 1992, 57, 4418-4421. 3 Shi, J. M.; Zhang, X. P.; Neckers, D. C. Tetrahedron Lett. 1993, 34, 6013-6016. 4 Tanabe, T.; Torres-Filho, A.; Neckers, D. C. J. Poly. Sci. Part A: Poly. Chem.

1995, 33, 1691-1703. 5 von Baeyer, A., Ber. Dtsch. Chem. Ges. 1871, 4, 555-558. 6 von Baeyer, A. Chem. Ber. 1871, 5, 255. 7 von Hoffmann, A. W. Ber. 1875, 8, 55. 8 Neckers, D. C. J. Photochem. Photobio. A, Chem. 1989, 47, 1-29. 9 Gurr. E., Synthetic dyes in biology, medicine and chemistry, Academic Press

1971, London, England. 10 Zulkowsky, C. Monatsh. Chem. 1884, 5, 221-227. 11 Cohn, G. Chem. Ber. 1891, 24, 2064. 12 a. Zollinger, H. Colour Chemistry: Syntheses, Properties, and Applications of

Organic Dyes and Pigments, 2nd rev. ed.; 1991, VCH: Weinheim, b. Gordon, P. F.; Gregory, P. Organic Chemistry in Colour; 1983, Springer-Verlag: New York, c. Abrahart, E. N. Dyes and Their Intermediates, 2nd ed.; 1977, Edward Arnold: London.

13 Holmes, W. C. lnd. Eng. Chem. 1924, 16, 35. 14 Margulies, D.; Melman, G.; Shanzer, A. Nat. Mater. 2005, 4, 768-771. 15 Margulies, D.; Melman, G.; Shanzer, A. J. Am. Chem. Soc. 2006, 128, 4865-4871. 16 Zanker, V.; Peter, W. Chem. Ber. 1958, 91, 572-580. 17 Martin, M. M.; Lindqvist, L. J. Lumin. 1975, 10, 381-390. 18 Sjoback, R.; Nygren, J.; Kubista, M. Spectrochim. Acta A 1995, 51, L7-L21.

Page 32: Synthesis and Evaluation of Derivatives and Analogs of

19

19 Mchedlov-Petrossyan, N. O.; Tychina, O. N.; Berezhnaya, T. A.; Alekseeva, V. I.; Savvina, L. P. Dyes and Pigments, 1999, 43, 33-46.

20 Lamberts, J. J. M.; Neckers, D. C. Tetrahedron, 1985, 41, 2183-2190. 21 Lee, P. C. C.; Rodgers, M. A. J. Photochem. Photobiol. 1987, 45, 79. 22 Neckers, D. C.; Valdes-Aguilera, O. M. Adv. Photochem. 1993, 18, 315. 23 Windaus, A,; Brunken, J. Liebigs Ann. Chem. 1928, 460, 225-235 24 Kautsky, H.; Bruijn, H. Naturwissenschaften, 1931, 19, 1043 25 Foote, C. S.; Wexler, S. J. Am. Chem. Soc. 1964, 86, 3876 26 Srinivasan, V. S.; Podolski, D.; Westrick, N. J.; Neckers, D. C. J. Am. Chem. Soc.

1978, 100, 6513-6515. 27 Lambert, C. R.; Kochevar, I. E. J. Am. Chem. Soc. 1996, 118, 3297-3298. 28 Linden, M. S.; Neckers, D. C. J. Am. Chem. Soc. 1988, 110, 1257-1260. 29 Zakrzewski, A.; Neckers, D. C. Tetrahedron, 1987, 43, 4507-4512. 30 Davidson, R. S.; Tretheway, K. R. J. Chem. Soc. Chem. Comm. 1975, 16, 674-

675. 31 Phillips, K.; Read, G. J. Chem. Soc., Perkin Transactions 1. 1986, 4, 671-673. 32 Keston, A. S.; Brandt, R. B. Anal. Biochem. 1965, 11, 1-5. 33 Black, M. J.; Brandt, R. B. Anal. Biochem. 1974, 58, 246-254. 34 Henderson, L. M.; Chappell, J. B. Eur. J. Biochem. 1993, 217, 973-980. 35 Ou, B.; Huang, D. Anal. Chem. 2006, 78, 3097-3103. 36 Chen, C.; Gee, K. Free Radical Biol. Med. 2000, 28, 1266-1278. 37 Soh, N. Anal. Bioanal. Chem. 2006, 386, 532-543. 38 Chen, C. C.; Yeh, R.H.; Lawrence, D. D. J. Am. Chem. Soc. 2002, 124, 3840-

3841. 39 Urano, Y.; Kamiya, M.; Kanda, K.; Ueno, T.; Hirose, K.; Nagano, T. J. Am.

Chem. Soc. 2005, 127, 4888-4894. 40 Mottram, L. F.; Boonyarattannkalin, S.; Kovel, R. E.; Peterson, B. R. Org. Lett.

2006, 8(4), 581-584.

Page 33: Synthesis and Evaluation of Derivatives and Analogs of

20

41 Bacci, P. J.; Kearney, A.M; Van-Vranken, D. L. J. Org. Chem. 2005, 70, 9051-

9053. 42 Yang, Y.; Escobedo, J. O.; Wong, A.; Schowalter, C. M.; Touchy, M. C.; Jiao, L.;

Crowe, W. E.; Fronczek, F. R.; Strongin, R. M. J. Org. Chem. 2005; 70, 6907-6912.

43 Yang, Y.; Lowry, M.; Schowalter, C. M.; Fakayode, S.O., Escobedo, J. O.; Xu,

X.; Zhang, H.; Jensen, T. J.; Fronczek, F. R.; Warner, I.M.; Strongin, R. M. J. Am. Chem. Soc. 2006, 128, 14081-14092.

44 Guilbault, G. G. Practical Fluorescence; Guilbault, G. G., Ed.;Marcel Dekker

Inc.: New York, 1990. 45 Fluorescent and Luminescent Probes for Biological Activity; Mason, W.T., Ed.;

Academic Press; San Diego, 1999. 46 Wang, W.; Rusin, O.; Xu, X.; Kim, K. K.; Escobedo, J. O.; Fakayode, S. O.;

Fletcher, K. A.; Lowry, M.; Schowalter, C. M.; Lawrence, C. M.; Fronczek, F. R.; Warner, I. M.; Strongin, R. M. J. Am. Chem. Soc. 2005, 127, 15949-15958.

47 Wang, W.; Escobedo, J. O.; Lawrence, C. M.; Strongin, R. M. J. Am. Chem. Soc.

2004, 126, 3400-3401. 48 Rusin, O.; Luce, N.; Agbaria, R. A.; Escobedo, J. O.; Jiang, S.; Warner, I. M.;

Dawan, F. B.; Lian, K.; Strongin, R. M. J. Am. Chem. Soc. 2004, 126, 438-439. 49 Escobedo, J. O.; Wang, W.; Strongin, R. M. Nat. Protocols, 2007, 1, 1-4. 50 Jiang, S.; Escobedo, J. O.; Kim, K. K.; Alpturk, O.; Samoei, G. K.; Fakayode, S.

O.; Warner, I. M.; Rusin, O.; Strongin, R. M. J. Am. Chem. Soc. 2006, 128, 12221-12228.

51 Yang, Y; Lewis, P. T.; Escobedo, J. O.; St Luce, N. N.; Treleaven, W. D.; Cook,

R. L.; Strongin, R. M. Collect. Czech. Chem. Commun. 2004, 69, 1282-1291. 52 He, M.; Johnson, R. J.; Escobedo, J. O.; Beck, P. A.; Kim, K. K., St Luce, N. N.;

Davis, C. J.; Lewis, P. T.; Fronczek, F. R.; Melancon, B. J.; Mrse, A. A.; Treleaven, W. D.; Strongin, R. M. J. Am. Chem. Soc. 2002, 124, 5000-5009.

53 Kim, K. K.; Escobedo, J. O.; St Luce, N. N.; Rusin, O.; Wong, D.; Strongin, R.

M. Org. Lett. 2003, 5, 5007-5010. 54 Sorokin, P. P.; Lankard, J. R.; Moruzzi, V. L.; Hammond, E. C. J. Chem. Phys.

1968, 48, 4726. 55 Peterson, O. G.; Tuccio, S. A.; Snavely, B. B. Appl. Phys. Lett. 1970, 17, 245.

Page 34: Synthesis and Evaluation of Derivatives and Analogs of

21

56 Kramer, H. E. A.; Mante, A. Photochem. Photobiol. 1972,15,25. 57 Demas, J. M.; Crosby, G. A. J. Phys. Chem. 1971, 75, 911. 58 Dye Lasers; Schafer, F. P., Ed.; Springer-Verlag: Berlin, 1973

Page 35: Synthesis and Evaluation of Derivatives and Analogs of

CHAPTER 2

COLORIMETRIC AND FLUOROMETRIC DETECTION OF CYSTEINE AND HOMOCYSTEINE *

2.1 Background

Biological thiols are of great interest to public health.1 Some common biological

thiols are shown below (Figure 2.1).

NH2

HS

O

HONH

SH

O

HO

O

NH2

SHHO

O

NH2

SHO

HOSH

HN

NH2

OH

O

O

NH

OH

OO

penicillamineN-acetylcysteine

cysteinehomocysteine glutathione

Figure 2.1: Some common biological thiols.

2.1.1 Homocysteine

Homocysteine (Hcy) is a sulfur containing amino acid that is an intermediate in

the metabolism of methionine to cysteine (Figure 2.2). Methionine is an essential amino

acid and is the only source of homocysteine.2 If the pathway to ether cysteine or

methionine is blocked, the concentration of Hcy will rise and probably result in

hyperhomocysteinemia. Hyperhomocysteinemia is the condition where plasma Hcy

* Parts of this chapter have appeared in Journal of the American Chemical Society.

22

Page 36: Synthesis and Evaluation of Derivatives and Analogs of

concentration exceeds 12-15 µM.1

METHIONINEATP

S- ADENOSYL - METHIONINE

S - ADENOSYL-HOMOCYSTEINE

HOMOCYSTEINE

ADENOSINE

VB12

5 - METHYLHYDROFOLATE

TETRAHYDROFOLATE

SERINE

VB6

CYSTATHIONINE

CYSTEINE

A - KETOBYTURATE VB6

Figure 2.2: Methionine metabolism.

It has been reported that some diseases are related to hyperhomocysteinemia, such

as cardiovascular,1 Alzheimer’s disease1 and neutral tube defects.3 More recently,

osteoporosis4 and complications during pregnancy,5 were also reported to be associated

with elevated levels of homocysteine in blood plasma, though the reasons are still unclear.

It is still unknown if high level Hcy causes diseases or is just a consequence of disease.

2.1.2 Cysteine

Cysteine (Cys) is a nonessential amino acid which can be made by the human

body under normal physiologic conditions from essential amino acid. Cysteine is also

one of the limited amino acids that contain sulfur. Most cysteine normally appears in

proteins, e.g. beta-keratin, one of the main proteins of skin, nails, and hair, while small

amounts of free cysteine can be found in body fluids and in plants.

Cysteine is very important to the human body. It is a component of the

antioxidant glutathione, which is known for neutralizing free radicals occurred in the

23

Page 37: Synthesis and Evaluation of Derivatives and Analogs of

body. In addition, people have found that cysteine is useful to stimulate the healing of

erosive gastritis induced by nonsteroidal anti-inflammatory drugs, e.g. aspirin and

ibuprofen, and prevent bleeding induced by gastritis.6 In 1991, Droge et al. reported that

cysteine plays a very important role in the immune system.7 It is also founded that

people suffered from HIV have low levels of cysteine and glutathione, the reason could

be that a decrease of Cys or glutathione would either lead to, or suffered from, immune

system problem related to HIV.8,9,10

Like other thiols, cysteine can also be easily oxidized to cystine via disulfide bond

formation. The poor water solubility of the cystine reduces its excretion. It can

accumulate either in urine, leading to cystinuria11 or in various organs of the body,

forming stones, such as kidney stones.12

It has already been reported that the low levels of cysteine are associated with

slowed growth, hair depigmentation, edema, lethargy, liver damage, muscle and fat loss,

skin lesions and weakness.13 However, on the other hand, excess cysteine in the human

brain has also been associated with significant problems related to neurotoxicity.14

2.2 General Thiol Detection Methods

Due to the importance of cysteine and homocysteine, there is a significant need

for their detection. Various detection methods have been developed, which mainly

include chromatographic separations, immuno- and enzymatic assays, electrochemistry,

mass spectrometrometry, etc. Normally, these methods need to be used in combination.

For example, HPLC normally needs to be combined with mass spectrometrometry.

Electrochemical detection is also a very common detection method. However, it is

unselective and oxidizable impurities may result in low selectivity and precision, etc.15

24

Page 38: Synthesis and Evaluation of Derivatives and Analogs of

For immuno- and enzymatic assays, the enzymes used are normally very expensive, also

they have short shelf lives.

(1) RS (H) + O2 RS + O2 + (H+ )

(2) RS + RSH(RS ) RSS(H)R + (RSSR )

(3) RS + O2 RSOO

(4) RS + RS RSSR

(5) RSSR + O2 RSSR + O2

(6) O2 + O2 + 2H+ H2O2 + O2

Figure 2.3: Complex chemistry of biological thiols.

Additional challenges include the facts that: 1) thiols are readily prone to

oxidation (Figure 2.3); 2) biological thiols have very similar structures; 3) biological

thiols are normally colorless and nonfluorescent, which make derivatization a need.

Some known derivatization reagents are shown in Figure 2.4.

However, excess derivatization agents must often be removed from reaction

mixtures, which can make the detection procedure more complicated. Some derivatives

are prone to unwanted further reactions, such as when using 4-fluoro-7-nitrobenzofurazan

(NBD-F) to detect penicillamine, an unexpected S-N migration occurred (Figure 2.5).16

O O

CH3H3C

BrH2C CH3

N OOO O

COOH

HN O

I

HO

mBrB

NPM

5-iodoacetamidofluorescein

NO

NNO2

F

NBD-F

CHO

CHOOPA

Figure 2.4: Some common known derivatization reagents.

25

Page 39: Synthesis and Evaluation of Derivatives and Analogs of

Other thiol-chromophore/fluorophore derivatives also are sensitive to light and hydrolysis,

such as O-phthalaldehyde (OPA) which is only stable in the dark.17 Some derivatization

agents themselves are prone to instability, such as monobromobimane (mBrB) .18

NO

N

NO2

F

+ NH2

Major

Minor NO

N

NO2

SNH2

NO

N

NO2

HNSH

HSS-N migration

NBD-F

Figure 2.5: S-N migrations and competition in NBD-F reactions.

2.3 Formation of N-thiazolidines It is well known that Cys can react with aldehyde,19 and that N-terminal cysteines

can selectively react with aldehydes and form thiazolidines.20 The product is also stable

at slightly acidic aqueous conditions, while N-termianl oxazolidines, resulting from the

reaction between serine and an aldehyde, are 104 times less stable than N-terminal

thiazolidines.21 Thiazolidine formation has been used to label and immobilize proteins

and peptides22 (Scheme 2.1).

Based on our group’s former research experience with sugar detection via a UV-

Vis technique,23 we reasoned that the reaction of an aldehyde with Cys or Hcy would

Scheme 2.1: Reaction of cysteine with aldehydes to form thiazolidines.

O

O

H

OHS

H3+N

O

R O

OO

S

NH

RProtein Protein

26

Page 40: Synthesis and Evaluation of Derivatives and Analogs of

promote colorimetric and fluorimetric responses, which also can be easily monitored by

UV-Vis or fluorescence techniques. Thus, a highly selective probe, fluorescein

dialdehyde (Figure 2.6), was studied. It showed selective colorimetric and fluorometric

detection in preliminary research for Hcy and Cys.24 More comprehensive results are

presented below.

2.4 Multistep Synthesis of Fluorescein Dialdehyde

HO O OH

O

O

O O

2.1

Figure 2.6: Fluorescein dialdehyde.

The fluorescein dialdehyde (Compound 2.1 in Figure 2.6) we used to discriminate

Cys and Hcy from other amino acids and thiols was derived from the literature.25 It was

in fact an intermediate in a synthesis of a fluorescent sensor for zinc ion. The preparation

Scheme 2.2: Multistep synthesis of compound 2.1. 25

OHHOO

O

O

BzO

N N

O

O

BrBr

O

O

BzO OBz O

O

HO OH

1. ZnCl22. HCl (aq)3. (C6H5CO)2O, C5H5N

VAZO 88, AcOH C6H5Cl

1. DMSO/NaHCO3

2. HCl (aq)

O

O

Br Br O O

OBz

O

O O

2.1

27

Page 41: Synthesis and Evaluation of Derivatives and Analogs of

is a multi-step synthesis (Scheme 2.2) starting from a condensation of 2-methyl

resorcinol with phthalic anhydride at high temperature (from 150°C to 230°C) with the

aid of anhydrous ZnCl2. This is similar to the traditional fluorescein synthesis invented

by von Baeyer.26 The crude 4,5-dimethyl fluorescein was protected as a benzoate in

order to convert it to a less polar compound for easier purification by recrystalliztion. A

facile radical bromination reaction produced the dibromo fluorescein in high yield, but a

long reaction time is required, i.e. the reaction was conducted over three days. After

purification by recrystallization in toluene and EtOH, the dibromo fluorescein was

converted to fluorescein dialdehyde by a Kornblum aldehyde synthesis27 through

oxidation with DMSO in the presence of NaHCO3. In order to obtain ~40% yield, it was

required to use rigorously dried DMSO distilled over CaH2 followed by storage over

molecular sieves. It was pointed out that undistilled DMSO would cut the yield by more

than 50%.25 During the period of preparation of the fluorescein dialdehyde, I found that

the synthesis was time consuming, tedious and used a lot of reagents. I hypothesized that

choosing a more convenient synthesis method for preparing fluorescein-based aldehydes

would be very useful.

2.5 Reimer-Tiemann Reaction and Its Applications

It is known that there are several methods could be used to directly introduce an

aldehyde group to an aromatic compound or a heteroaromatic compound, such as the

OHOH OH

aq. NaOH, CHCl3CHO

CHO

+60 0C

20% 10%

Scheme 2.3: Reimer-Tiemann reaction.

28

Page 42: Synthesis and Evaluation of Derivatives and Analogs of

Gattermann reaction,28 Gattermann-Koch reaction,29 Vilsmeier-Haack reaction,30 Duff

reaction,31 and Reimer-Tiemann reactions.32-35 However, compared to the Reimer-

Tiemann reaction, the other reactions have their certain “drawbacks” and Reimer-

Tiemann reaction has its own special advantages, though normally the Reimer-Tiemann

reaction gives a low yield product. For example, among the other reactions, some

formylating agents are very toxic, e.g., the HCN used in Gattermann reaction, the CO

used in the Gattermann-Koch reaction, and the phosphrous compounds required in

Vilsmeier- Haack reaction. Additionally, some of these formylating reagents (e.g CO)

are gaseous and which make the reaction relatively more difficult to perform. The

Reimer-Tiemann reaction, in contrast, is conducted under basic conditions and doesn’t

necessitate anhydrous conditions. Compared with other reactions, the Reimer-Tiemann

reaction’s advantages are: 1) the reaction is easy to handle and control, 2) the chemicals

used in the reaction are cheap, and 3) the reagents are non-toxic or low toxic.

In 1876, two young German chemists, Karl Reimer and Ferdinand Tiemann found

that phenol can be directly formylated when it was treated with strong base (such as

NaOH) and chloroform.32-35 Thus this kind of direct formylation of organic compounds is

named (Scheme 2.3).

However the Reimer-Tiemann reaction is divided into a normal and an abnormal

transformation depending on the reaction products. A normal Reimer-Tiemann reaction

is the one in which the active aromatic (such as phenol and some heterocylic compounds,

e.g. pyrroles and indoles) are treated with chloroform and strong base and yields one or

more aldehydes. The abnormal Reimer-Tiemann reaction products can be further divided

into cyclohexadienones and ring-expansion products.36 Here, we are mainly concerned

with the application of the normal Reimer-Tiemann reaction in formylation of fluorescein

29

Page 43: Synthesis and Evaluation of Derivatives and Analogs of

and naphthofluorescein.

2.6 Results and Discussion

O

O

HO OH

O

O

O

HO OH

O

+

O

O

HO OH

O

O O O

CHCl3, NaOH / MeOH

15-Crown-5, 55 0C, 5 h

~28%

2.2

~3%

2.1

Scheme 2.4: One step synthesis of fluorescein mono-aldehyde (compound 2.2) and fluorescein di-aldehyde (compound 2.1).

• Synthesis of fluroescein-based aldehyde with Reimer-Tiemann reaction

Under normal Reimer-Tiemann reaction conditions (Scheme 2.4), commercially

availabe fluorescein treated with concentrated NaOH and CHCl3 at 55 °C with the aid of

a phase transfer catalyst (15-Crown-5 ether) for 5h to afford fluorescein mono-aldehyde

(compound 2.2) in a single step in a 28.3% yield, and a small amount (3.4%) of

fluorescein dialdehyde (compound 2.1). The single-crystal X-ray structures analysis

confirmed the structure assignment. From the single-crystal structure, we can see that

both fluorescein-based derivatives exist as lactones (Figure 2.7).

Applying the same reaction conditions to naphthofluorescein (Scheme 2.5), the

product naphthofluoresceine monoaldehyde (compound 2.3) was obtained in 15% yield

along with a trace amount of naphthofluorescein dialdehye (compound 2.4). The single-

crystal X-ray structure analysis also confirmed the assignment of the product (Figure 2.8).

The advantage of this simple new synthesis of fluorescein-based aldehydes and

naphthafluorescein-based aldehyde includes convenience and efficiency, but the yield of

this reaction is low to moderate. The reason could be that a side reaction occurred

30

Page 44: Synthesis and Evaluation of Derivatives and Analogs of

Figure 2.7: Single-crystal X-ray structures of compound 2.1 (top)

and compound 2.2 (bottom).

31

Page 45: Synthesis and Evaluation of Derivatives and Analogs of

O

O

O

CHCl3,NaOH / MeOH

15-Crown-5, 55 0C, 5 h

OHHO HO OH HO OH

O

O

O

O O

O

O

O O

Trace

2.4

~15%

2.3

Scheme 2.5: One step synthesis of naphthofluorescein aldehydes

Figure 2.8: Single-crystal X-ray structure of compound 2.3.

32

Page 46: Synthesis and Evaluation of Derivatives and Analogs of

between carbene and water. The large amount of water needed for this reaction is due to

the pretty low solubility of fluorescein or naphthafluorescein in organic solvents.

• Detection of Cys and Hcy with fluorescein-based aldehydes

The formation of thiazolidinic acids were observed upon the reaction of

fluoresceine mono- and dialdehydes with Cys and Hcy in buffered solution (Scheme 2.6).

When Cys or Hcy was added to a solution of compound 2.1 (Figure 2.6) (1.0 x 10-6 M,

pH 9.5), the solution color changed from bright yellow to brownish-orange.24 Similar

color changes were also can be found on reverse phase silica gel.24 UV-Vis technique

showed absorbance changes (a decrease in absorbance at 480 nm followed by a ~ 25 nm

red shift) when cysteine was added to the dye solution. Similarly, the addition of Cys or

Hcy to solutions of compound 2.1 also resulted in fluorescence quenching because of the

formation of thiazolidines or thiazinanes.24

It is known that the concentration of total homocysteine (tHcy) in plasma is less

than 12~15 µM.1, 37-38 Cys concentration in plasma is normally 20-30 times of Hcy

concentration. In a communication,24 we reported that compound 2.1 can be used to

monitor the low concentration Cys (the cysteine concentration range 10-5-10-6 M.).

In order to study the selectivity of the probe for the detection of Cys and Hcy, in

the previous work,24 we also checked the response of fluorescein dialdehyde to some

other sulfur-containing molecules (L-methionine, mercaptoethanol, glutathione), other

amino acids (L-glutamine, L-serine, L-glycine, L-glutamic acid), and amines (D-

glucosamine hydrochloride and n-propylamine (8.0 x 10-4 M, pH 9.5).24 We found that

only a small or no decrease in absorbance at 480 nm is observed and there is no

wavelength shift was seen for all of those molecules, though all of these compounds’

concentration is as 10 times more than the cysteine used. For example, Figure 2.9

33

Page 47: Synthesis and Evaluation of Derivatives and Analogs of

HO O OH

O

O

O O

HSNH2

COOH

NH2

COOH

HS

S

HO O OH

O

O

HN NHS

HOOC COOH

H H

HO O OH

O

O

HN NHS S

HOOC COOH

H H

Buffer/H2O

Buffer/H2O

HO O OH

O

O

O

HSNH2

COOH

NH2

COOH

HS

S

HO O OH

O

O

HN

HOOC

H

HO O OH

O

O

HN S

HOOC

H

Buffer/H2O

Buffer/H2O

Scheme 2.6: Thiazolidine formation.

34

Page 48: Synthesis and Evaluation of Derivatives and Analogs of

illustrates the response of serine to fluorescein dialdehyde at the 2.5 x 10-6 M

concentration. There was no spectral change at first, when serine was continuously

added to the solution of fluroescein dialdehyde from 4 x 10-5 M to 8 x 10-4 M and finally

only a minor absorbance decrease. When Cys was added from 4 x 10-6 M to 8 x 10-5 M,

we found a decrease at 480 nm first, and then a 25-nm red shift. The reason for this is

that the product N-teminal oxazolidine formed from serine and aldehyde is 104 times less

stable than thiazolidines.21 So from the above results, we can see that fluorescein

dialdehyde is a selective probe for colorimetric and fluorometric detection of Cys and

Hcy.

The new probe, fluroescein-monoaldehyde (compound 2.2), also showed a

positive response to the Cys and Hcy (Figure 2. 10). From the absorption spectra, we can

see that both Cys and Hcy can produce an obvious decrease of the absorbance at 495 nm

but no red shift, which is a slightly different from the behavior of compound 2.1.

In the fluorescence studies, a different response from each of the two probes was

observed. Addition of cysteine or homocysteine to compound 2.1 (1.7 x 10-7 M) and

compound 2.2 (1.7 x 10-7 M) respectively resulted in the probes showing different

magnitudes of fluorescence quenching (Figure 2.11 and Figure 2.12).

In Figure 2.11, it shows that when Cys or Hcy was added to the fluorescein-

dialdehyde buffered (0.1 M carbonate buffer, pH=9.5) solution at room temperature, both

Cys and Hcy showed a certain degree quenching of fluorescence. Cys showed a little bit

greater quench. However, for the fluorescein-monoaldehyde (Figure 2.11), surprisingly

Hcy quenched the fluorescence in a less magnitude. Compared to the Hcy, Cys showed a

certain selectivity.

35

Page 49: Synthesis and Evaluation of Derivatives and Analogs of

Figure 2.9: Successive addition of L-serine (to final concentrations of 4 x 10-5 M to 8 x 10-4 M) to an aqueous solution of dialdehyde (2.5 x 10-6 M) at pH 9.5 results only in an absorbance change at 480 nm. Addition of L-cysteine (to final concentrations of 4 x 10-6 M to 8 x 10-5 M) to the L-serine-dialdehyde solution produces an absorbance change at 505 nm.

0

0.10.2

0.30.4

0.50.6

0.70.8

0.9

350 400 450 500 550 600

Wavelength

Abs

orba

nc

Wavelength (nm)

Arb

itrar

y U

nits

400 420 440 460 480 500 520 540 560 580 600

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Abso

rban

ce

Wavelength (nm)

Control Control+Cys Control+Hcy

Figure 2.10: L-cysteine (final concentrations of 4 x 10-6 M) added to an aqueous solution of compound 2.2 (2.5 x

10-6 M) at pH 9.5 results in an absorbance decrease at 495 nm.

36

Page 50: Synthesis and Evaluation of Derivatives and Analogs of

Figure 2.11: Compound 2.1 fluorescence studies.

0

100000

200000

300000

400000

500000

600000

0 0.0002 0.0004 0.0006 0.0008 0.001

[Analyte ] M

Fluo

resc

ence

Inte

nsity

Homocysteine

Cysteine

c. Plot of fluorescence intensity of solutions of 2.1 in the presence of various concentrations of Cys and Hcy.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

470 490 510 530 550 570 590 610 630

Wavelength, nm

Fluo

resc

ence

Inte

nsity

a. Fluorescence emission spectra of solutions of compound 2.1 (1.7 x 10-7 M, 0.1 M carbonate buffer, pH 9.5) excited at 460 nm at rt in the various of concentration of Cys.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

470 490 510 530 550 570 590 610 630

Wavelength (nm)

Fluo

resc

ence

Inte

nsity

b. Fluorescence emission spectra of solutions of compound 2.1 (1.7 x 10-7 M, 0.1 M carbonate buffer, pH 9.5) excited at 460 nm at rt in the various of concentration of Cys.

37

Page 51: Synthesis and Evaluation of Derivatives and Analogs of

0200000400000600000800000

100000012000001400000160000018000002000000

495 515 535 555 575 595

Wave le ngth, nm

Fluo

resc

ence

Inte

nsity

a. Fluorescence emission spectra of solutions of compound 2.2 (1.7 x 10-7 M, 0.1 M carbonate buffer, pH 9.5) excited at 460 nm at rt in the various of concentration of Cys.

0

200000

400000600000

800000

1000000

1200000

14000001600000

1800000

2000000

495 515 535 555 575 595

Wavelength, nm

Fluo

resc

ence

Inte

nsity

b. Fluorescence emission spectra of solutions of compound 2.2 (1.7 x 10-7 M, 0.1 M carbonate buffer, pH 9.5) excited at 460 nm at rt in the various of concentration of Hcy.

Figure 2.12: Compound 2.2 fluorescence studies.

1300000

1400000

1500000

1600000

1700000

1800000

1900000

0 0.0002 0.0004 0.0006 0.0008 0.001

[Analyte], M

Inte

nsity

CysteineHomocysteine

c. Plot of Fluorescence intensity of solutions of 2.2 in the presence of various concentrations of Cys and Hcy.

38

Page 52: Synthesis and Evaluation of Derivatives and Analogs of

2.7 Experimental

General. UV-Visible spectra were recorded at room temperature on a Spectramax

Plus (Molecular Devices). Analytical thin-layer chromatography (TLC) was performed

using general-purpose silica gel on glass (Scientific Adsorbants). Chromatography

columns were prepared with silica gel (Scientific Adsorbants, 32-63 μm particle size,

60Å). All chemicals were purchased from Sigma or Aldrich and used without further

purification. Proton NMR spectra were acquired in either CD3OD, or DMSO-d6 on a

Bruker DPX-250, DPX-300 spectrometer. All δvalues are reported with (CH3)4Si at

0.00 ppm or DMSO at 2.49 ppm as references.

• Formylation of Fluorescein

2.5g (7.75mmol) Fluorescein and 3mL methanol were placed in a 100mL three-

neck round bottom flask. Then 10g of 50% sodium hydroxide solution, 2.42 mL (30mmol)

of chloroform and 0.03mL 15-Crown-5 was carefully added while maintaining the

mixture temperature at 55ºC. The mixture was stirred at this temperature for 5 h with a

condenser attached. After cooling, the mixture was acidified with 10 M H2SO4, and the

product precipitated. The solid was filtered and dried in vacuo overnight.

Chromatography on silica gel (15: 85 EtOAC: DCM) yielded the products, white

fluorescein di-aldehyde (2.1) and light yellow fluorescein mono-aldehyde (2.2). TLC:

compound 2.1 Rf=0.55 (15: 85 EtOAC: DCM), compound 2.2 Rf=0.28 (15: 85 EtOAC:

DCM). Characterization data for compound 2.2. 1H NMR (DMSO-d6, 250 MHz) δ (ppm):

6.60 (s, 2H), 6.68 (d, J =8.9Hz, 1H), 6.84(s, 1H), 6.92 (d, J=8.9 Hz, 1H), 7.29(d, J= 7.5

Hz, 1H), 7.69 (td, J=1.2,7.5 Hz, 1H), 7.76 (td, J=1.2, 7.5Hz, 1H),7.99 (d, J= 7.5 Hz, 1H),

10.26(s, 1H), 10.62(s, 1H), 11.87 (s, 1H). 13C NMR (DMSO-d6, 75 MHz) δ (ppm): 81.92,

102.75, 109.20, 109.27, 109.75, 113.48, 113.63, 124.06, 124.89, 125.97, 129.07, 130.42,

39

Page 53: Synthesis and Evaluation of Derivatives and Analogs of

135.91, 136.61, 150.94, 152.25, 152.46, 159.71, 163.04, 168.68, 192.94 FTIR (KBr, cm -

1 ) 1007, 1112,1157, 1227, 1465, 1512, 1593,1648, 1721, 3271 MALDI m/z for C21H12O6,

calcd 360.32, found 361.16 (M+H+), 383.24 (M+Na+)

Collection of X-ray Data. Intensity data were collected on a Nonius Kappa CCD

diffractometer equipped with MoKα radiation and a graphite monochromator. The

sample was cooled to 120 K by an Oxford Cryosystems Cryostream chiller.

• Formylation of Naphthofluorescein

The procedure is similar as above. 2.5g (5.78 mmol) naphthofluorescein and 3mL

methanol were placed in a 100 mL three-neck round bottom flask. Then 10g of 50%

sodium hydroxide solution, 1.87 mL (23.12mmol) of chloroform and 0.02mL 15-Crown-

5 were carefully added while maintaining the mixture temperature at 90 ºC. The mixture

was stirred at this temperature for around 5 h with a condenser attached. After cooling,

the mixture was acidified with 10M H2SO4, and the product was precipitated. The solid

was filtered and dried in the vacuo overnight. Chromatography on silica gel (10: 90

EtOAC: DCM) yielded the products, light pink Naphthofluorescein Mono-aldehyde. TLC:

Rf=0.57 (15: 85 EtOAC: DCM). Characterization data for compound 2.3. 1H NMR

(DMSO-d6, 300 MHz) δ (ppm): 6.69 (d, J =9Hz, 1H), 6.95 (d, J =9Hz, 1H), 7.20 (d, J

=2Hz, 1H), 7.29 (m, 2H), 7.45 (m, 2H), 7.73 (m, 2H), 8.08 (m, 1H),8.67 (dd, J= 7.5 Hz,

3.0 Hz, 2H), 9.04 (d, J =9Hz, 1H), 10.18 (s, 1H), 10.77 (s, 1H), 12.07 (s, 1H). 13C NMR

(DMSO-d6, 75 MHz) δ(ppm): 82.47, 109.42, 111.33, 112.98, 117.22, 118.95, 119.32,

119.70, 122.88, 123.84, 124.18, 124.87, 125.64, 127.44, 130.38, 131.56, 133.23, 135.84,

135.99, 145.94, 146.12, 153.10, 157.41, 164.82, 168,81, 192.42 FTIR (KBr, cm -1 ) 1014,

1086,1156, 1226, 1463, 1516, 1576,1630, 1756, 3425 MALDI m/z for C29H16O6, calcd

460.43, found 460.91

40

Page 54: Synthesis and Evaluation of Derivatives and Analogs of

Collection of X-ray Data. Intensity data were collected on a Nonius Kappa CCD

diffractometer equipped with MoKα radiation and a graphite monochromator. The

sample was cooled to 120 K by an Oxford Cryosystems Cryostream chiller

2.8 Conclusion

A convenient synthesis of fluorescein-based aldehydes, compound 2.1 and 2.2,

was presented. Both of the two compounds showed the selective detection of cysteine and

homocysteine over other biological thiols. A longer wavelength fluorescent sensor,

naphthafluorescein mono-aldehyde, compound 2.3, was also synthesized by the one step

reaction and it also possesses potential application on the detection of cysteine or

homocysteine.

2.9 References

1. Refsum, H.; Ueland, P. M.; Nygård, O.; Vollset, S. E. Annu. Rev. Med. 1989, 49, 31.

2. Selhub, J. Annu. Rev. Nutr. 1999, 19, 217. 3. Steegerstheunissen, R. P. M.; Boers, G. H. J.; Trijbels, F. J. M.; Eskes, T. K. A. B.

N. N. Engl. J. Med. 1991, 324, 199. 4. van Meurs, J. B. J.; Dhonukshe-Rutten, R. A. M.; Pluijm, S. M. F.; van der Klift,

M.; de Jonge, R.; Lindemans, J.; de Groot, L. C. P. G. M.; Hofman, A.; Witteman, J. C. M.; van Leeuwen, J. P. T. M.; Breteler, M. M. B.; Lips, P.; Pols, H. A. P.; Uitterlinden, A. G. N. Engl. J. Med. 2004, 350(20), 2033-2041.

5. Ueland, P. M.; Vollset, S. E.. Clin. Chem. 2004, 50, 1293. 6. Salim, A.S. Can. J. Surg. 1993, 36, 53-58. 7. Droge, W.; Eck, H. P.; Gander, H.; Mihm, S. Am. J. Med. 1991, 91(suppl

3C):S140-S144. 8. Eck, H. P.; Gander, H.; Hartmann, M.; Petzoldt, D.; Daniel, V.; Droge, W. Biol.

Chem. Hoppe. Seyler. 1989, 370, 101–108. 9. Droge, W.; Eck, H. P.; Mihm, S. Immunol. Today, 1992, 13, 211–4.

41

Page 55: Synthesis and Evaluation of Derivatives and Analogs of

10. Droge, W. Pharmacology, 1993, 46, 61–5. 11. Crawhall, J. C.; Watts, R. W. E. Am. J. Med. 1968, 45, 736. 12. Berlow, S. Adv. Clin. Chem. 1967, 9, 165. 13. Shahrokhian, S. Anal. Chem. 2001, 73, 5972. 14. Klingman, J. G.; Choi, D. W. Neurology 1989, 39, 397-398. 15. Fahey, R. C. In Glutathione: Chemical, Biochemical and Medical Aspects

Dolphin, D.; Poulson, R.; Avramovic, O., Ed.; Wiley, New York, 1989; Chapter 9, p. 303.

16. Al-Majed, A. A. Anal. Chim. Acta 2000, 408, 169. 17. Fermo, I.; Arcellonic, C.; Mazzola, G.; D’angelo, A.; Paroni, R. J. Chromatogr. B.

1998, 719, 31. 18. Baeyens, W.; Van der Weken, G.; Ling, B.; Lin Moerloose, P. D. Anal. Lett. 1988,

21, 741 19 (a) Schubert, M.P. J.Biol. Chem. 1936, 114, 341. (b) Schubert, M.P. J.Biol. Chem. 1937,

121, 539. (c) Fourneau, J.P.; Efimovsky, O.; Gaignault, J.C.; Jacquier, R.; LeRidant, C. R. Acad. Sci. Ser. C 1971, 272, 1571.

20 (a) Jencks, W. P. J. Am. Chem. Soc. 1959, 81, 475. (b) Sayer, J. M.; Peskin, M.;

Jencks, W. P. J. Am. Chem. Soc. 1973, 95, 4277. 21 Tam, J. P.; Miao, Z. J. Am. Chem. Soc. 1999, 121, 9013, and references therein. 22 Zhang, L.; Tam, J. P. Anal. Biochem., 1996, 233, 87. 23 (a) Davis, C. J.; Lewis, P. T.; McCarroll, M. E.; Read, M. W.; Cueto, R.; Strongin,

R. M. Org. Lett. 1999, 1, 331. (b) Lewis, P. T.; Davis, C. J.; Cabell, L. A.; He, M.; Read, M. W.; McCarroll, M. E.; Strongin, R. M. Org. Lett. 2000, 2, 589 (c) He, M., Johnson; R. J.; Escobedo, J. O.; Beck, P. A.; Kim, K. K.; St Luce, N. N.; Davis, C. J.; Lewis, P. T.; Fronczek, F. R.; Melancon, B. J.; Mrse, A. A.; Treleaven, W. D., Strongin, R. M. J. Am. Chem. Soc. 2002, 124, 5000-5009.

24 (a) Wang, W.; Rusin, O.; Xu, X.; Kim, K. K.; Escobedo, J. O.; Fakayode, S. O.;

Fletcher, K. A.; Lowry, M.; Schowalter, C. M.; Lawrence, C. M.; Fronczek, F. R.; Warner, I. M.; Strongin, R. M. J. Am. Chem. Soc. 2005, 127, 15949-15958. (b) Rusin, O.; St. Luce, N. N.; Agbaria, R. A.; Escobedo, J. O.; Jiang, S.; Warner, I. M.; Dawan, F. B.; Lian, K.; Strongin, R. M.. J. Am. Chem. Soc. 2004, 126(2), 438-439.

42

Page 56: Synthesis and Evaluation of Derivatives and Analogs of

25 Burdette, S. C.; Walkup, G. K.; Spingler, B.; Tsien, R. Y.; Lippard, S. J. J. Am. Chem. Soc. 2001, 123, 7831-7841.

26 von Baeyer, A., Ber. Dtsch. Chem. Ges. 1871, 4, 555-558. (b) von Baeyer, A.

Chem. Ber. 1871, 5, 255. 27 (a) Kornblun, N.; Powers, J. W.; Anderson, G. J.; Jones, W. J.; Larson, H. O.;

Levand, O.; Weaver, W. M. J. Am. Chem. Soc. 1957, 79, 6562. (b) Kornblun, N.; Jones, W. J.; Anderson, G. J. J. Am. Chem. Soc. 1959, 81, 4113.

28 Gattermann, L. Ber., 1898, 31, 1149, 1765, 1770. 29 Gattermann, L.; Koch, J. A. Ber. 1897, 30, 1622. 30 Vilsmeier, A.; Haack, A. Ber. 1927, 60, 119 -122. 31 Duff, J. C.; Bills, E. J. J. Chem. Soc. 1932, 1987; 1934, 1305. 32 Reimer, K. Ber. 1876, 9, 423. 33 Reimer, K.; Tiemann, F. Ber. 1876, 9, 824. 34 Reimer, K.; Tiemann, F. Ber. 1876, 9, 1268. 35 Reimer, K.; Tiemann, F. Ber. 1876, 9, 1285. 36 Wynberg, H.; Meijer, E. W. Organic Reactions, 1982, 28, 1, New York. 37 Refsum, H.; Ueland, P. M.; Svardal, A. M. Clin Chem. 1989, 35, 1921–1927. 38 Fiskerstrand, T.; Refsum, H.; Kvalheim, G.; Ueland, P. M. Clin Chem. 1993, 39,

263–271.

43

Page 57: Synthesis and Evaluation of Derivatives and Analogs of

CHAPTER 3

SELECTIVE DETECTION OF CYSTEINE AND DEVELOPMENT OF NIR SENSOR

PART I. SELECTIVE DETECTION OF CYSTEINE

3.1 Background

In recent work,1 the Strongin group evaluated the selective spectrophotometric

0

0.5

1

1.5

2

2.5

3

3.5

0 0.0005 0.001 0.0015

[Analyte] M

Abso

rban

ce (a

u)

CysOHcy

Figure 3.1: Absorbance at 400 nm of solutions of cinnamaldehyde in the presence of various concentrations of Cys and Hcy.

0

0.5

1

1.5

2

2.5

0 0.0005 0.001 0.0015

[Analyte] M

Abso

rban

ce (a

u)

CysOHcyO N2

Figure 3.2. Absorbance at 400 nm of solutions of 4-nitrocinnamaldehyde in the presence of various concentrations of Cys and Hcy. * Parts of this chapter have appeared in Journal of the American Chemical Society.

44

Page 58: Synthesis and Evaluation of Derivatives and Analogs of

response of some cinnamaldehyde derivatives towards cysteine in the presence of

homocysteine and found that commercially available cinnamaldehyde afforded mildly

selective detection for Cys. From this result they were able to activate or deactivate the

selectivity for cysteine by changing the aromatic ring substituents (Figures 3.1, 3.2 and

3.3). It was found that cinnamaldehyde containing an electron-donating group in the

benzene ring, e.g. 4-(dimethylamino)-cinnamaldehyde (DMACA), did show enhanced

selective detection for Cys over Hcy. The reason is attributed to the fact that the

electron-donating group renders the aldehyde and/or beta carbon less electrophilic.

00.10.20.30.40.50.60.70.80.9

1

0 0.0005 0.001 0.0015 0.002

[Analyte] M

Abs

orba

nce

(au) Cys

Hcy

O

N

Figure 3.3. Absorbance at 400 nm of solutions of DMACA in the presence of various concentrations of Cys and Hcy.

From the above results, we reasoned that an α,β-unsaturated aldehyde group can

be appended to fluorescein, a very common fluorescent dye. Thus, such a modified

fluorescent dye may potentially be used in selectively labeling or detecting peptides and

proteins via N-terminal Cys residues and to selectively detect free cysteine. Proposed

compounds 3.1 and 3.2 (Figure 3.4) were prepared via Wittig procedures from

fluorescein mono- and dialdehydes respectively (see Chapter 2).

45

Page 59: Synthesis and Evaluation of Derivatives and Analogs of

HO O OH

O

O

O

HO O OH

O

O

O O

3.1 3.2

Figure 3.4: mono- and di- α,β-unsaturated fluorescein aldehydes.

Scheme 3.1 Synthesis of compound 3.1 and 3.2.

O

O

O

HO OH

O

O

O

O

HO OH

O

50 0C, 37.4%

2.2

2.1

OO

Ph3P=CH-CHO

O

O

O

HO OH

O

O

O

O

HO OH

O

50 0C, 61.3%

3.1

3.2

Ph3P=CH-CHO

46

Page 60: Synthesis and Evaluation of Derivatives and Analogs of

3.2 Synthesis of Mono- and Di- α,β-unsaturated Fluorescein Aldehydes

Scheme 3.1 depicts a one-step synthesis of compounds 3.1 and 3.2. The starting

material, compound 2.2 (fluorescein monoaldehyde), was synthesized from commercially

available fluorescein via a Reimer-Tiemann reaction (Chapter 2) and extended to the

unsaturated aldehyde fluorescein by heating fluorescein monoaldehyde with

triphenylphosphoranylidene acetaldehyde in CHCl3 at 50 ºC overnight to afford 3.1 in

~60 % yield. Another starting material, compound 2.1 (fluorescein dialdehyde), was

prepared according to Lippard’s procedure.2 The di- α,β-unsaturated fluorescein

aldehyde (3.2) was obtained using the same procedure as with the mono aldehyde with a

yield of about 40 %.

3.3 Results and Discussion

3.3.1 Addition of Cysteine to Conjugated Aldehydes

It is known that cysteine can react with α,β-unsaturated aldehydes to generate

some important precursors of odorant sulfur compounds in flavors and fragrances.3-4

Recently, Starkenmann et al.5-6 studied reactions of cysteine and α,β-unsaturated

aldehydes.

• Addition of Cysteine to α,β-unsaturated aldehydes

Under basic conditions (pH 8-9), addition of cysteine to non-substituted α,β-

unsaturated aldehydes would mainly generate a 7-member ring Schiff base and a bis-

adduct containing a thiazolidine (Scheme 3.2), which was reported by Esterbauer et al. as

early as in 1976.7 The reaction was believed to undergo two steps, the first step being the

Michael-type addition between cysteine and α,β-unsaturated aldehyde; then the mono-

adduct may have reacted intramolecularly leading to the formation of a 7-membered ring

Schiff base or an intermolecular reaction with another molecule of cysteine to form a

47

Page 61: Synthesis and Evaluation of Derivatives and Analogs of

thiazolidine (Scheme 3.2).5

Under acidic conditions (pH=1), non-substituted α,β-unsaturated aldehydes would

react with cysteine and mainly form a bis-adduct and some mono-adduct, a saturated

aldehyde (Scheme 3.2).5

OHS

COO

NH3

pH=8 O S

O

NH3

NH

SCOO

Major

S

N COOH+

OHS

COOH

NH3

pH=1O S

O

NH3

NH

SCOO

Major

ClO S

O

NH3

O+

Scheme 3.2. Products from the reaction of cysteine and non-substituted α,β-unsaturated aldehydes.

• Addition of Cysteine to α-alkyl-substituted α,β-unsaturated aldehyde

An α-substituted α,β-unsaturated aldehyde would give a different result from the

non-substituted α,β-unsaturated aldehyde case when it reacts with cysteine. Under basic

conditions (pH 8-9), the major product from the reaction between 1 equiv Cys and 1

equiv α-substituted α,β-unsaturated aldehyde is a bis-adduct containing thiazolidine units,

and as minor product a 7-member ring Schiff base. In contrast, under acidic conditions, a

bis-adduct containing a vinylic sulfide moeity is generated as a major product, and a 7-

membered ring Schiff base and a single-adduct as minor products. The non-substituted

α,β-unsaturated aldehydes can’t generate a bis adduct vinylic sulfide moeity due to the

low stability of the less substituted olefin (Scheme 3.3).5

• Addition of Cysteine to β,β-dialkyl α,β-unsaturated Aldehyde

48

Page 62: Synthesis and Evaluation of Derivatives and Analogs of

OHS

COOH

NH3

S

N COOH

pH=1

ClHO S S

O

NH3 NH3

OH

O

Cl Cl

+

Major

HO S O

O

NH3Cl

+

OHS

COO

NH3

pH=9O S

O

NH3

NH

SCOO

Major

S

N COOH

+

Scheme 3.3: α-Substituted α,β-unsaturated aldehyde conjugates with cysteine.

R OHS

COO

NH2

R NSH

COOS

NR

COO

HS

COO

NH2

SNH

R

COO

SCOO

NH2

Scheme 3.4: β,β -dialkyl α,β-unsaturated aldehyde reacts with Cys affording 7-membered hexahydro-1,4-thiazepine (pH=7).

49

Page 63: Synthesis and Evaluation of Derivatives and Analogs of

A β,β-dialkyl α,β-unsaturated aldehyde normally reacts with cysteine (at neutral

conditions, pH=7) and yields exclusively one product, a 7-membered ring Schiff base.

Starkenmann et al. reported a detailed study of this reaction.6 They believed that

substitution on the β- position would make the Michael addition proceed very slowly, and

that the amino group would react with the aldehyde group first and form an α,β-

unsaturated imine, then a “7-endo-trig” cyclization would occur (Scheme 3.4).6

• Addition of Cysteamine to β,β-dialkyl α,β-unsaturated Aldehyde

During the mechanistic studies of thiazolidine hydrolysis, Fife et al. prepared 1, 3-

thiazolidine derivatives of 4-N,N-dimethylamino cinnamaldehyde (DMACA) by heating

equivalent amounts of DMACA and cysteamine in dry benzene (Scheme 3.5).8 In this

reaction, cysteamine reacts with α,β-unsaturated aldehyde and forms a thiazolidine mono-

adduct (5-membered ring). To the best of our knowledge, this is one of the few examples

where a mono-adduct thiazolidine is prepared from an α,β-unsaturated aldehyde and an

aliphatic aminothiol.

3.3.2. Selective Detection of Cysteine with Fluoresceine-Derived Conjugated Aldehydes When a solution of cysteine (1.0 × 10-3 M) is continuously added to a solution of

compound 3.1 or 3.2 (1.0 × 10-6 M, 0.1 M carbonate buffer, pH 9.5), the fluorescence

intensity increases steadily (Figures 3.7 and 3.8a). In contrast, there is no significant

fluorescence change observed when Hcy (1.0 × 10-3 M ) is continuously added to a

solution of 3.1 or 3.2 at the same conditions (Figure 3.7 and 3.8b). These results indicate

that Cys can be discriminated from Hcy by using 3.1 or 3.2 as fluorophore.

Due to the reversibility of the reaction between cysteine and 3.1 or 3.2 and to the

limited amount of these dyes, we were not able to separate the products and to determine

50

Page 64: Synthesis and Evaluation of Derivatives and Analogs of

Figure 3.5: (a) 1H NMR of compound 3.1 in D2O (with one drop of NaOD); (b) 2 h after addition of 10 equiv Cys. (c) 2 h af (d) 12 h after addition

ter addition of 10 equiv Hcy.

of 10 equiv Hcy.

O

N

HS NH2

NHS

N

Scheme 3.5. Synthesis of 1,3-thiazolidine from the reaction of DMACA and cysteamine.

51

Page 65: Synthesis and Evaluation of Derivatives and Analogs of

exactly what type of reaction occurred. However, based on the extensive research on

cysteine conjugated α,β-unsaturated aldehydes1, 5-8 the 1H NMR shifts before and after

the reaction (Figure 3.5) and the mass spectra (see appendix) of the reaction mixture of

compound 3.1 and cysteine, we believe that the reason why compounds 3.1 and 3.2 can

selectively react with Cys is the same as in the case of 4-N,N-dimethylamino-

cinnamaldehyde. Under our conditions, a strong electron donating group renders the β-

carbon less electrophilic which makes the rate-determing step (Michael-type addition)7

slower. Thus, DMACA would prefer to react with Cys and form an α,β-unsaturated

imine first, followed by the formation of a 5-membered thiazolidine, again due to the

lower electrophilicity of the β- carbon and, in a lesser extent, form a 7-membered ring

Schiff base (Scheme 3.6). If there is Cys still available, it could be added again to the 7-

membered Schiff base to form a thiazepine. In contrast, due to the slow formation of the

1,4-Hcy mono- adduct, Hcy will not easily react with the unsaturated aldehyde to form a

6-membered thiazinane. Moreover, Hcy may also react with the unsaturated aldehyde

and form a conjugated imine (-CH=CH-CH=N-), but in the cyclization step, the

unfavored formation of a 8-membered ring or slow ring closure of 6-membered

thiazinane would inhibit this step.

Similarly, as in the case of DMACA, compounds 3.1 or 3.2 would also prefer to

react with Cys and form a single-adduct first, leading to a 5-membered thiazolidine or 7-

membered ring Schiff base, which in turn, could react with additional cysteine to form

thiazepine. On the other hand, Cys may probably also react slowly with 3.1 or 3.2 to

form a 1,4-mono-adduct saturated aldehyde, the excess Cys may continuously react and

form a thiazolidine (Scheme 3.6). All three cases exhibit the disappearance of the

characteristic aldehyde peak (Figure 3.5). In the case of Hcy, it may react with 3.1 or 3.2

52

Page 66: Synthesis and Evaluation of Derivatives and Analogs of

to form an α,β-unsaturated imine as an intermediate, but the unfavored 8-membered ring

formation or the slow ring closure of 6-membered thiazinane would prevent a cyclization.

Hence, Hcy would prefer to undergo a slow 1,4-addition followed by cyclization to form

a thiazinane. From Figure 3.5, we can see that after 2 h, there is not a significant change

in the 1H NMR. Surprisingly, after 12 h, the characteristic doublet for the conjugated

aldehyde peak decreases and a new singlet for the saturated aldehyde peak appears. We

believe that this results indicate that Hcy undergoes a slow 1,4-addition forming a mono-

adduct, a saturated aldehyde, which could also further react with additional Hcy and form

a thiazinane.

OHO O

S

NHOOC

S

COO

NH2

COO

OHO O

S

NOOC

COO

NHS

COO

OHO O

COO

SOOC

NH2 NHS

COO

OHO O

COO

3.3 3.4 3.5 3.6

Figure 3.6. The possible products from the reaction of compound 3.1 and cysteine.

Based on the analysis of the reaction of compound 3.1 with cysteine, we

hypothesize that the products may contain two different mono-adducts (compound 3.3 or

3.5 in Figure 3.6), the excess cysteine may continuously react with a 7-membered ring

Schiff base to form a bis-adduct (compound 3.4 in Figure 3.6), and probably another bis-

adduct from the reaction sequence that starts with a Michael addition followed by

thiazolidine formation (compound 3.6 in Figure 3.6). The MALDI results of the reaction

mixture revealed the presence of compounds 3.3 and 3.5, as Na+ and K+ chelates

and compounds 3.4 and 3.6 as their Na+ chelates (see appendix).

53

Page 67: Synthesis and Evaluation of Derivatives and Analogs of

Scheme 3.6: mono- and di- α, β-unsaturated fluorescein aldehyde conjugated with cysteine (a) or homocysteine (b).

R OHS

COO

NH3

R O

S

SN

R

COO

R O

COO

NH3HS

R O

S

COOH3N

SNR

COO

R

S

COOHH3N

NH2

S

COO

OOCNH3

R

S

OOCNH3

NH2

SCOO

RDS

R N

COO

SH

SNH2

R

COO

Cys

R N

COO

HS

RDS

a

b

R NH2

SCOO

R NH2

S

COO

54

Page 68: Synthesis and Evaluation of Derivatives and Analogs of

55

Figure 3.7. Fluorescence emission spectra of solutions of 3.1 (1.7 × 10-6 M, 0.1 M carbonate buffer, pH 9.5) excited at 485 nm at rt in the presence of various concentrations of C

ys (a) and Hcy (b).

-0.1

0.1

0.3

0.5

0.7

0.9

0 50 100 150 200 250 300

Concentration (μg/mL)

(I-Io

)/Io

CysteineHomocysteine

460 480 500 520 540 560 580 600 620 640 660

0

2000000

4000000

6000000

8000000

10000000

12000000

Fluo

resc

ence

Inte

nsity

Wavelength (nm)

b: Homocysteine

460 480 500 520 540 560 580 600 620 640 660-2000000

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

a: Cysteine

Fluo

resc

ence

Inte

nsity

Wavelength (nm)

Page 69: Synthesis and Evaluation of Derivatives and Analogs of

Figure 3.8. Fluorescence emission spectra of solutions of 3.2 (1.7 × 10-6 M, 0.1 M carbonate buffer, pH 9.5) excited at 485 nm at rt in the presence of various concentrations of Cys (a) and Hcy (b).

-0.1

0.1

0.3

0.5

0.7

0.9

0 100 200 300

Concentration (μg/mL)

(I-Io

)/Io

CysteineHomocysteine

460 480 500 520 540 560 580 600 620 640 660-1000000

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

11000000

Fluo

resc

ence

Inte

nsity

Wavelength (nm)

a: Cysteine

460 480 500 520 540 560 580 600 620 640 660

0

1000000

2000000

3000000

4000000

5000000

6000000

Fluo

resc

ence

Inte

nsity

Wavelength (nm)

b: homocysteine

56

Page 70: Synthesis and Evaluation of Derivatives and Analogs of

3.4 Experimental

General. UV-Visible spectra were recorded at rt on a Spectramax Plus

(Molecular Devices). Analytical thin-layer chromatography (TLC) was performed using

general-purpose silica gel on glass (Scientific Adsorbants). Chromatography columns

were prepared with silica gel (Scientific Adsorbants, 32-63 μm particle size, 60Å). All

chemicals were purchased from Sigma-Aldrich and used without further purification.

Proton NMR spectra were acquired in either CD3OD, or DMSO-d6 on a Bruker DPX-250,

DPX-300 spectrometer. All δ values are reported with (CH3)4Si at 0.00 ppm or DMSO at

2.49 ppm as references.

• Synthesis of α,β-unsaturated Fluorescein-mono-aldehyde ( 3.1 )

To a solution of monoaldehyde 2.2 (144 mg, 0.4 mmol) in CHCl3 (25 mL),

triphenylphosphoranylidene acetaldehyde (152 mg, 0.5 mmol) was added forming a red

solution. The mixture was stirred at 50 ºC under N2 for 24 h, cooled to rt and the solvent

removed in vacuo. The residue was absorbed in silca gel and subjected to column

chromatography (10/90 MeOH/CH2Cl2 v/v) to afford compound 1 (94.7 mg, 61.3%) as a

red solid. Characterization data for compound 3.1. 1H NMR (DMSO-d6, 300 MHz) δ

(ppm): 6.59 (s, 2H), 6.68 (s, 2H), 6.84 (s, 1H), 7.22 (m, 1H), 7.30 (d, J= 7.4 Hz, 1H),

7.69 (m, 2H), 7.99 (d, J= 7.4 Hz, 1H), 8.13 (d, J=16.09 Hz, 1H), 9.73 (d, J=7.96 Hz, 1H).

13C NMR (DMSO-d6, 75 MHz) δ (ppm): 103.55, 110.41, 111.37, 111.99, 113.51, 113.99,

125.09, 125.57, 127.91, 129.99, 130.88, 132.19, 133.28, 136.10, 143.56, 151.94, 152.86,

153.45, 160.61, 160.68, 169.44, 195.95. MALDI m/z for C23H14O6, calcd 386.08, found

387.15, 409.18 (M+ Na+), 431.16 (M+ 2Na+).

• Synthesis of α,β-unsaturated Fluorescein-di-aldehyde ( 3.2 )

The procedure is similar as above. To a 100 mL three-neck round bottom flask.

57

Page 71: Synthesis and Evaluation of Derivatives and Analogs of

194 mg (0.5 mmol) fluorescein dialdehyde (2.1) and 182.4 mg (0.6 mmol)

triphenylphosphoranylidene acetaldehyde were dissolved in 30 mL MeCN. The mixture

was stirred at 50 ºC under N2 for 24 h, cooled to rt, and the red solution was concentrated

under vacuum. The red solid was absorbed on silica gel and subjected to

chromatography (10/90 MeOH/CH2Cl2 v/v) to afford compound 3.2 (82.3 mg, 37.4%) as

a red solid. Characterization data for compound 3.2. 1H NMR (DMSO-d6, 250 MHz) δ

(ppm): 6.70 (m, 4H), 7.15 (dd, J =7.5, 16.0 Hz, 1H), 7.33 (d, J =7.5 Hz, 1H), 7.72 (m,

2H), 7.99 (d, J =7.5 Hz, 1H), 8.08 (d, J =16.0 Hz, 1H), 9.73 (d, J =7.5 Hz, 2H), 11.35 (s,

2H). 13C NMR (DMSO-d6, 62.5 MHz) δ (ppm): 82.26, 109.28, 109.66, 113.12, 124.10,

124.77, 125.86, 130.30, 131.13, 132.42, 135.79, 143.01, 149.50, 152.19, 159.51, 168,53,

195.85. MALDI m/z for C26H16O7, calcd 440.09, found 441.05.

PART II: SYNTHESIS AND CHARACTERIZATION OF NOVEL HEPTAMETHINE CYANINE DYES AND APPLICATION IN THE DETECTION OF CYSTEINE AND HOMOCYSTEINE

3.5 Introduction

Optical sensors in the near-infrared (NIR) spectral range have recently captured

the attention of researchers interested in studying chemical and biological processes in

live tissues because absorption and scattering by endogenous biomolecules are

minimal.9,10 There is also ongoing interest in some NIR dyes that have applications in

high-technology areas, such as photochemistry, molecular biology, clinical chemistry,

tumor therapy, laser physics, nonlinear optics, laser sensitive optical recording techniques,

optical disks, compact disks, laser printers, optical cards, photoengraving, transparent bar

coding, forgery prevention, photoresists, spectrally sensitized photographic materials,

thermal transfer printing, and heat shielding materials.11 Among the NIR dyes, cyanine

dyes are the most common ones.

58

Page 72: Synthesis and Evaluation of Derivatives and Analogs of

N NR R

n

Figure 3.9: General structure of cyanine dyes.

As shown by the general structure (Figure 3.9), cyanine dyes are cationic

molecules in which two heterocyclic units are connected by a polymethine chain, which

possesses an electron donor in one end and an electron acceptor at the opposite end.12,13

Their common names depend on the number of methine groups in the polymethine chain.

For example, in Figure 3.9, when n=0 and n=3, they are referred to as monomethine and

heptamethine respectively. Heptamethines are known to have a strong absorption band in

the NIR region.

The main purpose of this project is the synthesis of a subclass of heptamethine

cyanine dyes 3.7-3.9 (Figure 3.10) that could potentially be used to detect or label

cysteine (Cys) or homocysteine (Hcy).

3.6 Results and Discussion

• Synthesis

The dyes 3.7 and 3.8 were synthesized according to the general procedures for the

synthesis of heptamethine cyanine dyes14 (Scheme 3.7). As shown in scheme 3.7, the

Figure 3.10: NIR probes for the detection of Cys and Hcy.

N

O

N

O

IN NI

O

O

N

O

NOOC COOH

O

3.7 3.8 3.9

59

Page 73: Synthesis and Evaluation of Derivatives and Analogs of

ClO

OHO

NR

I

NR

Cl

NR

I

N

POCl3 / DMF

nBuOH86~93%

NR

NR

I

O

O

R-X

3.13: R=Methyl3.14: R=Hexyl

3.15:R=Methyl3.16:R=Hexyl

3.7: R=Methyl3.8: R=Hexyl

82~89% NaOBu-tCHO

(78~82%)

OH

3.10 3.11

3.12

Scheme 3.7. Synthesis of heptamethine cyanine aldehyde 3.7 and 3.8.

Scheme 3.8: Synthesis of compound 3.9.

ClO

OHO

N IN

POCl3 / DMF

nBuOHreflux,87%

HOOC

COOHBr

79%

N

Cl

Nt-BuOOC COOBu-t

I

HCl / CH3CN 57%

CHO

N

Cl

NHOOC COOH

IN

O

NOOC COOH

ONaOBu-t

3.9

(63%)

OH

3.10 3.11

3.17 3.18

3.19

3.20

60

Page 74: Synthesis and Evaluation of Derivatives and Analogs of

intermediate 3.11 (2-chloro-1-formyl-3-hydroxymethylenecyclohexene) was prepared

according to literature procedures.15,16 Intermediates 3.13 and 3.14 were made via

heating at reflux a solution of alkyl iodides (methyl iodide or hexyl iodide) and 3.12

(2,3,3-trimethylindolenine), in high yield. Normally, the pure salts can be recrystallized

from ethanol or methanol. Furthermore, according to Patonay’s method,13 3.15 and 3.16

can be easily obtained in good yield. The synthesis of heptamethine cyanine aldehyde

dyes (3.7 and 3.8) were accomplished by stirring 4-hydroxy benzaldehyde and

heptamethine chlorides (3.15 and 3.16) in DMF in the presence of base (NaOt-Bu). Pure

product was obtained after column chromatography. Single-crystal X-ray structure data

confirms the assignment of 3.7 and 3.8 (Figures 3.11 and 3.13)

The heptamethine cyanine dye 3.9 was prepared according to Scheme 3.8, in

which the intermediate 3.11 was synthesized according to a known procedure15,16 (note:

3.11 is somewhat unstable and needs to be stored in the dark at -20 ºC or convert it to its

stable aniline Schiff base). Reaction of 3.17 with 3-bromopropionic acid in 1,2-

dichlorobenzene gave compound 3.18. Condensation of 3.11 and 3.18 in n-butanol under

azeotropic conditions quantitatively afforded diester 3.19, which was characterized by 1H

NMR and MALDI and showed the same spectra as the published one (see appendix).15

Diester 3.19 was dissolved in CH3CN and 1N HCl was slowly added while stirring at 60

ºC overnight. Compound 3.20 precipitated as shining crystals. Pure 3.20 can also be

obtained via flash column chromatography. The heptamethine cyanine aldehyde (3.9)

synthesis was accomplished by stirring 4-hydroxy benzaldehyde and heptamethine

chloride (3.20) in DMF in the presence of base (NaOt-Bu). Purified product was

obtained after column chromatography. Single-crystal X-ray structure analysisconfirmed

the structure assignment of 3.9 (Figure 3.12).

61

Page 75: Synthesis and Evaluation of Derivatives and Analogs of

Figure 3.11. Single-crystal X-ray structure of compound 3.7.

Figure 3.12. Single-crystal X-ray structure of compound 3.9.

62

Page 76: Synthesis and Evaluation of Derivatives and Analogs of

Figure 3.13. Single-crystal X-ray structure of compound 3.8.

63

Page 77: Synthesis and Evaluation of Derivatives and Analogs of

500 600 700 800 9000.0

0.5

1.0

1.5

2.0

2.5

Abs

orba

nce

Wavelength (nm)

1 1+Hcy5(um) 1+Hcy10(um) 1+Hcy20(um) 1+Hcy50(um)

Figure 3.14: Vis-NIR spectra of solutions containing NIR dye 3.7 (1 × 10-6 M, 0.1 M carbonate buffer, pH 9.5) and Hcy (5 – 50 μM).

64

Page 78: Synthesis and Evaluation of Derivatives and Analogs of

• Preliminary study of novel NIR sensors for the detection of Cys and Hcy

Figure 3.14 shows the Vis-NIR spectra of solutions containing NIR dye 3.7 and

various concentrations of Hcy. The absorption decreases when the Hcy concentration

increases.

3.7 Experimental

• General procedure

All chemicals were purchased from Sigma-Aldrich and used without further

purification. UV-Visible and Visible-NIR spectra were recorded at rt on a Spectramax

Plus (Molecular Devices). Mass spectra were acquired using a Bruker Proflex III

MALDI mass spectrometer with proper matrices. Analytical thin-layer chromatography

(TLC) was performed using general-purpose silica gel on glass (Scientific Adsorbants).

Chromatography columns were prepared with silica gel (Scientific Adsorbants, 32-63 μm

particle size, 60Å). Proton NMR spectra were acquired in either CD3OD, or DMSO-d6 on

a Bruker DPX-250 or a Bruker DPX-300 spectrometer. All δvalues are reported with

(CH3)4Si at 0.00 ppm or DMSO at 2.49 ppm as references.

Collection of X-ray Data. Intensity data were collected on a Nonius Kappa CCD

diffractometer equipped with MoKα radiation and a graphite monochromator. The

sample was cooled to 120 K by an Oxford Cryosystems Cryostream chiller.

• Synthesis of 1,2,3,3-Tetramethyl-3H-indolium iodide (3.13)

2,3,3-trimethylindolenine (5 g, 31.39 mmol) and iodomethane (8.91 g, 62.78

mmol) were dissolved in 30 mL MeOH. The mixture was heated and refluxed under N2

for 20 h. and cooled to rt. The solid product was filtered and washed with cold MeOH to

give 7.73 g (81.8%) pink crystalline solid. 1H NMR (DMSO-d6, 250 MHz) δ (ppm): 1.51

(s, 6H), 2.76 (s, 3H), 3.96 (s, 3H), 7.59 (m, 2H), 7.80 (m, 1H), 7.88 (m, 1H)

65

Page 79: Synthesis and Evaluation of Derivatives and Analogs of

• Synthesis of 1-Hexyl-2,3,3-trimethyl-3H-indolium iodide (3.14)

2,3,3-trimethylindolenine (1 g, 6.3 mmol) and 1-iodohexane ( 6.68 g, 31.5 mmol)

were mixed in a 50 mL round bottom flask. The mixture was heated and refluxed at 100

ºC under N2 for 15 h and cooled to rt. The solvent was removed under vacuum. The

residue was washed with Et2O followed by MEK to give 2.06 g (88.1%) of a white solid.

1H NMR (CDCl3, 250 MHz) δ (ppm): 0.85 (t, J=7.0 Hz, 3H), 1.30 (m, 6H), 1.67 (s, 6H),

1.92 (m, 2H), 3.13 (s, 3H), 4.65 (t, J=7.75 Hz, 2H), 7.58 (m, 4H,) 13C NMR (Acetone-d6,

62.5 MHz) δ (ppm): 13.77, 15.59, 22.44, 22.59, 26.50, 28.09, 31.58, 49.35, 55.12,

116.25, 124.03, 129.55, 130.10, 141.95, 142.69, 196.99 MALDI m/z for C17H22N+, calcd

244.21, found 243.84.

• Synthesis of 3-(2-carboxyethyl)-1,1,2-trimethyl-1H-benz[e]indolium bromide (3.18)

1,1,2-Trimethylbenz(e)indole (6.3 g, 30.1 mmol) and 3-bromopropionic acid

(5.02 g, 32.8 mmol) were dissolved in 30 mL 1,2-Diclorobenzene. The mixture was

heated and refluxed at 110 ºC under N2 for 15 h and cooled to rt. The precipitate was

filtered and washed thoroughly with CH2Cl2 to give 8.64 g (79.33%) as a white solid. 1H

NMR (DMSO-d6, 300 MHz) δ (ppm): 1.74 (s, 6H), 2.95 (s, 3H), 3.00 (t, J=5.75 Hz, 2H),

4.74 (t, J=5.75 Hz, 2H), 7.37 (d, J= 5.0 Hz, 1H ), 7.61 (d, J= 5.0 Hz, 1H), 7.74 (m, 2H),

8.26 (d, J=7.5 Hz, 1H), 8.34 (d, J= 7.5 Hz, 1H).

• Synthesis of 3.15

Into a round bottom flask equipped with a Dean-Stark trap and a condenser,

compound 3.13 (6.02 g, 20 mmol) and compound 3.11 (1.72 g, 10 mmol) were dissolved

in a mixture of 100 mL of n-butanol and 30 mL of benzene. The mixture was

azeotropically refluxed overnight and cooled to rt and a greenish crystalline solid

precipitated. The solid was filtered and washed with Et2O to afford 5.7 g (93.3%) of

66

Page 80: Synthesis and Evaluation of Derivatives and Analogs of

compound 3.15. Characterization data for compound 3.15. 1H NMR (CDCl3, 250 MHz)

δ (ppm): 1.70 (s, 6H), 1.95 (m, 2H), 2.72 (t, J=6.0 Hz, 4H), 3.73 (s), 6.15 (d, J= 14.1 Hz,

2H), 7.17 (d, J= 7.5 Hz, 2H), 7.23 (d, J= 7.5 Hz, 2H), 7.35 (m, 4H), 8.30 (d, J= 14.1 Hz,

2H).

• Synthesis of 3.16

The procedure is similar as the one for preparing 3.15. Into a flask equipped with

a Dean-Stark trap, compound 3.14 (3.71 g, 10 mmol) and 3.11 (0.86 g, 5 mmol) were

dissolved in a mixture of 100 mL of n-butanol and 30 mL of toluene. The mixture was

azeotropically refluxed overnight and cooled to rt. A greenish crystalline solid was

precipitated. The solid was filtered and washed with Et2O to give 3.23 g (86.1%) of

compound 3.16. 1H NMR (CDCl3, 250 MHz) δ (ppm): 0.85 (t, J=7.0 Hz, 6H), 1.31 (m,

12H), 1.69 (s, 12H), 1.81 (m, 6H), 2.66 (t, J=6.0 Hz, 4H), 4.14 (t, J=7.5 Hz, 4H), 6.12 (d,

J= 14.0 Hz, 2H), 7.13 (d, J= 7.5 Hz, 2H), 7.22 (d, J=7.5 Hz, 2H), 7.36 (m, 4H), 8.29 (d,

J=14.0 Hz, 2H) 13C NMR (CDCl3, 62.5 MHz) δ (ppm): 13.81, 20.54, 22.27, 26.48,

27.16, 27.84, 27.97, 31.24, 44.86, 49.20, 101.08, 110.81, 122.16, 125.21, 127.00, 128.66,

140.87, 142.01, 144.13, 150.34, 172.18 MALDI m/z for C42H56ClN2+, calcd 623.41,

found 623.00.

• Synthesis of 3.19

The procedure is similar as that for making 3.15. Into a flask equipped with a

Dean-Stark trap, 7.24 g (20 mmol) of 3.18 and 1.72 g (10 mmol) of 3.11 were dissolved

in a mixture of 100 mL of n-butanol and 30 mL of toluene. The mixture was

azeotropically refluxed overnight and cooled to rt. A greenish crystalline solid

precipitated. The solid was filtered and washed with Et2O to give 7.77 g (87.1%) of

product. 1H NMR (CDCl3, 250 MHz) δ (ppm): 0.80 (t, , J= 7.25 Hz, 6H), 1.24 (m, 4H),

67

Page 81: Synthesis and Evaluation of Derivatives and Analogs of

1.47 (m, 4H), 1.99 (s, 12H), 2.30 (m, 2H), 2.77 (m, 4H), 2.98 (t, J= 6.25 Hz, 4H), 3.98 (t,

J= 6.75 Hz, 4H), 4.70 (t, J=6.00 Hz, 4H), 6.33 (d, J=14.00 Hz, 2H), 7.44 (d, J=8.00 Hz,

2H), 7.58 (m, 4H), 7.91 (m, 4H), 8.08 (d, J= 8.00 Hz, 2H), 8.41 (d, J= 14.00 Hz, 2H),

MALDI m/z for C52H60ClN2O4+, calcd 811.42, found 810.84.

• Synthesis of 3.20

Into a N2 flushed 100 mL round bottom flask, 500 mg (0.56 mmol) of 3.19 was

dissolved in 10 mL of MeCN. 10 mL of 1N HCl was added and the mixture allowed to

stir at 60 ºC overnight and cooled to rt. A brown crystalline solid precipitated. The solid

was filtered and washed with copious amounts of water to give 287.64 mg (57%) of

compound 3.20. 1H NMR (DMSO-d6, 250 MHz) δ (ppm): 1.94 (m, 14H), 2.81 (m, 8H),

4.56 (t, J=6.25 Hz, 4H), 6.43 (d, J=14.0 Hz, 2H), 7.51 (t, J=7.5 Hz, 2H), 7.66 (t, J=7.5

Hz, 2H), 7.76 (d, J=8.7 Hz, 2H), 8.07 (t, J=7.5 Hz, 4H), 8.27 (d, J=8.7 Hz, 2H), 8.33 (d,

J= 14.0 Hz, 2H) 12.63 (b, 2H) MALDI m/z for C44H43ClN2O4, calcd 698.29, found

698.85.

• Synthesis of 3.7.

To an ice cooled 50 ml three-neck round bottom flask, 4-hydroxybezaldehyde

(136.6 mg, 1.12 mmol) and sodium tert-butoxide (101.88 mg, 1.06 mmol) were mixed.

Anhydrous DMF (20 mL) was added under N2 while stirring. After 30 min, the solution

was allowed to warm to rt and the chloro-dye 3.15 (611 mg, 1 mmol) was added. Three

hours later, the reaction was quenched with dry ice, and the solvent was removed under

vacuum. The crude product was subjected to column chromatography with

CH2Cl2/MeOH 9/1 to give 577.86 mg (82%) of a green crystalline solid. 1H NMR

(CDCl3, 250 MHz) δ (ppm): 1.29 (s, 12H), 2.05 (m, 2H), 2.77 (m, 4H), 3.68 (m, 6H),

6.12 (d, J= 14.2 Hz, 2H), 7.12 (d, J= 8.5 Hz, 2H), 7.22 (m, 6H), 7.34 (m, 2H), 7.73 (d,

68

Page 82: Synthesis and Evaluation of Derivatives and Analogs of

J= 14.2 Hz, 2H), 7.92 (d, J= 8.5 Hz, 2H), 9.90 (s, 1H) 13C NMR (CDCl3, 62.5 MHz) δ

(ppm): 20.95, 24.37, 27.67, 31.86, 48.78, 100.88, 110.67, 115.19, 121.87, 122.10, 125.16,

128.70, 131.15, 132.59, 140.68, 141.06, 142.60, 162.10, 163.93, 172.37, 190.46 MALDI

m/z for C39H41N2O2+, calcd 569.32, found 570.18.

• Synthesis of 3.8.

The procedure is similar as above. To an ice-cooled 50 mL three-neck round

bottom flask, 4-hydroxybezaldehyde (67.16 mg, 0.55 mmol) and sodium tert-butoxide

(50.94 mg, 0.53 mmol) were mixed. Anhydrous DMF (20 mL) was added under N2 with

stirring. After 30 min, the solution is allowed to warm to rt and the chloro-dye 3.16

(375.63 mg, 0.50 mmol) was added and stirred for 3 h. The reaction was quenched with

dry ice, and the solvent removed under vacuum. The crude product was subjected to

column chromatography with CH2Cl2/MeOH 90/5 to give 326.61 mg (78%) of a brown

crystalline solid. 1H NMR (CDCl3, 250 MHz) δ (ppm) 0.87 (t, J=7.0 Hz, 6H), 1.35 (m,

24H), 1.79 (m, 4H), 2.08 (m, 2H), 2.77 (t, J=5.75 Hz, 4H), 4.08 (t, J=7.5 Hz, 4H), 6.07 (d,

J=14.2 Hz, 2H), 7.06 (d, J=8.0 Hz, 2H), 7.22 (m, 6H), 7.31 (m, 2H), 7.74 (d, J=14.2 Hz,

2H), 7.95 (d, J=8.0 Hz 2H), 9.92 (s, 1H) 13C NMR (CDCl3, 62.5 MHz) δ (ppm): 13.92,

20.98, 22.39, 24.49, 26.58, 27.22, 27.78, 31.34, 44.78, 48.93, 100.51, 110.68, 115.29,

121.78, 122.09, 125.16, 128.66, 131.18, 132.68, 140.88, 141.16, 142.03, 162.32, 163.88,

171.83, 190.54 MALDI m/z for C49H61N2O2+, calcd 709.47, found 708.57.

• Synthesis of 3.9.

To an ice-cooled 150 mL three-neck round bottom flask, 4-hydroxybezaldehyde

(195.39 mg, 1.6 mmol) and sodium tert-butoxide (153.78 mg, 1.6 mmol) were mixed.

Anhydrous DMF (50 mL) was added under N2 with stirring. After 30 min, the solution

was allowed to warm to rt and the chloro-dye 3.20 (390.09 mg, 0.5 mmol) was added and

69

Page 83: Synthesis and Evaluation of Derivatives and Analogs of

stirred for 3 h. The reaction was quenched with dry ice, and the solvent removed under

vacuum. The crude product was washed with 1N HCl and dried over anhydrous MgSO4.

The solvent was evaporated and the residue subjected to column chromatography

(CH2Cl2/MeOH 86/14 to afford 183.14 mg (63%) of a light brown crystalline solid. 1H

NMR (CDCl3, 250 MHz) δ (ppm): 0.85 (m, 4H), 1.61 (s, 12H), 2.10 (m, 2H), 2.84 (m,

4H), 4.47 (m, 4H), 6.29 (d, J=14.2 Hz, 2H), 7.31 (d, J= 8.5 Hz, 2H), 7.43 (t, J= 7.5 Hz,

4H), 7.55 (t, J= 7.5 Hz, 2H), 7.87 (m, 10H), 9.93 (s, 1H) 13C NMR (CDCl3, 62.5 MHz) δ

(ppm): 14.11, 24.44, 27.43, 29.68, 33.87, 41.49, 50.67, 70.53, 100.34, 110.68, 115.38,

121.86, 124.97, 127.58, 127.94, 130.13, 130.77, 131.19, 131.86, 132.75, 133.69, 139.27,

140.55, 162.09, 164.13, 173.17, 174.02, 190.53 MALDI m/z for C51H48N2O6, calcd

784.35, found 784.53.

3.8 Conclusion

In summary, two novel fluorescein-based fluorescent sensors, compound 3.1 and

3.2, were developed. The fluorescence studies of the two α,β-unsaturated fluorescein-

based aldehyde show that both of them have highly selective detection of Cys over Hcy.

Base on the 1H NMR shifts before and after the reaction and the mass spectra of the

reaction mixture of compound 3.1 and cysteine, a hypothetical mechanism about the

selection was also proposed. We believed under the slightly basic conditions the α,β-

unsaturated fluorescein-based aldehyde would like to react with cysteine via a kinetic

reaction control to form a 5-membered ring or a 7-membered ring containing product,

while homocysteine would like to undergo via a thermodynamic reaction control to form

a saturated aldehyde. Besides, I also synthesized three heptamethine-based aldehydes,

which show a potential application of detection of cysteine and homocysteine in the NIR

region.

70

Page 84: Synthesis and Evaluation of Derivatives and Analogs of

3.9 References

1 Wang, W.; Rusin, O.; Xu, X.; Kim, K.K.; Escobedo, J. O.; Fakayode, S. O.; Fletcher, K. A.; Lowry, M.; Schowalter; C. M.; Lawrence, C. M.; Fronczek, F. R.; Warner, I. M.; Strongin, R. M. J. Am. Chem. Soc. 2005, 127, 15949-15958.

2 Burdette, S. C.; Walkup, G. K.; Spingler, B.; Tsien, R. Y.; Lippard, S. J. J. Am.

Chem. Soc. 2001, 123, 7831-7841. 3. Lancaster, J. E.; Boland, M. J. CRC Onion Allied Crops 1990, 3, 33-68. 4. Block, E. Angew. Chem. Int. Ed. Engl. 1992, 31, 1135-1178. 5. Starkenmann, C. J. Agric. Food Chem. 2003, 51, 7146-7155. 6. Starkenmann, C.; Brauchli, R.; Maurer, B. J. Agric. Food Chem. 2005, 53, 9244-

9248. 7. Esterbauer, H.; Ertl, A.; Scholz, N. Tetrahedron 1976, 32, 285-289. 8. Fife, T. H.; Natarajan, R.; Shen, C. C.; Bembi, R. J. Am. Chem. Soc. 1991, 113,

3071-3079. 9. Ntziachristos, V.; Tung, C. H.; Bremer, C.; Weissleder, R. Nat. Med. 2002, 8,75. 10. Hawrysz, D. J.; Sevick-Muraca, E. M., Neoplasia 2002, 2, 388. 11. Daehne, S.; Resch-Genger, U.; Wolfbeis, O. S. Near-Infrared Dyes for High

Technology Applications, June 1998. 12. Tyutyulkov, N.; Fabian, J.; Mehlhorn, A.; Dietz, F.; Tadjer, A. Polymethine Dyes:

Structure and properties; St. Kliment Ohridski University Press: Sofia, Bulgaria, 1991.

13. Fabian, J.; Nakazumi, H.; Matsuoka, M. Chem. Rev. 1992, 92, 1197-1226. 14. Narayanan, N.; Patonay, G. J. Org. Chem. 1995, 60, 2391-2395. 15. Reynolds, G. A.; Drexhage, K. H. J. Org. Chem. 1977, 42, 885-888. 16. Zhang, Z.; Achilefu, S. Org. Lett. 2004, 6, 2067-2070.

71

Page 85: Synthesis and Evaluation of Derivatives and Analogs of

CHAPTER 4

A HYDROGEL FOR BIOMEDICAL APPLICATION

4.1 Introduction

Hydrogels are composed of three-dimensional cross-linked hydrophilic polymer

networks that can contain a large amount of water.1-5 Many hydrogels are biocompatible

and have been studied in many fields. For example, based on responses to temperature

changes, hydrogels have been used in drug delivery systems,6-11 e.g., Hoffman et. al have

developed a system for delivering vitamin B12.11 Hydrogels also undergo swelling and

contraction in response to environmental factors such as type of solvent,12 ion

concentration,13 pH14 etc. Recently, in our group, we have systematically added specific

functional groups to poly-methylmethacrylate (PMMA). The derivatized PMMA can

selectively contract in the presence of glucose over other sugars, at physiological levels in

human blood plasma.15 Other hydrogel applications include contact lenses,16 and

separation processes.17,18

Polyacrylamide (PAAm) hydrogels are some of the most common hydrogels.16-18

They are normally made from acrylamide subunits which are very easily polymerized.

In the first part of this work we tried to synthesize a fluorescein-based

polyacrylamide polymer which can have potential application for cysteine or

homocysteine detection (Scheme 4.1).

4.2 Results and Discussion

• Synthesis of compound 4.1

Compound 4.5 (4-nitro-4’,5’-fluorescein dialdehyde) was synthesized according

to the procedure shown in Scheme 4.1 starting from the condensation of commercially

72

Page 86: Synthesis and Evaluation of Derivatives and Analogs of

Scheme 4.1: Synthesis of 5’-acryloylamidofluorescein dialdehyde (4.1).

HO OH O

O

OO2N

O OHHO

O

O

O OAcAcO

O

O

O OAcAcO

O

OO2N

BrBr

+

O

O

HO OH

O

HNO

O OHHO

O

OO2N

O O

1.ZnCl2

2.HCl

(AcO)2O

3h

O2N

N N

O

Br Br

O

AcOH, C6H5Cl

DMSO/NaHCO3

4h

O OHHO

O

OO2N

OO OO

O OH

HO

O

OH2N

OO OO

OO OOO

O

HO OH

O

HNO

O O

O2N

AcO O OAc

O

O

+

O2N

4.1 4.2

4.34.44.5

4.6 4.7 4.8

HOCH2CH2OH Fe, AcOH

OH2N

/ H2OH

73

Page 87: Synthesis and Evaluation of Derivatives and Analogs of

available 2-methyl resorcinol and 4-nitrophthalic anhydride in the presence of ZnCl2 at

high temperatures (150-230 ºC). 1H NMR analysis indicated that the crude product

contained ca. a 1.3:1 ratio of 4-nitro-4’,5’-dimethylfluorescein to 5–nitro-4’,5’-

dimethylfluorescein.

Without any further separation, the mixture was allowed to react with excess

acetic anhydride under reflux in pyridine for 3 h. This afforded the acetylated mixture of

both 4-nitro-4’-5’-dimethylfluorescein and 5-nitro-4’-5’-dimethylfluorescein diacetates

(compounds 4.7 and 4.8 respectively). Recrystallization from EtOAc produced pure

compound 4.7. The filtrate was concentrated and recrystallized from toluene to afford

pure isomer 4.8.

Under mild bromination conditions, 4-nitro-4’,5’-bis(bromomethyl)fluorescein

diacetate (4.6) can be generated from compound 4.7 in high yields. Figure 4.1 shows the

single crystal X-ray structure of 4.6.

A Kornblum reaction19 was used to convert the dibromo fluorescein (4.6) to 4-

nitro fluorescein dialdehyde (4.5) via oxidation of compound 4.6 with DMSO in the

presence of excess NaHCO3 at 130 ºC for 4 h.

Exhaustive attempts to directly reduce the nitro group in the presence of an

unprotected aldehyde group are still ongoing. An alternative method to reduce the nitro

group to an amino is shown in scheme 4.1. After condensation of amino compound 4.3

with acryloyl chloride, ethylene acetal 4.2 can be deprotected to obtain dialdehyde

monomer 4.1.

4.3 Experimental

General. UV-Visible spectra were recorded at rt on a Spectramax Plus 384

(Molecular Devices). Analytical thin-layer chromatography (TLC) was performed using

74

Page 88: Synthesis and Evaluation of Derivatives and Analogs of

Figure 4.1. single crystal X-ray structure of compound

4.6, 4-nitro-4’,5’-bis(bromomethyl)fluorescein diacetate.

75

Page 89: Synthesis and Evaluation of Derivatives and Analogs of

general-purpose silica gel on glass (Scientific Adsorbants). Chromatography columns

were prepared with silica gel (Scientific Adsorbants, 32-63 μm particle size, 60Å). All

chemicals were purchased from Sigma-Aldrich and used without further purification. 1H

NMR spectra were acquired in either CD3OD, or DMSO-d6 on a Bruker DPX-250 or

DPX-300 spectrometer. All δ values are reported with (CH3)4Si at 0.00 ppm or DMSO at

2.49 ppm as references.

Collection of X-ray Data. Intensity data were collected on a Nonius Kappa CCD

diffractometer equipped with MoKα radiation and a graphite monochromator. The

sample was cooled to 120 K by an Oxford Cryosystems Cryostream chiller.

• Syntheis of 4-Nitro-4’,5’-Dimethylfluorescein Diacetate (4.7) and 5–Nitro-4’, 5’-Dimethylfluorescein Diacetate (4.8) A mixture of 4-nitrophthalic anhydride (10 g, 51.78 mmol) and 2-

methylresorcinol (11.57 g, 93.20 mmol) was heated until complete liquification (around

150 ºC) and 5 g fused ZnCl2 was added portionwise. The temperature was gradually

increased to 230 ºC until the mixture solidified. The solid was allowed to cool to rt,

crushed and added to 200 mL 3M HCl. The mixture was boiled for 1 h. The crude

product was filtered, flushed with copious amounts of water and dried under vacuum

overnight. Without any purification, acetic anhydride (40 mL) was added to the mixture

and dissolved in 100 mL pyridine and heated under reflux for 3 h. The mixture was

cooled to rt and the solvent removed in vacuum. The residue was dissolved in the least

amount of EtOAc and 4-Nitro-4’,5’-Dimethylfluorescein Diacetate (4.7) recrystallized

out. The pure pale yellow 4.7 can be obtained by 2 or 3 consecutive recrystallizations

from EtOAc. The mother liquor was concentrated and redissolved in toluene, and 5–

Nitro-4’,5’-Dimethylfluorescein Diacetate (4.8) can be recrystallized out. The more pure

76

Page 90: Synthesis and Evaluation of Derivatives and Analogs of

purple 4.8 can be obtained by 2 or 3 consecutive recrystallizations from Toluene. 1H

NMR for 4-Nitro-4’,5’-Dimethylfluorescein Diacetate (4.7) (CDCl3, 250 MHz) δ (ppm):

2.36 (s, 12H), 6.63 (d, J =8.7 Hz, 2H), 6.79 (d, J =8.7 Hz, 2H), 7.38 (d, J=8.4 Hz, 1H),

8.49 (dd, J=2.0, 8.4 Hz, 1H), 8.83 (d, J=2.0 Hz, 1H). 13C NMR (CDCl3, 62.5 MHz) δ

(ppm): 9.98, 21.19, 83.47, 115.14, 118.60, 120.13, 121.37, 125.57, 126.12, 128.15,

130.38, 149.84, 150.35, 151.22, 158.15, 167.07, 169.15. MALDI m/z for C26H19NO9,

calcd 489.11, found 490.59 (M+ H+).

1H NMR for 5-Nitro-4’,5’-Dimethylfluorescein Diacetate (4.8) (CDCl3, 300 MHz)

δ (ppm): 2.37 (s, 12H), 6.66 (d, J =8.64 Hz, 2H), 6.82 (d, J =8.64 Hz, 2H), 8.03 (d,

J=1.68 Hz, 1H), 8.21 (d, J=8.34 Hz, 1H) , 8.46 (dd, J=1.68, 8.34 Hz, 1H).

• Synthesis of 4-Nitro-4’, 5’-Bis(bromomethyl)fluorescein Diacetate (4.6)

Into a 500 mL round bottom flask was added C6H5Cl (90 mL), 4-nitro-4’,5’-

dimethylfluorescein diacetate (1 g, 2.04 mmol), 1,3-dibromo-5,5-dimethylhydantoin (0.7

g, 2.45 mmol), 1,1’-azobis(cyclohexanecarbonitrile) (0.16 g, 0.08 mmol) and acetic acid

(0.03 mL). The mixture was stirred at 40 ºC for 72 h, cooled to rt and washed 3 times

with hot H2O. The organic layer was collected and dried over MgSO4. A pale yellow

product was obtained after solvent removal in vacuo. The X-ray analysis of a single

crystal confirmed the expected structure. 1H NMR for 4-nitro-4’,5’-

bis(bromomethyl)fluorescein diacetate (CDCl3, 300 MHz) δ (ppm): 2.42 (s, 6H), 4.81 (s,

4H), 6.76 (d, J =8.7 Hz, 2H), 6.94 (d, J =8.7 Hz, 2H), 7.44 (d, J=8.4 Hz, 1H), 8.54 (dd,

J=1.9, 8.4 Hz, 1H), 8.86 (d, J=8.4 Hz,1H).

• Synthesis of 4-Nitro-4’, 5’-Fluorescein Dialdehyde (4.5)

4-Nitro-4’,5’-bis(bromomethyl)fluorescein diacetate (500 mg, 0.77 mmol) and

NaHCO3 (500 mg, 6.0 mmol) were dissolved in DMSO (50 mL). The solution was

77

Page 91: Synthesis and Evaluation of Derivatives and Analogs of

stirred at 130 ºC for 4 h and cooled to rt. To the resulting mixture 2N HCl (200 mL) was

added and stirred for 30 min producing a red solid precipitate. The solid was filtered,

dried and subjected to flash column chromatography on silica gel (EtOAc:CH2Cl2 8:2).

A pale yellow solid was obtained (yield: 113 mg, 33.7%). 1H NMR for 4-nitro-4’,5’-

fluorescein dialdehyde (DMSO, 300 MHz) δ (ppm): 6.78 (d, J=8.7 Hz, 2H), 7.13 (d,

J=8.7 Hz, 1H), 7.68 (d, J=8.4 Hz, 1H), 8.60 (dd, J=1.8, 8.4 Hz, 1H), 8.69 (d, J=1.8 Hz,

1H), 10.70 (s, 2H), 11.86 (s, 2H). MALDI m/z for C22H11NO9, calcd 433.04, found

434.19 (M+H+), 460.28 (M+ Na++4H+).

4.4 Future Work

• Synthesis of water-soluble fluorescein-based polymer

O

O

O

HO OH

O O

HNO

4.1

+O NH2

Comonomer

+ NH

NH

O O

Crosslinker

GelInitiator

Scheme 4.2: Synthesis of polyacrylamide hydrogel.

Scheme 4.2 shows a proposed synthesis of polyacrylamino-fluorescein dialdehyde.

During the synthesis acrylamide is used a comonomer and N,N'-methylenebis–acrylamide

is used as the crosslinker. The hydrogel can be prepared via free radical polymerization

or a chemical polymerization according to a well established protocol.20

4.5 Conclusion

I have successfully synthesized a new fluorescein-based dye, compound 4.5,

78

Page 92: Synthesis and Evaluation of Derivatives and Analogs of

which was a important intermediate towards the preparation of a fluorescein-based

hydrogel. The single crystal X-ray structure of compound 4.6 confirmed the correct

assignment of the intermediate. The rest of the synthesis is currently being done in our

laboratory. The hydrogel would show a potential application of the detection of cysteine

and homocysteine.

4.6 References

1. Guilherme, M. R.; Silva, R.; Girotto, E. M.; Rubira, A. F.; Muniz, E. C. Polymer 2003, 44, 4213.

2. Muta, H.; Miwa, M.; Satoh, M. Polymer, 2001, 42, 6313. 3. Zhang, X.; Hu, Z.; Li, Y. Polymer 1998, 39, 2783. 4. Garcia, D. M.; Escobar, J. L.; Bada, N.; Casquero, J.; Hernandez, E.; Katime, I.

Eur. Polym. J. 2004, 40, 1637. 5. Aouada, F.; Moura, M. R.; Fernandes, P. R.; Rubira, A. F.; Muniz, E. C. Eur.

Polym. J. 2005, 41, 2134. 6. Schild, H. G. Prog. Polym. Sci. 1992, 17, 163. 7. Tanaka, T.; Filmore, D. J. J. Chem. Phys. 1979, 70, 1214. 8. Muniz, E. C.; Geuskens, G. Macromolecules 2001, 14, 4480. 9. Muniz, E. C.; Geuskens, G. J. Mater. Sci. Mater. M. 2000, 12, 879. 10. Muniz, E. C.; Geuskens, G. J Membr Sci, 2000, 172, 287. 11. Afrassiabi, A.; Hoffman. A. S. L. J. Membr. Sci. 1987, 33, 191. 12. Philippova, O. E.; Pieper, T. G.; Sitnikova, N. L.; Starodoubtsev, S. G.; Khokhlov,

A. R.; Kilian, H. G. Macromolecules 1995, 28, 3925. 13. Starodoubtsev, S. G.; Khokhlov, A. R.; Sokolov, E. L.; Chu, B. Macromolecules,

1995, 28, 3930. 14. Firestone, B. A.; Siegel, R. A. Polym. Commun. 1988, 29, 204-208. 16. J. Kopecek Euro. J. Pharm. Sci. 2003, 20, 1.

79

Page 93: Synthesis and Evaluation of Derivatives and Analogs of

15. Samoei, G.; Wang, W.; Escobedo, J. O.; Xu, X.; Schneider, H.; Strongin, R. M. Angew. Chem. Int. Ed. 2006, 45, 5319-5322

17. Park, C.-H.; Orozco-Avila, I. Biotechnol. Prog. 1992, 8, 521. 18. Park, C.-H.; Orozco-Avila, I. Biotechnol. Prog. 1993, 9, 640. 19. (a) Kornblun, N.; Powers, J. W.; Anderson, G. J.; Jones, W. J.; Larson, H. O.;

Levand, O.; Weaver, W. M. J. Am. Chem. Soc. 1957, 79, 6562. (b) Kornblun, N.; Jones, W. J.; Anderson, G. J. J. Am. Chem. Soc. 1959, 81, 4113.

20. Biorad. Acrylamide Polymerization – A Practical Approach, Bulletin 1156, also

available at http://www.biocompare.com/technicalarticle/1089/Acrylamide-Polymerization-%E2%80%94-A-Practical-Approach-from-Bio-Rad.html.

80

Page 94: Synthesis and Evaluation of Derivatives and Analogs of

CHAPTER 5

NOVEL SYNTHESIS OF POLYHALOGENATED DIBENZO-P-DIOXINS

5.1 Background

O

O

12

3

46

7

89

O

12

3

46

7

89

O

XantheneDibenzo-p-dioxin

Dibenzofuran

O

O

2, 3, 7, 8-tetrachloro-Dibenzo-dioxin

Cl Cl

ClCl

Figure 5.1: Structures of xanthene and dibenzo-p-dioxins.

Dibenzo-p-dioxin is a structural analog of xanthene. Each are planar tricyclic

aromatic ethers. Dibenzo-p-dioxin has one more C-O-C bridge existing between the

two benzene rings (Figure 5.1). Dibenzo-p-dioxin is notorious particularly because of

the chlorinated-members of its class, for example, 2,3,7,8-tetrachlorodibenzo-p-dioxin

(TCDD), which is regarded as one of the most toxic chemicals known. It is reported

that 0.6 µg of TCDD per kg of body weight can kill a guinea pig.1 It is important to

note that the toxicity of 2,3,7,8-tetrachlorodibenzofuran (TCDF),2 and the toxicity of the

polybrominated-dibenzon-p-dioxins (PBDD) has also been shown to be similar to the

81

Page 95: Synthesis and Evaluation of Derivatives and Analogs of

analogous of polychlorinated dibenzo-p-dioxin (PCDD).3,4

• Significance and purpose

Since polyhalogenated dibenzo-p-dioxins (PXDDs) have been shown to be a

significant threat to public health,3, 4 a need exists for measuring the concentrations of

PXDDs in the environment as well as understanding their mechanism of formation and

environmental fate. Mixed bromo/chloro PXDDs have been found, for example, in

emissions from electronic wastes and waste carpets. According to the US-EPA Office of

Solid Wastes, at least 2.1 million tons of electronic waste (e-waste) was generated in

2000 alone. At least 91 % of this waste entered US landfills or incinerators. Because

there are hundreds of congeners of PXDDs and related compounds, there is currently a

lack of available standards to allow for the proper identification and health assessment of

these materials.5-15 Upon combustion and thermal degradation, simple halogenated

hydrocarbons (XHCs) can form a wide range of PXDD and related XHC emissions and

reaction intermediates.

A laboratory reactor study is a practical method for understanding these complex

reactions. Because of the multitude of environmentally relevant reaction products, we

will synthesize a library of PXDD standards. Using carbon-13 labeling, we can study

their mechanism of formation in both gas-phase and CuO-mediated surface processes

under both pyrolytic and oxidative conditions. We will develop methods to examine

racemic and chiral waste by-products. To the best of our knowledge, there are no

reports which focus, for instance, on the formation of new stereocenters during

82

Page 96: Synthesis and Evaluation of Derivatives and Analogs of

combustion or on the specific stereochemical fate of chiral molecules during combustion.

• Related Synthesis

In actual waste processes, both chlorinated and brominated (e.g., flame retardant)

materials are incinerated together. Importantly, progress on the origin, environmental

fate, and biological activity of BHC and mixed XHCs has been hindered by a lack of

available standards. There are no commercial standards of the mixed halogenated

dibenzodioxins or dibenzofurans. Moreover, there have only been limited reports

describing any attempted controlled syntheses of these compounds. A relatively recent

related synthesiss was reported by Jay and Stieglitz.16, 17 They used, for instance,

non-halogenated dioxins as substrates which were heated at 260 – 300 °C in the presence

of copper bromide and copper chloride in an inert gas flow.17 This method of course

afforded a mixture of products and little or no control over halogen substitution patterns.

Older studies by Kende et al. showed that certain individual halogenated

dibenzo-p-dioxins (XDDs) (including just one mixed bromo/chloro XDD) could be

synthesized, isolated and characterized via carbon-13 NMR; however, there were

structural isomers that were indistinguishable. Their pioneering methodology, while

quite impressive during that time period, was not general towards the formation of large

classes of specific mixed bromo/chloro XDD.18

We propose to conduct a controlled, laboratory study of the thermal reactions of

PXDD precursors. This novel approach should result in large numbers of PXDDs that

can be formed; the types of mixed chlorinated hydrocarbon (CHC), brominated

83

Page 97: Synthesis and Evaluation of Derivatives and Analogs of

hydrocarbon (BHC), and XHC precursors that can form them.

5.2 Results and Discussion

• Syntheses

F

F

H2SO4 / HNO3F

F

NO2

NO2 R1

R2

OH

OH

O

O R1

R2

O2N

O2N

5.1 5.2

5.3 R1=R2=H5.4 R1=R2=Cl5.5 R1=R2=Br

5.6 R1=R2=H5.7 R1=R2=Cl5.8 R1=R2=Br

Et3N/DMF

O

O R1

R2

H2N

O2N

NH3 / THF

O

O R1

R2

R3

O2N

5.9 R1=R2=H5.10 R1=R2=Cl5.11 R1=R2=Br

5.12 R1=R2=H, R3=Br5.13 R1=R2=Cl,R3=Br5.14 R1=R2=Br,R3=Br

t-BuONO

CuBr

O

O R1

R2

R3

H2N

Fe, HOAc

O

O R1

R2

R3

R4

5.15 R1=R2=H, R3=Br5.16 R1=R2=Cl,R3=Br5.17 R1=R2=Br,R3=Br

5.18 R1=R2=H, R3=R4=Br5.19 R1=R2=Cl,R3=R4=Br5.20 R1=R2=Br,R3=R4=Br

t-BuONO

CuBr

49 %

85-91 %

10 % optimization ongoing

Shceme 5.1: Novel syntheses of polyhalogenated dibenzo-p-dioxins.

1,2-Difluoro-4,5-dinitrobenzene (5.2) was synthesized according to a published

procedure with minor modification.19 The commercially available compound

1,2-difluorobenzene (5.1) was carefully added neat to a pre-cooled (0 ºC), concentrated

mixture of H2SO4 and fuming HNO3. Because the beginning of the reaction is

84

Page 98: Synthesis and Evaluation of Derivatives and Analogs of

extremely exothermic, one should never let the temperature exceed 5 ºC.

After addition of compound 5.1, the mixture was kept cooled with an ice bath and

stirred for 30 min, warmed to rt and stirred for another 2 h. The reaction mixture was

heated at 100 ºC overnight. Less time (e.g. 2 h, according to the literature procedure) at

higher temperatures led to no reaction. Longer time is needed likely since fluoride is a

weak deactivator for nitration of the benzene ring. When cooled to rt, the mixture was

poured into an ice-H2O mixture resulting in the formation of white crystals. The

crystals were filtered and rinsed with copious amounts of cold H2O. An analytical

sample was recrystallized according to the published procedure.19

The nucleophilic aromatic substitution of fluorine in 5.2 by a catechol phenoxy

group20 (as in 5.3, 5.4 and 5.5) occurs smoothly in DMF in the presence of Et3N at 60 ºC ,

affording yellow 6,7-dinitro substituted benzodioxin (5.6, 5.7 and 5.8) in good yield

(~85%-91%).

Conversion of 6,7-dinitro substituted benzodioxins (5.6, 5.7 and 5.8) to o-amino nitro

compounds 5.9, 5.10 and 5.11 involved the substitution of one nitro group with NH3.

This method was chosen since Boyer et al.21 reported in 1955 the selective substitution of

only one of the o-nitro groups in 3,4-dintrotoluene with NH3 gas when he prepared

3-amino-4-nitrotoluene. Despite the general belief that electron donating groups

deactivate the aromatic ring for the SNAr substitution of NO2 groups, there is evidence

that they have been synthesized successfully by this method; e.g., compounds 5.21,22 and

5.22 (Figure 5.2).23 In the synthesis of compound 5.9 under mild conditions, i.e. heated

85

Page 99: Synthesis and Evaluation of Derivatives and Analogs of

1,2-dinitrobenzodioxin (5.6) in THF saturated with NH3 gas at 60 ºC for 6 h, the 1H NMR

spectrum showed that part of the starting materials has one nitro group replaced by

amino. The preliminary result (first try to date) gave a 10 % yield based on 1H NMR

integration. The optimization of this step is ongoing. This is very encouraging.

These successes demonstrate the feasibility of our proposed (i) highly facile new

synthesis of the dioxin skeletal framework and (ii) selective manipulation of functional

groups.

NH2

NO2

NH2

NO2

O

O

O

O

5.21 5.22 Figure 5.2: o-amino nitro compounds (5.21 and 5.22) prepared from o-nitro

compounds via a SNAr reaction.

5.3 Experimental

• Synthesis of 1,2-difluoro-4,5-dinitrobenzene (5.2)

60 mL conc. H2SO4 and 40 mL fuming HNO3 were added to a 500 mL three-neck

round bottom flask immersed in an ice bath. 5 g (44 mmol) 1, 2-difluorobenzene was

added dropwise at a rate that kept the temperature below 5 ºC. The mixture was

continually stirred over the ice bath for 30 min. The system was warmed to rt and

stirred for 2 h. The mixture was heated at 100 ºC overnight. After cooling to rt, the

mixture was poured into 1 Kg crushed ice. A white precipitate was collected by

filtration and washed with copious amounts of H2O and dried under vacuum overnight,

86

Page 100: Synthesis and Evaluation of Derivatives and Analogs of

yield: 4.44g (48.5%). 1H NMR (250 MHz, CD2Cl2) δ (ppm): 7.88 (t, J = 7.6 Hz, 2H); 13C

NMR (62.5 MHz, CD2Cl2) δ (ppm): 115.90, 150.33, 154.55.

• Synthesis of 6, 7-dinitrodibenzodioxin (5.6)

500 mg catechol (2.45 mmol) and 269.8 mg of 1,2-difluoro -4,5-dinitrobenzene (2)

(2.45 mmol) were dissolved in 100 mL DMF at rt. Triethylamine (1.38 mL, 9.8 mmol)

was added dropwise. The resulting light yellow solution was heated at 60 °C overnight.

The solvent was removed under vacuum, and the crude product extracted using CH2Cl2

and H2O (3 × 100 mL), dried over MgSO4 and filtered. The solvent was removed under

vacuum. Yield: 570 mg (84.9%). 1H NMR (250 MHz, acetone-d6) δ (ppm): 7.05 (m,

4H), 7.70 (s, 2H); 13C NMR (62.5 MHz, acetone-d6) δ (ppm): 114.475, 117.73, 126.66,

141.08, 146.24.

Compounds 5.7 and 5.8 were also synthesized according to the above procedure.

However, 5.7 and 5.8 are insoluble in CH2Cl2, and both were suspended in CH2Cl2 after

evaporation of DMF. The products were filtered by suction and washed with CH2Cl2.

The mother liquor was concentrated and suspended in a small amount of CH2Cl2 and

filtered again. The products were dried in a vacuum oven overnight. Yields for

compound 5.7 and compound 5.8 were 764.9 mg (91%) and 699.0 mg (87%)

respectively.

Characterization data for compound 5.7: 1H NMR (250 MHz, THF-d8) δ (ppm): 7.29

(s, 2H), 7.75 (s, 2H); 13C NMR (62.5 MHz, THF-d8) δ114.62, 119.09, 128.84, 140.73,

145.33.

87

Page 101: Synthesis and Evaluation of Derivatives and Analogs of

Characterization data for compound 5.8: 1H NMR (250 MHz, DMSO-d6) δ (ppm):

7.53 (s, 2H), 7.90 (s, 2H); 13C NMR (62.5 MHz, DMSO-d6) δ (ppm): 113.67, 118.86,

120.96, 138.22, 139.91, 144.28.

5.4 Conclusion

We presented a novel synthesis of PXDDs. The new synthesis can be used to

conduct a controlled, laboratory study of the thermal reactions of PXDD precursors.

5.5 References

1. Sparschu, G. L.; Dunn, F. L.; Rowe, V. K. Food Cosmet. Toricol. 1971, 9, 405.

2. Moore, J. A.; McConnell, E. E.; Dalgard, D. W.; Harris, M. W. Ann. N.Y. Acad.

Sci. 1979, 320, 151-163. 3. Mennear, J. H.; Lee, C. C. Environ. Health Perspect. 1994, 102, 265-274. 4. Weber, L. W. D.; Greim, H., J. Toxicol. Environ. Health, 1997, 50, 195-215. 5. Vehlow, J.; Bergfeldt, B.; Jay, K.; Seifert, H.; Wanke, T.; Mark, F. Waste Manage.

Res. 2000, 18(2), 131-140. 6. Bhaskar, T.; Murai, K.; Brebu, M.; Matsui, T.; Uddin, M.; Muto, A.; Sakata, Y.

Green Chem. 2002, 4(6), 603-606. 7. Bhaskar, T.; Matsui, T.; Kaneko, J.; Uddin, M.; Muto, A.; Sakata, Y. Green Chem.

2002, 4(4), 372-375. 8. Uddin, M.; Bhaskar, T.; Kaneko, J.; Muto, A.; Sakata, Y.; Matsui, T., Fuel, 2002,

81(14), 1819-1825. 9. Vehlow, J.; Bergfeldt, B.; Hunsinger, H.; Seifert, H.; Mark, F. E. Environ. Sci. &

Pollut. Res. 2003, 10(5), 329-334. 10. Watanabe, I.; Sakai, S. Environment International, 2003, 29(6), 665-682. 11. Weber, R.; Kuch, B. Environment International, 2003, 29(6), 699-710.

88

Page 102: Synthesis and Evaluation of Derivatives and Analogs of

12. Bhaskar, T.; Matsui, T.; Uddin, M. A.; Kaneko, J.; Muto, A.; Sakata, Y. Appl. Catal. Part B: Environ. 2003, 43(3), 229-241.

13. de Boer, J.; Wester, P. G.; van der Horst, A.; Leonards, P. E. G. Environmental

Pollution, 2003, 122(1), 63-74. 14. Soderstrom, G.; Marklund, S. Environ. Sci. Technol. 2004, 38(3), 825-830. 15. Schuler, D.; Jager, J. Chemosphere 2004, 54(1), 49-59. 16. Jay, K.; Stieglitz, L. Chemosphere 1996, 33, 1041-1045. 17. Jay, K.; Stieglitz, L. Chemosphere 1991, 22, 987-996. 18. Kende, A. S.; Wade, J. J.; Ridge, D.; Poland, A. J. Org. Chem. 1974, 39,

931-937. 19. Kazimierczuk, Z.; Dudycz, L.; Stolarski, R.; Shugar, D. J. Carbohydr.

Nucleoside, Nucleotides 1981, 8, 101-117. 20. (a) Cram, D. J.; Choi, H. J.; Bryant, J. A.; Knobler, C. B. J. Am. Chem. Soc. 1992,

114, 7748-7765; (b) Rudkevich, D. M.; Hilmersson, G.; Rebek, J. J. Am. Chem. Soc. 1998, 120, 12216-12225; (c) Butterfield, S. M.; Rebek, J. J. Am. Chem. Soc. 2006, 128, 15366-15367.

21. Boyer, J. H.; Reinisch, R.F; Danzig, M. J.; Stoner, G. A; Sahhar, F. J. Am. Chem.

Soc. 1955, 77, 5688-5689. 22. Junino, A.; Lang, G.; Genet, A. Ger. Patent 3612665, 1986. 23. Hadjimihalakis, P. M. J. Heter. Chem. 1991, 28, 1111-1114.

89

Page 103: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX A: CHARACTERIZATION DATA FOR COMPOUND 2.2

Figure A.1. 1H NMR of compound 2.2

90

Page 104: Synthesis and Evaluation of Derivatives and Analogs of

Figure A.2. 13C NMR of compound 2.2

91

Page 105: Synthesis and Evaluation of Derivatives and Analogs of

Figure A.3. MALDI MS of compound 2.2

92

Page 106: Synthesis and Evaluation of Derivatives and Analogs of

Figure A.4. FTIR of compound 2.2

93

Page 107: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX B: CHARACTERIZATION DATA FOR COMPOUND 2.3

Figure B.1. 1H NMR of compound 2.3

94

Page 108: Synthesis and Evaluation of Derivatives and Analogs of

Figure B.2. 13C NMR of compound 2.3

95

Page 109: Synthesis and Evaluation of Derivatives and Analogs of

Figure B.3. MALDI MS of compound 2.3

96

Page 110: Synthesis and Evaluation of Derivatives and Analogs of

Figure B.4. FTIR of compound 2.3

97

Page 111: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX C: CHARACTERIZATION DATA FOR COMPOUND 3.1

Figure C.1. 1H NMR of compound 3.1

98

Page 112: Synthesis and Evaluation of Derivatives and Analogs of

Figure C.2. 13C NMR of compound 3.1

99

Page 113: Synthesis and Evaluation of Derivatives and Analogs of

Figure C.3. MALDI MS of compound 3.1

100

Page 114: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX D: CHARACTERIZATION DATA FOR COMPOUND 3.2

Figure D.1. 1H NMR of compound 3.2

101

Page 115: Synthesis and Evaluation of Derivatives and Analogs of

Figure D.2. 13C NMR of compound 3.2

102

Page 116: Synthesis and Evaluation of Derivatives and Analogs of

Figure D.3. MALDI MS of compound 3.2

103

Page 117: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX E: MALDI MS OF REACTION MIXTURE OF COMPOUND 3.1 AND CYS

104

Page 118: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX F: 1H NMR OF COMPOUND 3.13

105

Page 119: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX G: CHARACTERIZATION DATA FOR COMPOUND 3.14

Figure G.1. 1H NMR of compound 3.14

106

Page 120: Synthesis and Evaluation of Derivatives and Analogs of

Figure G.2. 13C NMR of compound 3.14

107

Page 121: Synthesis and Evaluation of Derivatives and Analogs of

Figure G.3. MALDI MS of compound 3.14

108

Page 122: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX H: 1H NMR OF COMPOUND 3.18

109

Page 123: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX I: 1H NMR OF COMPOUND 3.15

110

Page 124: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX J: CHARACTERIZATION DATA FOR COMPOUND 3.16

Figure J.1. 1H NMR of compound 3.16

111

Page 125: Synthesis and Evaluation of Derivatives and Analogs of

Figure J.2. 13C NMR of compound 3.16

112

Page 126: Synthesis and Evaluation of Derivatives and Analogs of

Figure J.3. MALDI MS of compound 3.16

113

Page 127: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX K: CHARACTERIZATION DATA FOR COMPOUND 3.19

Figure K.1. 1H NMR of compound 3.19

114

Page 128: Synthesis and Evaluation of Derivatives and Analogs of

Figure K.2. MALDI MS of compound 3.19

115

Page 129: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX L: CHARACTERIZATION DATA FOR COMPOUND 3.20

Figure L.1. 1H NMR of compound 3.20

116

Page 130: Synthesis and Evaluation of Derivatives and Analogs of

Figure L.2. MALDI MS of compound 3.20

117

Page 131: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX M: CHARACTERIZATION DATA FOR COMPOUND 3.7

Figure M.1. 1H NMR of compound 3.7

118

Page 132: Synthesis and Evaluation of Derivatives and Analogs of

Figure M.2. 13C NMR of compound 3.7

119

Page 133: Synthesis and Evaluation of Derivatives and Analogs of

Figure M.3. MALDI MS of compound 3.7

120

Page 134: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX N: CHARACTERIZATION DATA FOR COMPOUND 3.8

Figure N.1. 1H NMR of compound 3.8

121

Page 135: Synthesis and Evaluation of Derivatives and Analogs of

Figure N.2. 13C NMR of compound 3.8

122

Page 136: Synthesis and Evaluation of Derivatives and Analogs of

Figure N.3. MALDI MS of compound 3.8

123

Page 137: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX O: CHARACTERIZATION DATA FOR COMPOUND 3.9

Figure O.1. 1H NMR of compound 3.9

124

Page 138: Synthesis and Evaluation of Derivatives and Analogs of

Figure O.2. 13C NMR of compound 3.9

125

Page 139: Synthesis and Evaluation of Derivatives and Analogs of

Figure O.3. MALDI MS of compound 3.9

126

Page 140: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX P: CHARACTERIZATION DATA FOR COMPOUND 4.7

Figure P.1. 1H NMR of compound 4.7

127

Page 141: Synthesis and Evaluation of Derivatives and Analogs of

Figure P.2. 13C NMR of compound 4.7

128

Page 142: Synthesis and Evaluation of Derivatives and Analogs of

Figure P.3. MALDI MS of compound 4.7

129

Page 143: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX Q: 1H NMR OF COMPOUND 4.8

130

Page 144: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX R: 1H NMR OF COMPOUND 4.6

131

Page 145: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX S: CHARACTERIZATION DATA FOR COMPOUND 4.5

Figure S.1. 1H NMR of compound 4.5

132

Page 146: Synthesis and Evaluation of Derivatives and Analogs of

Figure S.2. MALDI MS of compound 4.5

133

Page 147: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX T: CHARACTERIZATION DATA FOR COMPOUND 5.2

Figure T.1. 1H NMR of compound 5.2

134

Page 148: Synthesis and Evaluation of Derivatives and Analogs of

Figure T.2. 13C NMR of compound 5.2

135

Page 149: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX U: CHARACTERIZATION DATA FOR COMPOUND 5.6

Figure U.1. 1H NMR of compound 5.6

136

Page 150: Synthesis and Evaluation of Derivatives and Analogs of

Figure U.2. 13C NMR of compound 5.6

137

Page 151: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX V: CHARACTERIZATION DATA FOR COMPOUND 5.7

Figure V.1. 1H NMR of compound 5.7

138

Page 152: Synthesis and Evaluation of Derivatives and Analogs of

Figure V.2. 13C NMR of compound 5.7

139

Page 153: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX W: CHARACTERIZATION DATA FOR COMPOUND 5.8

Figure W.1. 1H NMR of compound 5.8

140

Page 154: Synthesis and Evaluation of Derivatives and Analogs of

Figure W.2. 13C NMR of compound 5.8

141

Page 155: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX X: CRYSTALLOGRAPHIC DATA FOR COMPOUND 2.2

data_XXu2

_audit_creation_method SHELXL-97

_chemical_name_systematic

;

?

;

_chemical_name_common ?

_chemical_melting_point ?

_chemical_compound_source 'local laboratory'

_chemical_formula_moiety 'C21 H12 O6'

_chemical_formula_sum 'C21 H12 O6'

_chemical_formula_weight 360.31

loop_

_atom_type_symbol

_atom_type_description

_atom_type_scat_dispersion_real

_atom_type_scat_dispersion_imag

_atom_type_scat_source

'C' 'C' 0.0033 0.0016

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'H' 'H' 0.0000 0.0000

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'O' 'O' 0.0106 0.0060

142

Page 156: Synthesis and Evaluation of Derivatives and Analogs of

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_space_group_name_H-M 'P 21/c '

_symmetry_space_group_name_Hall '-P 2ybc'

_symmetry_cell_setting 'Monoclinic'

loop_

_symmetry_equiv_pos_as_xyz

'x, y, z'

'-x, y+1/2, -z+1/2'

'-x, -y, -z'

'x, -y-1/2, z-1/2'

_cell_length_a 7.891(6)

_cell_length_b 21.304(15)

_cell_length_c 9.977(8)

_cell_angle_alpha 90.00

_cell_angle_beta 104.80(3)

_cell_angle_gamma 90.00

_cell_volume 1622(2)

_cell_formula_units_Z 4

_cell_measurement_temperature 105

_cell_measurement_reflns_used 2673

_cell_measurement_theta_min 2.5

_cell_measurement_theta_max 25.0

_exptl_crystal_description lath

_exptl_crystal_colour yellow

_exptl_crystal_size_max 0.32

_exptl_crystal_size_mid 0.15

_exptl_crystal_size_min 0.05

_exptl_crystal_density_meas ?

_exptl_crystal_density_diffrn 1.476

_exptl_crystal_density_method 'not measured'

_exptl_crystal_F_000 744

_exptl_absorpt_coefficient_mu 0.110

_exptl_absorpt_correction_type none

_exptl_absorpt_correction_T_min ?

_exptl_absorpt_correction_T_max ?

_exptl_absorpt_process_details ?

_exptl_special_details

;

?

;

_diffrn_ambient_temperature 105

_diffrn_radiation_wavelength 0.71073

_diffrn_radiation_type MoK\a

143

Page 157: Synthesis and Evaluation of Derivatives and Analogs of

_diffrn_radiation_source 'fine-focus sealed tube'

_diffrn_radiation_monochromator graphite

_diffrn_measurement_device 'KappaCCD (with Oxford Cryostream)'

_diffrn_measurement_method ' \w scans with \k offsets'

_diffrn_detector_area_resol_mean ?

_diffrn_standards_number 0

_diffrn_standards_interval_count ?

_diffrn_standards_interval_time ?

_diffrn_standards_decay_% <2

_diffrn_reflns_number 10081

_diffrn_reflns_av_R_equivalents 0.098

_diffrn_reflns_av_sigmaI/netI 0.1942

_diffrn_reflns_limit_h_min -9

_diffrn_reflns_limit_h_max 9

_diffrn_reflns_limit_k_min -25

_diffrn_reflns_limit_k_max 22

_diffrn_reflns_limit_l_min -11

_diffrn_reflns_limit_l_max 11

_diffrn_reflns_theta_min 2.6

_diffrn_reflns_theta_max 25.0

_reflns_number_total 2842

_reflns_number_gt 1112

_reflns_threshold_expression I>2\s(I)

_computing_data_collection 'COLLECT (Nonius, 2000)'

_computing_cell_refinement 'HKL Scalepack (Otwinowski & Minor 1997)'

_computing_data_reduction 'HKL Denzo and Scalepack (Otwinowski & Minor 1997)'

_computing_structure_solution 'SIR97 (Altomare et al., 1999)'

_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'

_computing_molecular_graphics 'ORTEP-3 for Windows (Farrugia, 1997)'

_computing_publication_material 'SHELXL-97 (Sheldrick, 1997)'

_refine_special_details

;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F^2^, conventional R-factors R are based

on F, with F set to zero for negative F^2^. The threshold expression of

F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F^2^ are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef Fsqd

_refine_ls_matrix_type full

_refine_ls_weighting_scheme calc

_refine_ls_weighting_details

'calc w=1/[\s^2^(Fo^2^)+(0.1300P)^2^] where P=(Fo^2^+2Fc^2^)/3'

_atom_sites_solution_primary direct

144

Page 158: Synthesis and Evaluation of Derivatives and Analogs of

_atom_sites_solution_secondary difmap

_atom_sites_solution_hydrogens geom

_refine_ls_hydrogen_treatment constr

_refine_ls_extinction_method none

_refine_ls_extinction_coef ?

_refine_ls_number_reflns 2842

_refine_ls_number_parameters 246

_refine_ls_number_restraints 0

_refine_ls_R_factor_all 0.235

_refine_ls_R_factor_gt 0.088

_refine_ls_wR_factor_ref 0.269

_refine_ls_wR_factor_gt 0.202

_refine_ls_goodness_of_fit_ref 0.966

_refine_ls_restrained_S_all 0.966

_refine_ls_shift/su_max 0.000

_refine_ls_shift/su_mean 0.000

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_U_iso_or_equiv

_atom_site_adp_type

_atom_site_occupancy

_atom_site_symmetry_multiplicity

_atom_site_calc_flag

_atom_site_refinement_flags

_atom_site_disorder_assembly

_atom_site_disorder_group

O1 O 0.3013(5) 0.5298(2) 0.5371(4) 0.0389(11) Uani 1 1 d . . .

O2 O -0.0278(6) 0.3645(2) 0.2795(4) 0.0555(13) Uani 1 1 d . . .

H2O H -0.0116 0.3493 0.3595 0.083 Uiso 1 1 calc R . .

O3 O 0.6368(6) 0.6841(2) 0.8308(5) 0.0501(13) Uani 1 1 d . . .

H3O H 0.6057 0.6626 0.8909 0.075 Uiso 1 1 calc R . .

O4 O 0.0311(6) 0.3731(2) 0.5446(4) 0.0536(13) Uani 1 1 d . . .

O5 O 0.5116(5) 0.5751(2) 0.2299(4) 0.0509(13) Uani 1 1 d . . .

O6 O 0.6207(6) 0.6078(2) 0.0536(5) 0.0687(16) Uani 1 1 d . . .

C1 C 0.1391(7) 0.4478(3) 0.4102(6) 0.0329(15) Uani 1 1 d . . .

C2 C 0.0665(8) 0.4184(3) 0.2856(7) 0.0416(16) Uani 1 1 d . . .

C3 C 0.0930(9) 0.4415(3) 0.1627(7) 0.0540(19) Uani 1 1 d . . .

H3 H 0.0471 0.4201 0.0776 0.065 Uiso 1 1 calc R . .

C4 C 0.1875(8) 0.4964(3) 0.1665(7) 0.0486(18) Uani 1 1 d . . .

H4 H 0.2047 0.5126 0.0822 0.058 Uiso 1 1 calc R . .

C5 C 0.2584(7) 0.5288(3) 0.2888(6) 0.0364(16) Uani 1 1 d . . .

C6 C 0.3589(8) 0.5896(3) 0.2887(6) 0.0428(17) Uani 1 1 d . . .

C7 C 0.4276(8) 0.6144(3) 0.4320(6) 0.0390(17) Uani 1 1 d . . .

C8 C 0.5271(8) 0.6696(3) 0.4560(7) 0.0480(18) Uani 1 1 d . . .

145

Page 159: Synthesis and Evaluation of Derivatives and Analogs of

H8 H 0.5489 0.6919 0.3797 0.058 Uiso 1 1 calc R . .

C9 C 0.5944(8) 0.6923(3) 0.5900(7) 0.0469(18) Uani 1 1 d . . .

H9 H 0.6614 0.7299 0.6041 0.056 Uiso 1 1 calc R . .

C10 C 0.5642(8) 0.6602(3) 0.7035(7) 0.0435(17) Uani 1 1 d . . .

C11 C 0.4649(8) 0.6061(3) 0.6826(7) 0.0401(17) Uani 1 1 d . . .

H11 H 0.4422 0.5841 0.7590 0.048 Uiso 1 1 calc R . .

C12 C 0.3980(7) 0.5842(3) 0.5471(6) 0.0397(17) Uani 1 1 d . . .

C13 C 0.2356(7) 0.5029(3) 0.4097(6) 0.0338(15) Uani 1 1 d . . .

C14 C 0.1153(8) 0.4223(3) 0.5383(7) 0.0461(18) Uani 1 1 d . . .

H14 H 0.1664 0.4439 0.6221 0.055 Uiso 1 1 calc R . .

C15 C 0.2580(8) 0.6369(3) 0.1867(6) 0.0401(16) Uani 1 1 d . . .

C16 C 0.0978(7) 0.6654(3) 0.1834(6) 0.0377(16) Uani 1 1 d . . .

H16 H 0.0332 0.6555 0.2491 0.045 Uiso 1 1 calc R . .

C17 C 0.0381(8) 0.7091(3) 0.0780(6) 0.0478(19) Uani 1 1 d . . .

H17 H -0.0703 0.7298 0.0720 0.057 Uiso 1 1 calc R . .

C18 C 0.1316(9) 0.7236(3) -0.0186(6) 0.0470(18) Uani 1 1 d . . .

H18 H 0.0865 0.7542 -0.0877 0.056 Uiso 1 1 calc R . .

C19 C 0.2838(9) 0.6952(3) -0.0163(7) 0.0498(18) Uani 1 1 d . . .

H19 H 0.3465 0.7048 -0.0833 0.060 Uiso 1 1 calc R . .

C20 C 0.3467(8) 0.6513(3) 0.0876(6) 0.0459(18) Uani 1 1 d . . .

C21 C 0.5035(9) 0.6124(3) 0.1153(7) 0.055(2) Uani 1 1 d . . .

loop_

_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_atom_site_aniso_U_23

_atom_site_aniso_U_13

_atom_site_aniso_U_12

O1 0.042(2) 0.041(3) 0.039(3) 0.007(2) 0.019(2) -0.002(2)

O2 0.062(3) 0.045(3) 0.059(3) 0.002(3) 0.014(3) -0.002(3)

O3 0.055(3) 0.055(3) 0.044(3) -0.003(2) 0.021(2) 0.004(2)

O4 0.052(3) 0.050(3) 0.061(3) 0.004(3) 0.021(2) -0.004(3)

O5 0.045(3) 0.062(3) 0.053(3) 0.020(3) 0.026(2) 0.014(2)

O6 0.056(3) 0.083(4) 0.073(4) 0.024(3) 0.029(3) 0.010(3)

C1 0.034(3) 0.037(4) 0.030(4) 0.005(3) 0.013(3) 0.005(3)

C2 0.049(4) 0.040(4) 0.039(4) 0.010(4) 0.018(3) 0.007(4)

C3 0.059(4) 0.051(5) 0.048(5) -0.003(4) 0.006(4) 0.013(4)

C4 0.056(4) 0.052(5) 0.038(4) 0.012(4) 0.013(3) 0.010(4)

C5 0.036(4) 0.035(4) 0.040(4) 0.012(3) 0.012(3) 0.009(3)

C6 0.039(4) 0.056(5) 0.037(4) 0.009(3) 0.017(3) 0.013(3)

C7 0.039(4) 0.035(4) 0.043(4) 0.012(3) 0.010(3) 0.005(3)

C8 0.046(4) 0.054(5) 0.044(5) 0.021(4) 0.012(3) 0.007(4)

C9 0.038(4) 0.036(4) 0.067(5) 0.008(4) 0.014(4) 0.001(3)

C10 0.042(4) 0.045(5) 0.045(4) -0.002(4) 0.014(3) 0.007(4)

C11 0.040(4) 0.039(4) 0.046(4) 0.004(3) 0.019(3) 0.004(3)

C12 0.035(4) 0.043(4) 0.045(4) 0.000(4) 0.018(3) 0.004(3)

C13 0.026(3) 0.039(4) 0.036(4) 0.004(3) 0.008(3) 0.010(3)

146

Page 160: Synthesis and Evaluation of Derivatives and Analogs of

C14 0.037(4) 0.040(4) 0.062(5) -0.001(4) 0.014(3) 0.000(3)

C15 0.040(4) 0.040(4) 0.041(4) 0.004(3) 0.012(3) 0.003(3)

C16 0.037(4) 0.032(4) 0.044(4) 0.001(3) 0.009(3) -0.001(3)

C17 0.045(4) 0.046(5) 0.046(4) 0.000(4) 0.001(4) 0.020(3)

C18 0.064(5) 0.037(5) 0.043(4) 0.004(3) 0.019(4) 0.001(4)

C19 0.054(4) 0.050(5) 0.049(4) 0.011(4) 0.020(4) -0.005(4)

C20 0.040(4) 0.052(5) 0.045(4) 0.008(4) 0.011(3) 0.000(4)

C21 0.045(4) 0.067(6) 0.059(5) 0.012(4) 0.026(4) -0.003(4)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

;

loop_

_geom_bond_atom_site_label_1

_geom_bond_atom_site_label_2

_geom_bond_distance

_geom_bond_site_symmetry_2

_geom_bond_publ_flag

O1 C13 1.369(7) . ?

O1 C12 1.378(7) . ?

O2 C2 1.361(7) . ?

O2 H2O 0.8400 . ?

O3 C10 1.353(7) . ?

O3 H3O 0.8400 . ?

O4 C14 1.250(7) . ?

O5 C21 1.380(7) . ?

O5 C6 1.501(7) . ?

O6 C21 1.239(7) . ?

C1 C2 1.379(8) . ?

C1 C13 1.400(8) . ?

C1 C14 1.444(8) . ?

C2 C3 1.385(9) . ?

C3 C4 1.382(9) . ?

C3 H3 0.9500 . ?

C4 C5 1.389(8) . ?

C4 H4 0.9500 . ?

C5 C13 1.379(8) . ?

C5 C6 1.520(9) . ?

C6 C7 1.490(8) . ?

C6 C15 1.507(8) . ?

C7 C12 1.387(8) . ?

C7 C8 1.400(9) . ?

147

Page 161: Synthesis and Evaluation of Derivatives and Analogs of

C8 C9 1.393(8) . ?

C8 H8 0.9500 . ?

C9 C10 1.395(8) . ?

C9 H9 0.9500 . ?

C10 C11 1.378(9) . ?

C11 C12 1.400(8) . ?

C11 H11 0.9500 . ?

C14 H14 0.9500 . ?

C15 C20 1.384(8) . ?

C15 C16 1.395(8) . ?

C16 C17 1.394(8) . ?

C16 H16 0.9500 . ?

C17 C18 1.390(8) . ?

C17 H17 0.9500 . ?

C18 C19 1.339(8) . ?

C18 H18 0.9500 . ?

C19 C20 1.390(8) . ?

C19 H19 0.9500 . ?

C20 C21 1.457(9) . ?

loop_

_geom_angle_atom_site_label_1

_geom_angle_atom_site_label_2

_geom_angle_atom_site_label_3

_geom_angle

_geom_angle_site_symmetry_1

_geom_angle_site_symmetry_3

_geom_angle_publ_flag

C13 O1 C12 119.4(5) . . ?

C2 O2 H2O 109.5 . . ?

C10 O3 H3O 109.5 . . ?

C21 O5 C6 109.4(5) . . ?

C2 C1 C13 118.6(6) . . ?

C2 C1 C14 120.6(6) . . ?

C13 C1 C14 120.8(6) . . ?

O2 C2 C1 121.3(6) . . ?

O2 C2 C3 117.7(6) . . ?

C1 C2 C3 121.0(6) . . ?

C4 C3 C2 118.6(7) . . ?

C4 C3 H3 120.7 . . ?

C2 C3 H3 120.7 . . ?

C3 C4 C5 122.5(6) . . ?

C3 C4 H4 118.7 . . ?

C5 C4 H4 118.7 . . ?

C13 C5 C4 117.2(6) . . ?

C13 C5 C6 121.7(6) . . ?

C4 C5 C6 121.1(6) . . ?

C7 C6 O5 108.4(5) . . ?

C7 C6 C15 114.3(6) . . ?

148

Page 162: Synthesis and Evaluation of Derivatives and Analogs of

O5 C6 C15 102.3(5) . . ?

C7 C6 C5 111.4(5) . . ?

O5 C6 C5 107.2(5) . . ?

C15 C6 C5 112.7(5) . . ?

C12 C7 C8 116.9(6) . . ?

C12 C7 C6 122.2(6) . . ?

C8 C7 C6 120.9(6) . . ?

C9 C8 C7 121.1(6) . . ?

C9 C8 H8 119.5 . . ?

C7 C8 H8 119.5 . . ?

C8 C9 C10 120.4(6) . . ?

C8 C9 H9 119.8 . . ?

C10 C9 H9 119.8 . . ?

O3 C10 C11 123.0(6) . . ?

O3 C10 C9 117.2(6) . . ?

C11 C10 C9 119.8(6) . . ?

C10 C11 C12 118.9(6) . . ?

C10 C11 H11 120.6 . . ?

C12 C11 H11 120.6 . . ?

O1 C12 C7 122.5(6) . . ?

O1 C12 C11 114.5(5) . . ?

C7 C12 C11 122.9(6) . . ?

O1 C13 C5 122.8(6) . . ?

O1 C13 C1 115.2(5) . . ?

C5 C13 C1 122.0(6) . . ?

O4 C14 C1 123.4(6) . . ?

O4 C14 H14 118.3 . . ?

C1 C14 H14 118.3 . . ?

C20 C15 C16 120.5(6) . . ?

C20 C15 C6 110.8(5) . . ?

C16 C15 C6 128.7(5) . . ?

C17 C16 C15 116.0(6) . . ?

C17 C16 H16 122.0 . . ?

C15 C16 H16 122.0 . . ?

C18 C17 C16 122.3(6) . . ?

C18 C17 H17 118.9 . . ?

C16 C17 H17 118.9 . . ?

C19 C18 C17 121.4(6) . . ?

C19 C18 H18 119.3 . . ?

C17 C18 H18 119.3 . . ?

C18 C19 C20 117.6(6) . . ?

C18 C19 H19 121.2 . . ?

C20 C19 H19 121.2 . . ?

C15 C20 C19 122.2(6) . . ?

C15 C20 C21 107.3(6) . . ?

C19 C20 C21 130.5(6) . . ?

O6 C21 O5 118.9(6) . . ?

O6 C21 C20 131.0(7) . . ?

O5 C21 C20 110.0(5) . . ?

149

Page 163: Synthesis and Evaluation of Derivatives and Analogs of

loop_

_geom_torsion_atom_site_label_1

_geom_torsion_atom_site_label_2

_geom_torsion_atom_site_label_3

_geom_torsion_atom_site_label_4

_geom_torsion

_geom_torsion_site_symmetry_1

_geom_torsion_site_symmetry_2

_geom_torsion_site_symmetry_3

_geom_torsion_site_symmetry_4

_geom_torsion_publ_flag

C13 C1 C2 O2 179.6(5) . . . . ?

C14 C1 C2 O2 -0.6(9) . . . . ?

C13 C1 C2 C3 2.2(9) . . . . ?

C14 C1 C2 C3 -178.1(6) . . . . ?

O2 C2 C3 C4 179.6(6) . . . . ?

C1 C2 C3 C4 -2.8(9) . . . . ?

C2 C3 C4 C5 0.7(10) . . . . ?

C3 C4 C5 C13 1.9(9) . . . . ?

C3 C4 C5 C6 -178.9(6) . . . . ?

C21 O5 C6 C7 -117.6(6) . . . . ?

C21 O5 C6 C15 3.5(6) . . . . ?

C21 O5 C6 C5 122.1(5) . . . . ?

C13 C5 C6 C7 1.2(7) . . . . ?

C4 C5 C6 C7 -178.0(5) . . . . ?

C13 C5 C6 O5 119.6(5) . . . . ?

C4 C5 C6 O5 -59.5(7) . . . . ?

C13 C5 C6 C15 -128.7(6) . . . . ?

C4 C5 C6 C15 52.2(8) . . . . ?

O5 C6 C7 C12 -118.3(6) . . . . ?

C15 C6 C7 C12 128.4(6) . . . . ?

C5 C6 C7 C12 -0.7(8) . . . . ?

O5 C6 C7 C8 61.2(7) . . . . ?

C15 C6 C7 C8 -52.1(8) . . . . ?

C5 C6 C7 C8 178.8(5) . . . . ?

C12 C7 C8 C9 0.8(9) . . . . ?

C6 C7 C8 C9 -178.7(6) . . . . ?

C7 C8 C9 C10 0.2(9) . . . . ?

C8 C9 C10 O3 178.5(5) . . . . ?

C8 C9 C10 C11 -0.9(9) . . . . ?

O3 C10 C11 C12 -178.7(5) . . . . ?

C9 C10 C11 C12 0.8(9) . . . . ?

C13 O1 C12 C7 2.1(8) . . . . ?

C13 O1 C12 C11 -177.4(5) . . . . ?

C8 C7 C12 O1 179.6(5) . . . . ?

C6 C7 C12 O1 -0.9(9) . . . . ?

C8 C7 C12 C11 -1.0(9) . . . . ?

C6 C7 C12 C11 178.5(5) . . . . ?

150

Page 164: Synthesis and Evaluation of Derivatives and Analogs of

C10 C11 C12 O1 179.7(5) . . . . ?

C10 C11 C12 C7 0.2(9) . . . . ?

C12 O1 C13 C5 -1.5(8) . . . . ?

C12 O1 C13 C1 -180.0(5) . . . . ?

C4 C5 C13 O1 179.0(5) . . . . ?

C6 C5 C13 O1 -0.1(8) . . . . ?

C4 C5 C13 C1 -2.6(8) . . . . ?

C6 C5 C13 C1 178.2(5) . . . . ?

C2 C1 C13 O1 179.1(5) . . . . ?

C14 C1 C13 O1 -0.7(8) . . . . ?

C2 C1 C13 C5 0.6(8) . . . . ?

C14 C1 C13 C5 -179.1(5) . . . . ?

C2 C1 C14 O4 0.5(9) . . . . ?

C13 C1 C14 O4 -179.7(5) . . . . ?

C7 C6 C15 C20 113.1(6) . . . . ?

O5 C6 C15 C20 -3.8(7) . . . . ?

C5 C6 C15 C20 -118.5(6) . . . . ?

C7 C6 C15 C16 -66.6(8) . . . . ?

O5 C6 C15 C16 176.5(6) . . . . ?

C5 C6 C15 C16 61.8(8) . . . . ?

C20 C15 C16 C17 -1.4(9) . . . . ?

C6 C15 C16 C17 178.2(6) . . . . ?

C15 C16 C17 C18 0.2(9) . . . . ?

C16 C17 C18 C19 1.0(10) . . . . ?

C17 C18 C19 C20 -0.9(10) . . . . ?

C16 C15 C20 C19 1.6(10) . . . . ?

C6 C15 C20 C19 -178.1(6) . . . . ?

C16 C15 C20 C21 -177.5(6) . . . . ?

C6 C15 C20 C21 2.8(8) . . . . ?

C18 C19 C20 C15 -0.4(10) . . . . ?

C18 C19 C20 C21 178.5(7) . . . . ?

C6 O5 C21 O6 178.9(6) . . . . ?

C6 O5 C21 C20 -2.0(7) . . . . ?

C15 C20 C21 O6 178.5(8) . . . . ?

C19 C20 C21 O6 -0.5(13) . . . . ?

C15 C20 C21 O5 -0.5(8) . . . . ?

C19 C20 C21 O5 -179.5(6) . . . . ?

loop_

_geom_hbond_atom_site_label_D

_geom_hbond_atom_site_label_H

_geom_hbond_atom_site_label_A

_geom_hbond_distance_DH

_geom_hbond_distance_HA

_geom_hbond_distance_DA

_geom_hbond_angle_DHA

_geom_hbond_site_symmetry_A

O2 H2O O4 0.84 1.86 2.572(6) 141.6 .

O3 H3O O6 0.84 1.98 2.783(7) 160.2 1_556

151

Page 165: Synthesis and Evaluation of Derivatives and Analogs of

_diffrn_measured_fraction_theta_max 0.989

_diffrn_reflns_theta_full 25.05

_diffrn_measured_fraction_theta_full 0.989

_refine_diff_density_max 0.76

_refine_diff_density_min -0.30

_refine_diff_density_rms 0.071

# END OF CIF

152

Page 166: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX Y: CRYSTALLOGRAPHIC DATA FOR COMPOUND 2.1

data_XXu3

_audit_creation_method SHELXL-97

_chemical_name_systematic

;

?

;

_chemical_name_common ?

_chemical_melting_point ?

_chemical_compound_source 'local laboratory'

_chemical_formula_moiety 'C22 H12 O7, 0.5(C3 H6 O)'

_chemical_formula_sum 'C23.50 H15 O7.50'

_chemical_formula_weight 417.36

loop_

_atom_type_symbol

_atom_type_description

_atom_type_scat_dispersion_real

_atom_type_scat_dispersion_imag

_atom_type_scat_source

'C' 'C' 0.0033 0.0016

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'H' 'H' 0.0000 0.0000

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'O' 'O' 0.0106 0.0060

153

Page 167: Synthesis and Evaluation of Derivatives and Analogs of

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_space_group_name_H-M 'C 2/c '

_symmetry_space_group_name_Hall '-C 2yc'

_symmetry_cell_setting 'Monoclinic'

loop_

_symmetry_equiv_pos_as_xyz

'x, y, z'

'-x, y, -z+1/2'

'x+1/2, y+1/2, z'

'-x+1/2, y+1/2, -z+1/2'

'-x, -y, -z'

'x, -y, z-1/2'

'-x+1/2, -y+1/2, -z'

'x+1/2, -y+1/2, z-1/2'

_cell_length_a 19.388(6)

_cell_length_b 7.897(2)

_cell_length_c 24.479(9)

_cell_angle_alpha 90

_cell_angle_beta 91.407(10)

_cell_angle_gamma 90

_cell_volume 3746.8(18)

_cell_formula_units_Z 8

_cell_measurement_temperature 105

_cell_measurement_reflns_used 3259

_cell_measurement_theta_min 2.5

_cell_measurement_theta_max 26.4

_exptl_crystal_description needle

_exptl_crystal_colour colorless

_exptl_crystal_size_max 0.37

_exptl_crystal_size_mid 0.07

_exptl_crystal_size_min 0.05

_exptl_crystal_density_meas ?

_exptl_crystal_density_diffrn 1.480

_exptl_crystal_density_method 'not measured'

_exptl_crystal_F_000 1728

_exptl_absorpt_coefficient_mu 0.112

_exptl_absorpt_correction_type none

_exptl_absorpt_correction_T_min ?

_exptl_absorpt_correction_T_max ?

_exptl_absorpt_process_details ?

_exptl_special_details

;

?

;

154

Page 168: Synthesis and Evaluation of Derivatives and Analogs of

_diffrn_ambient_temperature 105

_diffrn_radiation_wavelength 0.71073

_diffrn_radiation_type MoK\a

_diffrn_radiation_source 'fine-focus sealed tube'

_diffrn_radiation_monochromator graphite

_diffrn_measurement_device 'KappaCCD (with Oxford Cryostream)'

_diffrn_measurement_method ' \w scans with \k offsets'

_diffrn_detector_area_resol_mean ?

_diffrn_standards_number 0

_diffrn_standards_interval_count ?

_diffrn_standards_interval_time ?

_diffrn_standards_decay_% <2

_diffrn_reflns_number 10686

_diffrn_reflns_av_R_equivalents 0.058

_diffrn_reflns_av_sigmaI/netI 0.0881

_diffrn_reflns_limit_h_min -23

_diffrn_reflns_limit_h_max 24

_diffrn_reflns_limit_k_min -6

_diffrn_reflns_limit_k_max 9

_diffrn_reflns_limit_l_min -30

_diffrn_reflns_limit_l_max 30

_diffrn_reflns_theta_min 2.6

_diffrn_reflns_theta_max 26.4

_reflns_number_total 3802

_reflns_number_gt 2255

_reflns_threshold_expression I>2\s(I)

_computing_data_collection 'COLLECT (Nonius 1999)'

_computing_data_reduction 'Denzo and Scalepack (Otwinowski & Minor, 1997)'

_computing_cell_refinement 'Denzo and Scalepack (Otwinowski & Minor, 1997)'

_computing_structure_solution 'Direct_methods (SIR, Altomare, et al., 1994)'

_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'

_computing_molecular_graphics 'ORTEP-3 for Windows (Farrugia, 1997)'

_computing_publication_material 'SHELXL-97 (Sheldrick, 1997)'

_refine_special_details

;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F^2^, conventional R-factors R are based

on F, with F set to zero for negative F^2^. The threshold expression of

F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F^2^ are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef Fsqd

_refine_ls_matrix_type full

155

Page 169: Synthesis and Evaluation of Derivatives and Analogs of

_refine_ls_weighting_scheme calc

_refine_ls_weighting_details

'calc w=1/[\s^2^(Fo^2^)+(0.0602P)^2^+1.1371P] where P=(Fo^2^+2Fc^2^)/3'

_atom_sites_solution_primary direct

_atom_sites_solution_secondary difmap

_atom_sites_solution_hydrogens geom

_refine_ls_hydrogen_treatment constr

_refine_ls_extinction_method none

_refine_ls_extinction_coef ?

_refine_ls_number_reflns 3802

_refine_ls_number_parameters 300

_refine_ls_number_restraints 0

_refine_ls_R_factor_all 0.120

_refine_ls_R_factor_gt 0.058

_refine_ls_wR_factor_ref 0.141

_refine_ls_wR_factor_gt 0.119

_refine_ls_goodness_of_fit_ref 1.023

_refine_ls_restrained_S_all 1.023

_refine_ls_shift/su_max 0.000

_refine_ls_shift/su_mean 0.000

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_U_iso_or_equiv

_atom_site_adp_type

_atom_site_occupancy

_atom_site_symmetry_multiplicity

_atom_site_calc_flag

_atom_site_refinement_flags

_atom_site_disorder_assembly

_atom_site_disorder_group

O1 O 0.47740(9) 0.23881(19) 0.52159(8) 0.0232(5) Uani 1 1 d . . .

O2 O 0.30624(10) 0.3479(2) 0.65314(9) 0.0341(5) Uani 1 1 d . . .

H2O H 0.2810(16) 0.291(4) 0.6249(14) 0.051 Uiso 1 1 d . . .

O3 O 0.63095(11) 0.1534(2) 0.37665(9) 0.0349(5) Uani 1 1 d . . .

H3O H 0.5910(17) 0.103(4) 0.3620(14) 0.052 Uiso 1 1 d . . .

O4 O 0.28030(10) 0.1844(2) 0.56100(9) 0.0350(5) Uani 1 1 d . . .

O5 O 0.50498(10) 0.0415(2) 0.37446(9) 0.0341(5) Uani 1 1 d . . .

O6 O 0.59402(9) 0.60806(18) 0.58466(8) 0.0241(5) Uani 1 1 d . . .

O7 O 0.65989(9) 0.8015(2) 0.62792(9) 0.0316(5) Uani 1 1 d . . .

C1 C 0.39099(13) 0.2906(3) 0.58571(12) 0.0222(6) Uani 1 1 d . . .

C2 C 0.37151(13) 0.3584(3) 0.63593(12) 0.0247(7) Uani 1 1 d . . .

C3 C 0.41903(15) 0.4413(3) 0.66984(13) 0.0299(7) Uani 1 1 d . . .

H3 H 0.4054 0.4855 0.7040 0.036 Uiso 1 1 calc R . .

C4 C 0.48591(14) 0.4588(3) 0.65350(13) 0.0270(7) Uani 1 1 d . . .

156

Page 170: Synthesis and Evaluation of Derivatives and Analogs of

H4 H 0.5180 0.5158 0.6769 0.032 Uiso 1 1 calc R . .

C5 C 0.50857(13) 0.3956(3) 0.60336(12) 0.0208(6) Uani 1 1 d . . .

C6 C 0.58165(13) 0.4222(3) 0.58599(12) 0.0219(6) Uani 1 1 d . . .

C7 C 0.59272(13) 0.3523(3) 0.53013(12) 0.0216(6) Uani 1 1 d . . .

C8 C 0.65709(14) 0.3701(3) 0.50484(12) 0.0272(7) Uani 1 1 d . . .

H8 H 0.6931 0.4292 0.5237 0.033 Uiso 1 1 calc R . .

C9 C 0.66947(14) 0.3055(3) 0.45432(12) 0.0274(7) Uani 1 1 d . . .

H9 H 0.7132 0.3210 0.4383 0.033 Uiso 1 1 calc R . .

C10 C 0.61724(14) 0.2162(3) 0.42633(12) 0.0257(7) Uani 1 1 d . . .

C11 C 0.55264(14) 0.1940(3) 0.44979(12) 0.0223(6) Uani 1 1 d . . .

C12 C 0.54227(14) 0.2654(3) 0.50154(12) 0.0221(6) Uani 1 1 d . . .

C13 C 0.46062(13) 0.3120(3) 0.57062(11) 0.0201(6) Uani 1 1 d . . .

C14 C 0.34128(15) 0.2072(3) 0.54940(13) 0.0297(7) Uani 1 1 d . . .

H14 H 0.3564 0.1682 0.5150 0.036 Uiso 1 1 calc R . .

C15 C 0.49829(15) 0.1019(3) 0.42052(13) 0.0264(7) Uani 1 1 d . . .

H15 H 0.4553 0.0874 0.4378 0.032 Uiso 1 1 calc R . .

C16 C 0.63539(13) 0.3636(3) 0.62782(11) 0.0206(6) Uani 1 1 d . . .

C17 C 0.65180(14) 0.2009(3) 0.64428(12) 0.0249(7) Uani 1 1 d . . .

H17 H 0.6275 0.1058 0.6299 0.030 Uiso 1 1 calc R . .

C18 C 0.70511(14) 0.1815(3) 0.68265(12) 0.0261(7) Uani 1 1 d . . .

H18 H 0.7178 0.0708 0.6943 0.031 Uiso 1 1 calc R . .

C19 C 0.74050(14) 0.3201(3) 0.70453(12) 0.0280(7) Uani 1 1 d . . .

H19 H 0.7762 0.3032 0.7312 0.034 Uiso 1 1 calc R . .

C20 C 0.72379(14) 0.4830(3) 0.68747(12) 0.0265(7) Uani 1 1 d . . .

H20 H 0.7478 0.5785 0.7019 0.032 Uiso 1 1 calc R . .

C21 C 0.67116(13) 0.5017(3) 0.64884(12) 0.0212(6) Uani 1 1 d . . .

C22 C 0.64437(13) 0.6550(3) 0.62185(12) 0.0234(7) Uani 1 1 d . . .

O1S O 0.0323(3) 0.7551(5) 0.2483(2) 0.0693(19) Uani 0.50 1 d P . .

C1S C 0.0000 0.6134(5) 0.2500 0.0483(14) Uani 1 2 d S . .

C2S C 0.0552(4) 0.4588(9) 0.2544(3) 0.052(2) Uani 0.50 1 d P . .

C3S C 0.0699(4) 0.5824(13) 0.2499(3) 0.058(2) Uani 0.50 1 d P . .

loop_

_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_atom_site_aniso_U_23

_atom_site_aniso_U_13

_atom_site_aniso_U_12

O1 0.0209(10) 0.0250(9) 0.0235(12) -0.0021(8) -0.0034(9) -0.0017(7)

O2 0.0253(12) 0.0405(11) 0.0367(14) -0.0062(10) 0.0028(10) -0.0055(9)

O3 0.0355(12) 0.0421(11) 0.0271(13) -0.0025(10) 0.0017(10) 0.0061(9)

O4 0.0251(12) 0.0401(11) 0.0396(14) 0.0004(10) -0.0014(10) -0.0057(9)

O5 0.0426(13) 0.0332(10) 0.0260(13) -0.0062(10) -0.0069(11) 0.0046(9)

O6 0.0255(10) 0.0129(8) 0.0336(13) 0.0035(8) -0.0058(9) -0.0008(7)

O7 0.0272(11) 0.0161(9) 0.0515(15) -0.0029(9) -0.0042(10) -0.0029(8)

C1 0.0218(15) 0.0192(12) 0.0253(17) 0.0026(12) -0.0046(13) -0.0011(10)

C2 0.0220(16) 0.0245(13) 0.0278(18) 0.0038(13) 0.0018(13) 0.0011(11)

157

Page 171: Synthesis and Evaluation of Derivatives and Analogs of

C3 0.0322(18) 0.0286(14) 0.0288(19) -0.0055(13) -0.0002(15) -0.0013(12)

C4 0.0255(17) 0.0241(13) 0.0311(19) -0.0044(13) -0.0050(14) -0.0023(11)

C5 0.0216(15) 0.0140(11) 0.0266(17) 0.0014(12) -0.0041(13) 0.0009(10)

C6 0.0258(16) 0.0132(11) 0.0265(18) 0.0025(12) -0.0034(13) -0.0010(10)

C7 0.0245(15) 0.0163(11) 0.0237(17) 0.0046(12) -0.0014(13) 0.0020(11)

C8 0.0274(16) 0.0230(13) 0.0308(19) 0.0043(13) -0.0056(14) 0.0020(11)

C9 0.0232(16) 0.0303(14) 0.0286(19) 0.0057(14) 0.0013(14) 0.0016(12)

C10 0.0312(17) 0.0238(12) 0.0219(18) 0.0034(12) -0.0036(14) 0.0097(12)

C11 0.0235(15) 0.0191(12) 0.0242(17) 0.0024(12) -0.0038(13) 0.0043(11)

C12 0.0223(15) 0.0181(12) 0.0257(18) 0.0043(12) -0.0048(13) 0.0028(11)

C13 0.0250(15) 0.0152(12) 0.0199(16) 0.0013(11) -0.0038(13) 0.0034(10)

C14 0.0292(18) 0.0249(13) 0.035(2) 0.0020(13) -0.0026(15) -0.0003(12)

C15 0.0288(16) 0.0202(13) 0.0299(19) 0.0011(13) -0.0051(14) 0.0065(11)

C16 0.0213(14) 0.0201(12) 0.0201(16) 0.0001(11) -0.0020(12) -0.0010(10)

C17 0.0311(16) 0.0171(12) 0.0262(18) 0.0008(12) -0.0047(14) -0.0017(11)

C18 0.0323(17) 0.0222(13) 0.0236(17) 0.0031(12) -0.0053(14) 0.0021(11)

C19 0.0273(16) 0.0329(14) 0.0233(18) 0.0041(13) -0.0076(14) -0.0035(12)

C20 0.0256(16) 0.0256(13) 0.0281(18) -0.0048(13) -0.0040(14) -0.0032(11)

C21 0.0207(15) 0.0182(12) 0.0247(17) -0.0019(12) 0.0011(13) 0.0025(11)

C22 0.0178(14) 0.0196(13) 0.0327(19) 0.0007(12) 0.0013(13) -0.0020(11)

O1S 0.130(6) 0.044(2) 0.034(3) -0.003(3) -0.007(5) -0.025(3)

C1S 0.103(5) 0.030(2) 0.011(3) 0.000 -0.001(3) 0.000

C2S 0.063(5) 0.045(4) 0.049(5) -0.006(4) 0.010(4) 0.027(4)

C3S 0.033(5) 0.101(7) 0.039(5) 0.001(5) -0.001(4) -0.002(5)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

;

loop_

_geom_bond_atom_site_label_1

_geom_bond_atom_site_label_2

_geom_bond_distance

_geom_bond_site_symmetry_2

_geom_bond_publ_flag

O1 C12 1.377(3) . ?

O1 C13 1.378(3) . ?

O2 C2 1.346(3) . ?

O2 H2O 0.95(3) . ?

O3 C10 1.346(3) . ?

O3 H3O 0.93(3) . ?

O4 C14 1.236(3) . ?

O5 C15 1.234(3) . ?

158

Page 172: Synthesis and Evaluation of Derivatives and Analogs of

O6 C22 1.369(3) . ?

O6 C6 1.487(3) . ?

O7 C22 1.204(3) . ?

C1 C2 1.401(4) . ?

C1 C13 1.418(4) . ?

C1 C14 1.453(4) . ?

C2 C3 1.389(4) . ?

C3 C4 1.373(4) . ?

C3 H3 0.9500 . ?

C4 C5 1.405(4) . ?

C4 H4 0.9500 . ?

C5 C13 1.381(3) . ?

C5 C6 1.504(4) . ?

C6 C7 1.495(4) . ?

C6 C16 1.515(3) . ?

C7 C12 1.373(4) . ?

C7 C8 1.414(4) . ?

C8 C9 1.365(4) . ?

C8 H8 0.9500 . ?

C9 C10 1.399(4) . ?

C9 H9 0.9500 . ?

C10 C11 1.402(4) . ?

C11 C12 1.405(4) . ?

C11 C15 1.455(4) . ?

C14 H14 0.9500 . ?

C15 H15 0.9500 . ?

C16 C17 1.381(3) . ?

C16 C21 1.384(3) . ?

C17 C18 1.388(4) . ?

C17 H17 0.9500 . ?

C18 C19 1.392(3) . ?

C18 H18 0.9500 . ?

C19 C20 1.388(4) . ?

C19 H19 0.9500 . ?

C20 C21 1.382(4) . ?

C20 H20 0.9500 . ?

C21 C22 1.468(3) . ?

O1S O1S 1.258(11) 2 ?

O1S C1S 1.283(5) . ?

O1S C3S 1.546(10) . ?

C1S O1S 1.283(5) 2 ?

C1S C3S 1.377(8) 2 ?

C1S C3S 1.377(8) . ?

C1S C2S 1.625(7) 2 ?

C1S C2S 1.625(7) . ?

C2S C3S 1.024(9) . ?

loop_

_geom_angle_atom_site_label_1

159

Page 173: Synthesis and Evaluation of Derivatives and Analogs of

_geom_angle_atom_site_label_2

_geom_angle_atom_site_label_3

_geom_angle

_geom_angle_site_symmetry_1

_geom_angle_site_symmetry_3

_geom_angle_publ_flag

C12 O1 C13 118.9(2) . . ?

C2 O2 H2O 106(2) . . ?

C10 O3 H3O 109(2) . . ?

C22 O6 C6 111.41(18) . . ?

C2 C1 C13 117.5(2) . . ?

C2 C1 C14 121.4(3) . . ?

C13 C1 C14 121.1(3) . . ?

O2 C2 C3 117.2(3) . . ?

O2 C2 C1 121.8(2) . . ?

C3 C2 C1 121.0(3) . . ?

C4 C3 C2 119.4(3) . . ?

C4 C3 H3 120.3 . . ?

C2 C3 H3 120.3 . . ?

C3 C4 C5 122.4(3) . . ?

C3 C4 H4 118.8 . . ?

C5 C4 H4 118.8 . . ?

C13 C5 C4 117.2(2) . . ?

C13 C5 C6 121.9(3) . . ?

C4 C5 C6 120.9(2) . . ?

O6 C6 C7 108.5(2) . . ?

O6 C6 C5 107.34(19) . . ?

C7 C6 C5 111.4(2) . . ?

O6 C6 C16 101.97(19) . . ?

C7 C6 C16 113.2(2) . . ?

C5 C6 C16 113.8(2) . . ?

C12 C7 C8 116.9(3) . . ?

C12 C7 C6 122.3(2) . . ?

C8 C7 C6 120.8(2) . . ?

C9 C8 C7 122.4(3) . . ?

C9 C8 H8 118.8 . . ?

C7 C8 H8 118.8 . . ?

C8 C9 C10 119.4(3) . . ?

C8 C9 H9 120.3 . . ?

C10 C9 H9 120.3 . . ?

O3 C10 C9 118.1(3) . . ?

O3 C10 C11 121.5(3) . . ?

C9 C10 C11 120.4(3) . . ?

C10 C11 C12 117.9(2) . . ?

C10 C11 C15 120.3(3) . . ?

C12 C11 C15 121.8(3) . . ?

C7 C12 O1 122.7(3) . . ?

C7 C12 C11 123.0(3) . . ?

O1 C12 C11 114.4(2) . . ?

160

Page 174: Synthesis and Evaluation of Derivatives and Analogs of

O1 C13 C5 122.4(2) . . ?

O1 C13 C1 115.1(2) . . ?

C5 C13 C1 122.5(3) . . ?

O4 C14 C1 123.3(3) . . ?

O4 C14 H14 118.3 . . ?

C1 C14 H14 118.3 . . ?

O5 C15 C11 123.5(3) . . ?

O5 C15 H15 118.2 . . ?

C11 C15 H15 118.2 . . ?

C17 C16 C21 121.0(2) . . ?

C17 C16 C6 129.1(2) . . ?

C21 C16 C6 109.9(2) . . ?

C16 C17 C18 117.5(2) . . ?

C16 C17 H17 121.2 . . ?

C18 C17 H17 121.2 . . ?

C17 C18 C19 121.7(2) . . ?

C17 C18 H18 119.2 . . ?

C19 C18 H18 119.2 . . ?

C20 C19 C18 120.2(3) . . ?

C20 C19 H19 119.9 . . ?

C18 C19 H19 119.9 . . ?

C21 C20 C19 117.9(2) . . ?

C21 C20 H20 121.1 . . ?

C19 C20 H20 121.1 . . ?

C20 C21 C16 121.7(2) . . ?

C20 C21 C22 130.0(2) . . ?

C16 C21 C22 108.3(2) . . ?

O7 C22 O6 120.9(2) . . ?

O7 C22 C21 130.7(3) . . ?

O6 C22 C21 108.34(19) . . ?

O1S O1S C1S 60.7(3) 2 . ?

O1S O1S C3S 117.9(4) 2 . ?

C1S O1S C3S 57.4(3) . . ?

O1S C1S O1S 58.7(5) 2 . ?

O1S C1S C3S 71.0(5) 2 2 ?

O1S C1S C3S 129.5(6) . 2 ?

O1S C1S C3S 129.5(6) 2 . ?

O1S C1S C3S 71.0(5) . . ?

C3S C1S C3S 159.5(9) 2 . ?

O1S C1S C2S 109.6(4) 2 2 ?

O1S C1S C2S 166.9(4) . 2 ?

C3S C1S C2S 38.8(4) 2 2 ?

C3S C1S C2S 120.8(7) . 2 ?

O1S C1S C2S 166.9(4) 2 . ?

O1S C1S C2S 109.6(4) . . ?

C3S C1S C2S 120.8(7) 2 . ?

C3S C1S C2S 38.8(4) . . ?

C2S C1S C2S 82.6(6) 2 . ?

C3S C2S C1S 57.4(6) . . ?

161

Page 175: Synthesis and Evaluation of Derivatives and Analogs of

C2S C3S C1S 83.8(7) . . ?

C2S C3S O1S 135.3(9) . . ?

C1S C3S O1S 51.7(4) . . ?

loop_

_geom_torsion_atom_site_label_1

_geom_torsion_atom_site_label_2

_geom_torsion_atom_site_label_3

_geom_torsion_atom_site_label_4

_geom_torsion

_geom_torsion_site_symmetry_1

_geom_torsion_site_symmetry_2

_geom_torsion_site_symmetry_3

_geom_torsion_site_symmetry_4

_geom_torsion_publ_flag

C13 C1 C2 O2 178.4(2) . . . . ?

C14 C1 C2 O2 0.8(4) . . . . ?

C13 C1 C2 C3 -0.8(4) . . . . ?

C14 C1 C2 C3 -178.5(2) . . . . ?

O2 C2 C3 C4 -178.5(2) . . . . ?

C1 C2 C3 C4 0.8(4) . . . . ?

C2 C3 C4 C5 -0.1(4) . . . . ?

C3 C4 C5 C13 -0.6(4) . . . . ?

C3 C4 C5 C6 177.9(2) . . . . ?

C22 O6 C6 C7 -122.6(2) . . . . ?

C22 O6 C6 C5 116.9(2) . . . . ?

C22 O6 C6 C16 -2.9(3) . . . . ?

C13 C5 C6 O6 120.3(2) . . . . ?

C4 C5 C6 O6 -58.3(3) . . . . ?

C13 C5 C6 C7 1.6(3) . . . . ?

C4 C5 C6 C7 -176.9(2) . . . . ?

C13 C5 C6 C16 -127.7(2) . . . . ?

C4 C5 C6 C16 53.8(3) . . . . ?

O6 C6 C7 C12 -122.1(2) . . . . ?

C5 C6 C7 C12 -4.2(3) . . . . ?

C16 C6 C7 C12 125.5(2) . . . . ?

O6 C6 C7 C8 59.4(3) . . . . ?

C5 C6 C7 C8 177.3(2) . . . . ?

C16 C6 C7 C8 -53.0(3) . . . . ?

C12 C7 C8 C9 0.3(4) . . . . ?

C6 C7 C8 C9 178.9(2) . . . . ?

C7 C8 C9 C10 -0.8(4) . . . . ?

C8 C9 C10 O3 -179.8(2) . . . . ?

C8 C9 C10 C11 0.3(4) . . . . ?

O3 C10 C11 C12 -179.2(2) . . . . ?

C9 C10 C11 C12 0.6(4) . . . . ?

O3 C10 C11 C15 -0.1(4) . . . . ?

C9 C10 C11 C15 179.7(2) . . . . ?

C8 C7 C12 O1 179.9(2) . . . . ?

162

Page 176: Synthesis and Evaluation of Derivatives and Analogs of

C6 C7 C12 O1 1.3(4) . . . . ?

C8 C7 C12 C11 0.8(4) . . . . ?

C6 C7 C12 C11 -177.8(2) . . . . ?

C13 O1 C12 C7 4.6(3) . . . . ?

C13 O1 C12 C11 -176.3(2) . . . . ?

C10 C11 C12 C7 -1.2(4) . . . . ?

C15 C11 C12 C7 179.7(2) . . . . ?

C10 C11 C12 O1 179.6(2) . . . . ?

C15 C11 C12 O1 0.6(3) . . . . ?

C12 O1 C13 C5 -7.2(3) . . . . ?

C12 O1 C13 C1 174.6(2) . . . . ?

C4 C5 C13 O1 -177.4(2) . . . . ?

C6 C5 C13 O1 4.0(4) . . . . ?

C4 C5 C13 C1 0.6(4) . . . . ?

C6 C5 C13 C1 -177.9(2) . . . . ?

C2 C1 C13 O1 178.3(2) . . . . ?

C14 C1 C13 O1 -4.0(3) . . . . ?

C2 C1 C13 C5 0.1(4) . . . . ?

C14 C1 C13 C5 177.8(2) . . . . ?

C2 C1 C14 O4 -3.1(4) . . . . ?

C13 C1 C14 O4 179.3(2) . . . . ?

C10 C11 C15 O5 -1.0(4) . . . . ?

C12 C11 C15 O5 178.0(2) . . . . ?

O6 C6 C16 C17 -175.8(3) . . . . ?

C7 C6 C16 C17 -59.5(4) . . . . ?

C5 C6 C16 C17 68.9(4) . . . . ?

O6 C6 C16 C21 2.3(3) . . . . ?

C7 C6 C16 C21 118.7(2) . . . . ?

C5 C6 C16 C21 -112.9(2) . . . . ?

C21 C16 C17 C18 0.2(4) . . . . ?

C6 C16 C17 C18 178.2(3) . . . . ?

C16 C17 C18 C19 0.8(4) . . . . ?

C17 C18 C19 C20 -1.2(4) . . . . ?

C18 C19 C20 C21 0.5(4) . . . . ?

C19 C20 C21 C16 0.6(4) . . . . ?

C19 C20 C21 C22 -177.3(3) . . . . ?

C17 C16 C21 C20 -0.9(4) . . . . ?

C6 C16 C21 C20 -179.3(3) . . . . ?

C17 C16 C21 C22 177.3(3) . . . . ?

C6 C16 C21 C22 -1.0(3) . . . . ?

C6 O6 C22 O7 -177.5(3) . . . . ?

C6 O6 C22 C21 2.5(3) . . . . ?

C20 C21 C22 O7 -2.8(5) . . . . ?

C16 C21 C22 O7 179.2(3) . . . . ?

C20 C21 C22 O6 177.1(3) . . . . ?

C16 C21 C22 O6 -0.9(3) . . . . ?

C3S O1S C1S O1S 176.1(7) . . . 2 ?

O1S O1S C1S C3S 4.8(8) 2 . . 2 ?

C3S O1S C1S C3S -179.12(16) . . . 2 ?

163

Page 177: Synthesis and Evaluation of Derivatives and Analogs of

O1S O1S C1S C3S -176.1(7) 2 . . . ?

O1S O1S C1S C2S 29(2) 2 . . 2 ?

C3S O1S C1S C2S -155.0(18) . . . 2 ?

O1S O1S C1S C2S -173.3(5) 2 . . . ?

C3S O1S C1S C2S 2.8(5) . . . . ?

O1S C1S C2S C3S -30(2) 2 . . . ?

O1S C1S C2S C3S -4.2(8) . . . . ?

C3S C1S C2S C3S 177.5(3) 2 . . . ?

C2S C1S C2S C3S 170.8(10) 2 . . . ?

C1S C2S C3S O1S 4.7(9) . . . . ?

O1S C1S C3S C2S 171.5(6) 2 . . . ?

O1S C1S C3S C2S 175.8(8) . . . . ?

C3S C1S C3S C2S -6.1(6) 2 . . . ?

C2S C1S C3S C2S -10.6(11) 2 . . . ?

O1S C1S C3S O1S -4.3(8) 2 . . . ?

C3S C1S C3S O1S 178.1(3) 2 . . . ?

C2S C1S C3S O1S 173.6(5) 2 . . . ?

C2S C1S C3S O1S -175.8(8) . . . . ?

O1S O1S C3S C2S -2.0(17) 2 . . . ?

C1S O1S C3S C2S -5.9(12) . . . . ?

O1S O1S C3S C1S 3.9(7) 2 . . . ?

loop_

_geom_hbond_atom_site_label_D

_geom_hbond_atom_site_label_H

_geom_hbond_atom_site_label_A

_geom_hbond_distance_DH

_geom_hbond_distance_HA

_geom_hbond_distance_DA

_geom_hbond_angle_DHA

_geom_hbond_site_symmetry_A

O2 H2O O4 0.95(3) 1.77(3) 2.637(3) 149(3) .

O3 H3O O5 0.93(3) 1.77(3) 2.597(3) 146(3) .

_diffrn_measured_fraction_theta_max 0.993

_diffrn_reflns_theta_full 26.4

_diffrn_measured_fraction_theta_full 0.993

_refine_diff_density_max 0.33

_refine_diff_density_min -0.23

_refine_diff_density_rms 0.057

# END OF CIF

164

Page 178: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX Z: CRYSTALLOGRAPHIC DATA FOR COMPOUND 2.3

data_XXu4

_audit_creation_method SHELXL-97

_chemical_name_systematic

;

?

;

_chemical_name_common ?

_chemical_melting_point ?

_chemical_compound_source 'local laboratory'

_chemical_formula_moiety 'C29 H16 O6, 2(C3 H6 O)'

_chemical_formula_sum 'C35 H28 O8'

_chemical_formula_weight 576.57

loop_

_atom_type_symbol

_atom_type_description

_atom_type_scat_dispersion_real

_atom_type_scat_dispersion_imag

_atom_type_scat_source

'C' 'C' 0.0033 0.0016

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'H' 'H' 0.0000 0.0000

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'O' 'O' 0.0106 0.0060

165

Page 179: Synthesis and Evaluation of Derivatives and Analogs of

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_space_group_name_H-M 'P -1 '

_symmetry_space_group_name_Hall '-P 1'

_symmetry_cell_setting 'Triclinic'

loop_

_symmetry_equiv_pos_as_xyz

'x, y, z'

'-x, -y, -z'

_cell_length_a 7.338(5)

_cell_length_b 12.459(9)

_cell_length_c 16.247(13)

_cell_angle_alpha 81.00(3)

_cell_angle_beta 80.19(3)

_cell_angle_gamma 73.69(3)

_cell_volume 1395.5(18)

_cell_formula_units_Z 2

_cell_measurement_temperature 105

_cell_measurement_reflns_used 4614

_cell_measurement_theta_min 2.5

_cell_measurement_theta_max 25.6

_exptl_crystal_description plate

_exptl_crystal_colour yellow

_exptl_crystal_size_max 0.10

_exptl_crystal_size_mid 0.10

_exptl_crystal_size_min 0.02

_exptl_crystal_density_meas ?

_exptl_crystal_density_diffrn 1.372

_exptl_crystal_density_method 'not measured'

_exptl_crystal_F_000 604

_exptl_absorpt_coefficient_mu 0.097

_exptl_absorpt_correction_type none

_exptl_absorpt_correction_T_min ?

_exptl_absorpt_correction_T_max ?

_exptl_absorpt_process_details ?

_exptl_special_details

;

?

;

_diffrn_ambient_temperature 105

_diffrn_radiation_wavelength 0.71073

_diffrn_radiation_type MoK\a

_diffrn_radiation_source 'fine-focus sealed tube'

_diffrn_radiation_monochromator graphite

166

Page 180: Synthesis and Evaluation of Derivatives and Analogs of

_diffrn_measurement_device 'KappaCCD (with Oxford Cryostream)'

_diffrn_measurement_method ' \w scans with \k offsets'

_diffrn_detector_area_resol_mean ?

_diffrn_standards_number 0

_diffrn_standards_interval_count ?

_diffrn_standards_interval_time ?

_diffrn_standards_decay_% <2

_diffrn_reflns_number 15953

_diffrn_reflns_av_R_equivalents 0.310

_diffrn_reflns_av_sigmaI/netI 0.501

_diffrn_reflns_limit_h_min -8

_diffrn_reflns_limit_h_max 8

_diffrn_reflns_limit_k_min -15

_diffrn_reflns_limit_k_max 14

_diffrn_reflns_limit_l_min -19

_diffrn_reflns_limit_l_max 19

_diffrn_reflns_theta_min 2.5

_diffrn_reflns_theta_max 25.5

_reflns_number_total 5053

_reflns_number_gt 1306

_reflns_threshold_expression I>2\s(I)

_computing_data_collection 'COLLECT (Nonius 1999)'

_computing_data_reduction 'Denzo and Scalepack (Otwinowski & Minor, 1997)'

_computing_cell_refinement 'Denzo and Scalepack (Otwinowski & Minor, 1997)'

_computing_structure_solution 'Direct_methods (SIR, Altomare, et al., 1994)'

_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'

_computing_molecular_graphics 'ORTEP-3 for Windows (Farrugia, 1997)'

_computing_publication_material 'SHELXL-97 (Sheldrick, 1997)'

_refine_special_details

;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F^2^, conventional R-factors R are based

on F, with F set to zero for negative F^2^. The threshold expression of

F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F^2^ are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef Fsqd

_refine_ls_matrix_type full

_refine_ls_weighting_scheme calc

_refine_ls_weighting_details

'calc w=1/[\s^2^(Fo^2^)+(0.0877P)^2^] where P=(Fo^2^+2Fc^2^)/3'

_atom_sites_solution_primary direct

_atom_sites_solution_secondary difmap

_atom_sites_solution_hydrogens geom

167

Page 181: Synthesis and Evaluation of Derivatives and Analogs of

_refine_ls_hydrogen_treatment constr

_refine_ls_extinction_method none

_refine_ls_extinction_coef ?

_refine_ls_number_reflns 5053

_refine_ls_number_parameters 219

_refine_ls_number_restraints 0

_refine_ls_R_factor_all 0.393

_refine_ls_R_factor_gt 0.140

_refine_ls_wR_factor_ref 0.331

_refine_ls_wR_factor_gt 0.233

_refine_ls_goodness_of_fit_ref 0.997

_refine_ls_restrained_S_all 0.997

_refine_ls_shift/su_max 0.001

_refine_ls_shift/su_mean 0.000

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_U_iso_or_equiv

_atom_site_adp_type

_atom_site_occupancy

_atom_site_symmetry_multiplicity

_atom_site_calc_flag

_atom_site_refinement_flags

_atom_site_disorder_assembly

_atom_site_disorder_group

O1 O 0.7059(9) 0.5139(6) 0.5378(4) 0.0244(19) Uani 1 1 d . . .

O2 O 0.5903(12) 0.0423(6) 0.6941(5) 0.036(2) Uani 1 1 d . . .

H20H H 0.5640 0.0254 0.7460 0.054 Uiso 1 1 calc R . .

O3 O 0.4150(11) 0.0888(7) 0.8383(5) 0.046(2) Uani 1 1 d . . .

O4 O 0.6710(9) 0.7124(6) 0.7088(5) 0.029(2) Uani 1 1 d . . .

O5 O 1.0674(11) 0.6836(6) 0.1819(5) 0.038(2) Uani 1 1 d . . .

H50H H 1.0415 0.7523 0.1634 0.057 Uiso 1 1 calc R . .

O6 O 0.6301(10) 0.8246(6) 0.8091(4) 0.035(2) Uani 1 1 d . . .

C1 C 0.5999(15) 0.1534(10) 0.6785(7) 0.026(3) Uiso 1 1 d . . .

C2 C 0.5158(14) 0.2253(9) 0.7405(7) 0.021(3) Uiso 1 1 d . . .

C3 C 0.5244(15) 0.3433(9) 0.7200(7) 0.028(3) Uiso 1 1 d . . .

C4 C 0.4505(15) 0.4253(9) 0.7758(7) 0.032(3) Uiso 1 1 d . . .

H4 H 0.3924 0.4044 0.8306 0.038 Uiso 1 1 calc R . .

C5 C 0.4597(15) 0.5337(10) 0.7539(7) 0.035(3) Uiso 1 1 d . . .

H5 H 0.4103 0.5863 0.7939 0.042 Uiso 1 1 calc R . .

C6 C 0.5403(14) 0.5692(9) 0.6736(7) 0.023(3) Uiso 1 1 d . . .

C7 C 0.6202(15) 0.4908(9) 0.6166(7) 0.025(3) Uiso 1 1 d . . .

C8 C 0.6104(14) 0.3769(9) 0.6394(7) 0.024(3) Uiso 1 1 d . . .

C9 C 0.6913(13) 0.2931(8) 0.5834(7) 0.022(3) Uiso 1 1 d . . .

H9 H 0.7521 0.3152 0.5295 0.027 Uiso 1 1 calc R . .

168

Page 182: Synthesis and Evaluation of Derivatives and Analogs of

C10 C 0.6865(16) 0.1851(10) 0.6022(7) 0.036(3) Uiso 1 1 d . . .

H10 H 0.7427 0.1324 0.5627 0.043 Uiso 1 1 calc R . .

C11 C 0.4146(16) 0.1891(11) 0.8176(7) 0.036(3) Uiso 1 1 d . . .

H11 H 0.3446 0.2432 0.8543 0.043 Uiso 1 1 calc R . .

C12 C 0.5536(14) 0.6879(8) 0.6496(6) 0.020(3) Uiso 1 1 d . . .

C13 C 0.6466(15) 0.7075(9) 0.5615(7) 0.024(3) Uiso 1 1 d . . .

C14 C 0.6727(14) 0.8157(9) 0.5265(6) 0.023(3) Uiso 1 1 d . . .

H14 H 0.6313 0.8759 0.5603 0.028 Uiso 1 1 calc R . .

C15 C 0.7547(13) 0.8345(9) 0.4465(6) 0.021(3) Uiso 1 1 d . . .

H15 H 0.7623 0.9085 0.4239 0.026 Uiso 1 1 calc R . .

C16 C 0.8309(16) 0.7433(10) 0.3949(7) 0.033(3) Uiso 1 1 d . . .

C17 C 0.9196(14) 0.7613(10) 0.3103(7) 0.031(3) Uiso 1 1 d . . .

H17 H 0.9334 0.8337 0.2866 0.037 Uiso 1 1 calc R . .

C18 C 0.9848(16) 0.6708(10) 0.2641(7) 0.032(3) Uiso 1 1 d . . .

C19 C 0.9740(15) 0.5631(10) 0.2995(7) 0.033(3) Uiso 1 1 d . . .

H19 H 1.0271 0.5015 0.2673 0.039 Uiso 1 1 calc R . .

C20 C 0.8883(14) 0.5452(9) 0.3797(7) 0.025(3) Uiso 1 1 d . . .

H20 H 0.8773 0.4719 0.4024 0.029 Uiso 1 1 calc R . .

C21 C 0.8160(15) 0.6349(9) 0.4290(7) 0.026(3) Uiso 1 1 d . . .

C22 C 0.7238(14) 0.6225(9) 0.5093(7) 0.022(3) Uiso 1 1 d . . .

C23 C 0.3599(14) 0.7712(8) 0.6705(6) 0.023(3) Uiso 1 1 d . . .

C24 C 0.1897(14) 0.7888(9) 0.6365(7) 0.029(3) Uiso 1 1 d . . .

H24 H 0.1827 0.7489 0.5924 0.035 Uiso 1 1 calc R . .

C25 C 0.0324(15) 0.8671(9) 0.6704(7) 0.027(3) Uiso 1 1 d . . .

H25 H -0.0865 0.8792 0.6500 0.033 Uiso 1 1 calc R . .

C26 C 0.0404(15) 0.9288(9) 0.7329(6) 0.027(3) Uiso 1 1 d . . .

H26 H -0.0717 0.9824 0.7535 0.033 Uiso 1 1 calc R . .

C27 C 0.2067(13) 0.9140(8) 0.7657(6) 0.021(3) Uiso 1 1 d . . .

H27 H 0.2127 0.9564 0.8085 0.026 Uiso 1 1 calc R . .

C28 C 0.3670(13) 0.8339(8) 0.7335(6) 0.019(3) Uiso 1 1 d . . .

C29 C 0.5617(15) 0.7952(9) 0.7547(7) 0.028(3) Uiso 1 1 d . . .

O1S O 0.9151(11) 0.1042(7) 0.8757(5) 0.051(3) Uani 1 1 d . . .

O2S O 0.8009(14) -0.3425(8) 1.0212(6) 0.070(3) Uani 1 1 d . . .

C1S C 0.7996(17) 0.0755(10) 0.9375(8) 0.035(3) Uiso 1 1 d . . .

C2S C 0.7792(17) -0.0419(10) 0.9562(8) 0.046(4) Uiso 1 1 d . . .

H2S1 H 0.6601 -0.0450 0.9381 0.069 Uiso 1 1 calc R . .

H2S2 H 0.7757 -0.0654 1.0168 0.069 Uiso 1 1 calc R . .

H2S3 H 0.8884 -0.0925 0.9259 0.069 Uiso 1 1 calc R . .

C3S C 0.6796(18) 0.1646(11) 0.9907(8) 0.059(4) Uiso 1 1 d . . .

H3S1 H 0.7018 0.2377 0.9664 0.089 Uiso 1 1 calc R . .

H3S2 H 0.7146 0.1465 1.0478 0.089 Uiso 1 1 calc R . .

H3S3 H 0.5439 0.1679 0.9927 0.089 Uiso 1 1 calc R . .

C4S C 0.8410(18) -0.3770(11) 0.9525(9) 0.046(4) Uiso 1 1 d . . .

C5S C 0.7278(18) -0.4439(10) 0.9257(8) 0.055(4) Uiso 1 1 d . . .

H5S1 H 0.6039 -0.4341 0.9616 0.083 Uiso 1 1 calc R . .

H5S2 H 0.7978 -0.5237 0.9308 0.083 Uiso 1 1 calc R . .

H5S3 H 0.7069 -0.4182 0.8671 0.083 Uiso 1 1 calc R . .

C6S C 1.0122(17) -0.3596(10) 0.8933(8) 0.050(4) Uiso 1 1 d . . .

H6S1 H 1.0835 -0.3222 0.9202 0.075 Uiso 1 1 calc R . .

169

Page 183: Synthesis and Evaluation of Derivatives and Analogs of

H6S2 H 0.9706 -0.3125 0.8422 0.075 Uiso 1 1 calc R . .

H6S3 H 1.0948 -0.4326 0.8786 0.075 Uiso 1 1 calc R . .

loop_

_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_atom_site_aniso_U_23

_atom_site_aniso_U_13

_atom_site_aniso_U_12

O1 0.017(4) 0.019(4) 0.030(5) -0.001(4) 0.001(4) 0.003(3)

O2 0.034(5) 0.029(5) 0.043(5) 0.005(4) -0.011(5) -0.007(4)

O3 0.053(6) 0.031(5) 0.056(6) 0.006(5) -0.015(5) -0.016(4)

O4 0.024(4) 0.018(4) 0.045(5) -0.002(4) -0.018(4) -0.001(3)

O5 0.032(5) 0.036(5) 0.033(5) -0.004(4) 0.003(4) 0.008(4)

O6 0.049(5) 0.030(5) 0.027(5) -0.001(4) -0.019(4) -0.002(4)

O1S 0.052(6) 0.053(6) 0.042(6) -0.009(5) 0.015(5) -0.015(5)

O2S 0.089(7) 0.070(7) 0.048(7) -0.031(6) -0.014(6) -0.001(6)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

;

loop_

_geom_bond_atom_site_label_1

_geom_bond_atom_site_label_2

_geom_bond_distance

_geom_bond_site_symmetry_2

_geom_bond_publ_flag

O1 C7 1.353(13) . ?

O1 C22 1.395(12) . ?

O2 C1 1.386(12) . ?

O2 H20H 0.8400 . ?

O3 C11 1.242(13) . ?

O4 C29 1.355(11) . ?

O4 C12 1.510(10) . ?

O5 C18 1.374(13) . ?

O5 H50H 0.8400 . ?

O6 C29 1.234(11) . ?

C1 C10 1.348(15) . ?

C1 C2 1.400(13) . ?

C2 C11 1.420(15) . ?

170

Page 184: Synthesis and Evaluation of Derivatives and Analogs of

C2 C3 1.473(14) . ?

C3 C4 1.404(13) . ?

C3 C8 1.408(15) . ?

C4 C5 1.358(15) . ?

C4 H4 0.9500 . ?

C5 C6 1.397(15) . ?

C5 H5 0.9500 . ?

C6 C7 1.389(14) . ?

C6 C12 1.495(14) . ?

C7 C8 1.428(14) . ?

C8 C9 1.427(13) . ?

C9 C10 1.341(14) . ?

C9 H9 0.9500 . ?

C10 H10 0.9500 . ?

C11 H11 0.9500 . ?

C12 C13 1.492(14) . ?

C12 C23 1.526(13) . ?

C13 C22 1.394(13) . ?

C13 C14 1.430(14) . ?

C14 C15 1.349(14) . ?

C14 H14 0.9500 . ?

C15 C16 1.445(13) . ?

C15 H15 0.9500 . ?

C16 C21 1.404(15) . ?

C16 C17 1.430(15) . ?

C17 C18 1.381(14) . ?

C17 H17 0.9500 . ?

C18 C19 1.393(15) . ?

C19 C20 1.361(14) . ?

C19 H19 0.9500 . ?

C20 C21 1.405(13) . ?

C20 H20 0.9500 . ?

C21 C22 1.370(14) . ?

C23 C28 1.397(12) . ?

C23 C24 1.399(13) . ?

C24 C25 1.382(13) . ?

C24 H24 0.9500 . ?

C25 C26 1.383(13) . ?

C25 H25 0.9500 . ?

C26 C27 1.367(12) . ?

C26 H26 0.9500 . ?

C27 C28 1.396(12) . ?

C27 H27 0.9500 . ?

C28 C29 1.456(13) . ?

O1S C1S 1.275(14) . ?

O2S C4S 1.218(13) . ?

C1S C2S 1.491(15) . ?

C1S C3S 1.498(15) . ?

C2S H2S1 0.9800 . ?

171

Page 185: Synthesis and Evaluation of Derivatives and Analogs of

C2S H2S2 0.9800 . ?

C2S H2S3 0.9800 . ?

C3S H3S1 0.9800 . ?

C3S H3S2 0.9800 . ?

C3S H3S3 0.9800 . ?

C4S C5S 1.483(15) . ?

C4S C6S 1.492(16) . ?

C5S H5S1 0.9800 . ?

C5S H5S2 0.9800 . ?

C5S H5S3 0.9800 . ?

C6S H6S1 0.9800 . ?

C6S H6S2 0.9800 . ?

C6S H6S3 0.9800 . ?

loop_

_geom_angle_atom_site_label_1

_geom_angle_atom_site_label_2

_geom_angle_atom_site_label_3

_geom_angle

_geom_angle_site_symmetry_1

_geom_angle_site_symmetry_3

_geom_angle_publ_flag

C7 O1 C22 120.0(9) . . ?

C1 O2 H20H 109.5 . . ?

C29 O4 C12 109.7(7) . . ?

C18 O5 H50H 109.5 . . ?

C10 C1 O2 116.5(10) . . ?

C10 C1 C2 124.5(12) . . ?

O2 C1 C2 118.9(11) . . ?

C1 C2 C11 122.0(11) . . ?

C1 C2 C3 116.9(11) . . ?

C11 C2 C3 120.9(11) . . ?

C4 C3 C8 117.6(11) . . ?

C4 C3 C2 124.0(12) . . ?

C8 C3 C2 118.4(10) . . ?

C5 C4 C3 122.0(12) . . ?

C5 C4 H4 119.0 . . ?

C3 C4 H4 119.0 . . ?

C4 C5 C6 121.2(11) . . ?

C4 C5 H5 119.4 . . ?

C6 C5 H5 119.4 . . ?

C7 C6 C5 119.1(11) . . ?

C7 C6 C12 119.4(11) . . ?

C5 C6 C12 121.4(10) . . ?

O1 C7 C6 124.8(11) . . ?

O1 C7 C8 115.4(10) . . ?

C6 C7 C8 119.8(11) . . ?

C3 C8 C9 117.9(11) . . ?

C3 C8 C7 120.2(10) . . ?

172

Page 186: Synthesis and Evaluation of Derivatives and Analogs of

C9 C8 C7 121.9(11) . . ?

C10 C9 C8 124.0(12) . . ?

C10 C9 H9 118.0 . . ?

C8 C9 H9 118.0 . . ?

C9 C10 C1 118.3(12) . . ?

C9 C10 H10 120.8 . . ?

C1 C10 H10 120.8 . . ?

O3 C11 C2 121.9(11) . . ?

O3 C11 H11 119.0 . . ?

C2 C11 H11 119.0 . . ?

C13 C12 C6 112.7(9) . . ?

C13 C12 O4 108.8(9) . . ?

C6 C12 O4 107.8(8) . . ?

C13 C12 C23 114.2(9) . . ?

C6 C12 C23 111.0(9) . . ?

O4 C12 C23 101.6(7) . . ?

C22 C13 C14 115.0(11) . . ?

C22 C13 C12 123.5(11) . . ?

C14 C13 C12 121.4(10) . . ?

C15 C14 C13 121.8(10) . . ?

C15 C14 H14 119.1 . . ?

C13 C14 H14 119.1 . . ?

C14 C15 C16 120.6(11) . . ?

C14 C15 H15 119.7 . . ?

C16 C15 H15 119.7 . . ?

C21 C16 C17 119.6(11) . . ?

C21 C16 C15 118.9(11) . . ?

C17 C16 C15 121.5(11) . . ?

C18 C17 C16 118.3(12) . . ?

C18 C17 H17 120.8 . . ?

C16 C17 H17 120.8 . . ?

O5 C18 C17 120.8(11) . . ?

O5 C18 C19 117.7(10) . . ?

C17 C18 C19 121.4(12) . . ?

C20 C19 C18 120.7(11) . . ?

C20 C19 H19 119.7 . . ?

C18 C19 H19 119.7 . . ?

C19 C20 C21 120.2(11) . . ?

C19 C20 H20 119.9 . . ?

C21 C20 H20 119.9 . . ?

C22 C21 C16 117.5(11) . . ?

C22 C21 C20 122.8(11) . . ?

C16 C21 C20 119.7(11) . . ?

C21 C22 C13 126.0(12) . . ?

C21 C22 O1 114.5(10) . . ?

C13 C22 O1 119.4(11) . . ?

C28 C23 C24 120.3(9) . . ?

C28 C23 C12 110.6(8) . . ?

C24 C23 C12 129.1(9) . . ?

173

Page 187: Synthesis and Evaluation of Derivatives and Analogs of

C25 C24 C23 116.6(10) . . ?

C25 C24 H24 121.7 . . ?

C23 C24 H24 121.7 . . ?

C24 C25 C26 122.8(10) . . ?

C24 C25 H25 118.6 . . ?

C26 C25 H25 118.6 . . ?

C27 C26 C25 121.3(10) . . ?

C27 C26 H26 119.4 . . ?

C25 C26 H26 119.4 . . ?

C26 C27 C28 117.1(9) . . ?

C26 C27 H27 121.5 . . ?

C28 C27 H27 121.5 . . ?

C27 C28 C23 122.0(9) . . ?

C27 C28 C29 131.6(9) . . ?

C23 C28 C29 106.4(9) . . ?

O6 C29 O4 119.6(9) . . ?

O6 C29 C28 128.6(10) . . ?

O4 C29 C28 111.7(9) . . ?

O1S C1S C2S 121.8(11) . . ?

O1S C1S C3S 117.9(12) . . ?

C2S C1S C3S 120.3(12) . . ?

C1S C2S H2S1 109.5 . . ?

C1S C2S H2S2 109.5 . . ?

H2S1 C2S H2S2 109.5 . . ?

C1S C2S H2S3 109.5 . . ?

H2S1 C2S H2S3 109.5 . . ?

H2S2 C2S H2S3 109.5 . . ?

C1S C3S H3S1 109.5 . . ?

C1S C3S H3S2 109.5 . . ?

H3S1 C3S H3S2 109.5 . . ?

C1S C3S H3S3 109.5 . . ?

H3S1 C3S H3S3 109.5 . . ?

H3S2 C3S H3S3 109.5 . . ?

O2S C4S C5S 121.4(13) . . ?

O2S C4S C6S 121.7(12) . . ?

C5S C4S C6S 116.8(11) . . ?

C4S C5S H5S1 109.5 . . ?

C4S C5S H5S2 109.5 . . ?

H5S1 C5S H5S2 109.5 . . ?

C4S C5S H5S3 109.5 . . ?

H5S1 C5S H5S3 109.5 . . ?

H5S2 C5S H5S3 109.5 . . ?

C4S C6S H6S1 109.5 . . ?

C4S C6S H6S2 109.5 . . ?

H6S1 C6S H6S2 109.5 . . ?

C4S C6S H6S3 109.5 . . ?

H6S1 C6S H6S3 109.5 . . ?

H6S2 C6S H6S3 109.5 . . ?

174

Page 188: Synthesis and Evaluation of Derivatives and Analogs of

loop_

_geom_torsion_atom_site_label_1

_geom_torsion_atom_site_label_2

_geom_torsion_atom_site_label_3

_geom_torsion_atom_site_label_4

_geom_torsion

_geom_torsion_site_symmetry_1

_geom_torsion_site_symmetry_2

_geom_torsion_site_symmetry_3

_geom_torsion_site_symmetry_4

_geom_torsion_publ_flag

C10 C1 C2 C11 175.4(10) . . . . ?

O2 C1 C2 C11 -2.5(14) . . . . ?

C10 C1 C2 C3 -0.2(15) . . . . ?

O2 C1 C2 C3 -178.1(9) . . . . ?

C1 C2 C3 C4 -178.6(9) . . . . ?

C11 C2 C3 C4 5.7(15) . . . . ?

C1 C2 C3 C8 1.9(13) . . . . ?

C11 C2 C3 C8 -173.8(9) . . . . ?

C8 C3 C4 C5 0.3(15) . . . . ?

C2 C3 C4 C5 -179.2(10) . . . . ?

C3 C4 C5 C6 1.2(16) . . . . ?

C4 C5 C6 C7 -2.9(15) . . . . ?

C4 C5 C6 C12 -179.0(10) . . . . ?

C22 O1 C7 C6 1.9(13) . . . . ?

C22 O1 C7 C8 -179.7(9) . . . . ?

C5 C6 C7 O1 -178.6(9) . . . . ?

C12 C6 C7 O1 -2.5(15) . . . . ?

C5 C6 C7 C8 3.0(14) . . . . ?

C12 C6 C7 C8 179.1(9) . . . . ?

C4 C3 C8 C9 178.0(9) . . . . ?

C2 C3 C8 C9 -2.5(13) . . . . ?

C4 C3 C8 C7 -0.1(14) . . . . ?

C2 C3 C8 C7 179.4(9) . . . . ?

O1 C7 C8 C3 179.9(9) . . . . ?

C6 C7 C8 C3 -1.5(14) . . . . ?

O1 C7 C8 C9 1.9(13) . . . . ?

C6 C7 C8 C9 -179.6(9) . . . . ?

C3 C8 C9 C10 1.5(15) . . . . ?

C7 C8 C9 C10 179.6(10) . . . . ?

C8 C9 C10 C1 0.2(16) . . . . ?

O2 C1 C10 C9 177.1(9) . . . . ?

C2 C1 C10 C9 -0.8(16) . . . . ?

C1 C2 C11 O3 8.9(15) . . . . ?

C3 C2 C11 O3 -175.6(10) . . . . ?

C7 C6 C12 C13 3.2(13) . . . . ?

C5 C6 C12 C13 179.3(9) . . . . ?

C7 C6 C12 O4 -116.8(10) . . . . ?

C5 C6 C12 O4 59.2(12) . . . . ?

175

Page 189: Synthesis and Evaluation of Derivatives and Analogs of

C7 C6 C12 C23 132.8(10) . . . . ?

C5 C6 C12 C23 -51.2(13) . . . . ?

C29 O4 C12 C13 120.7(9) . . . . ?

C29 O4 C12 C6 -116.8(10) . . . . ?

C29 O4 C12 C23 0.0(11) . . . . ?

C6 C12 C13 C22 -4.0(13) . . . . ?

O4 C12 C13 C22 115.5(10) . . . . ?

C23 C12 C13 C22 -131.8(10) . . . . ?

C6 C12 C13 C14 179.9(9) . . . . ?

O4 C12 C13 C14 -60.6(11) . . . . ?

C23 C12 C13 C14 52.1(13) . . . . ?

C22 C13 C14 C15 4.4(14) . . . . ?

C12 C13 C14 C15 -179.2(9) . . . . ?

C13 C14 C15 C16 -4.2(14) . . . . ?

C14 C15 C16 C21 0.9(14) . . . . ?

C14 C15 C16 C17 -179.5(10) . . . . ?

C21 C16 C17 C18 1.3(15) . . . . ?

C15 C16 C17 C18 -178.3(9) . . . . ?

C16 C17 C18 O5 178.6(9) . . . . ?

C16 C17 C18 C19 -3.2(15) . . . . ?

O5 C18 C19 C20 -177.9(9) . . . . ?

C17 C18 C19 C20 3.9(16) . . . . ?

C18 C19 C20 C21 -2.5(15) . . . . ?

C17 C16 C21 C22 -177.7(9) . . . . ?

C15 C16 C21 C22 1.9(15) . . . . ?

C17 C16 C21 C20 0.0(15) . . . . ?

C15 C16 C21 C20 179.6(9) . . . . ?

C19 C20 C21 C22 178.2(10) . . . . ?

C19 C20 C21 C16 0.6(14) . . . . ?

C16 C21 C22 C13 -1.5(15) . . . . ?

C20 C21 C22 C13 -179.2(9) . . . . ?

C16 C21 C22 O1 177.1(9) . . . . ?

C20 C21 C22 O1 -0.6(14) . . . . ?

C14 C13 C22 C21 -1.5(14) . . . . ?

C12 C13 C22 C21 -177.8(10) . . . . ?

C14 C13 C22 O1 180.0(8) . . . . ?

C12 C13 C22 O1 3.6(14) . . . . ?

C7 O1 C22 C21 178.9(9) . . . . ?

C7 O1 C22 C13 -2.3(12) . . . . ?

C13 C12 C23 C28 -117.2(10) . . . . ?

C6 C12 C23 C28 114.1(10) . . . . ?

O4 C12 C23 C28 -0.3(11) . . . . ?

C13 C12 C23 C24 63.5(15) . . . . ?

C6 C12 C23 C24 -65.2(15) . . . . ?

O4 C12 C23 C24 -179.6(11) . . . . ?

C28 C23 C24 C25 -2.1(16) . . . . ?

C12 C23 C24 C25 177.1(11) . . . . ?

C23 C24 C25 C26 2.1(17) . . . . ?

C24 C25 C26 C27 -0.9(18) . . . . ?

176

Page 190: Synthesis and Evaluation of Derivatives and Analogs of

C25 C26 C27 C28 -0.2(16) . . . . ?

C26 C27 C28 C23 0.1(16) . . . . ?

C26 C27 C28 C29 -178.3(11) . . . . ?

C24 C23 C28 C27 1.1(17) . . . . ?

C12 C23 C28 C27 -178.2(10) . . . . ?

C24 C23 C28 C29 179.9(10) . . . . ?

C12 C23 C28 C29 0.5(12) . . . . ?

C12 O4 C29 O6 177.4(10) . . . . ?

C12 O4 C29 C28 0.4(12) . . . . ?

C27 C28 C29 O6 1(2) . . . . ?

C23 C28 C29 O6 -177.3(12) . . . . ?

C27 C28 C29 O4 178.0(11) . . . . ?

C23 C28 C29 O4 -0.6(12) . . . . ?

loop_

_geom_hbond_atom_site_label_D

_geom_hbond_atom_site_label_H

_geom_hbond_atom_site_label_A

_geom_hbond_distance_DH

_geom_hbond_distance_HA

_geom_hbond_distance_DA

_geom_hbond_angle_DHA

_geom_hbond_site_symmetry_A

O2 H20H O3 0.84 1.84 2.542(12) 139.7 .

O5 H50H O1S 0.84 1.90 2.694(12) 157.9 2_766

_diffrn_measured_fraction_theta_max 0.972

_diffrn_reflns_theta_full 25.5

_diffrn_measured_fraction_theta_full 0.972

_refine_diff_density_max 0.445

_refine_diff_density_min -0.37

_refine_diff_density_rms 0.089

#END OF CIF

177

Page 191: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX AA: CRYSTALLOGRAPHIC DATA FOR COMPOUND 3.7

data_XXu10

_audit_creation_method SHELXL-97

_chemical_name_systematic

;

?

;

_chemical_name_common ?

_chemical_melting_point ?

_chemical_compound_source 'local laboratory'

_chemical_formula_moiety 'C39 H41 N2 O2 1+, I 1-'

_chemical_formula_sum 'C39 H41 I N2 O2'

_chemical_formula_weight 696.64

loop_

_atom_type_symbol

_atom_type_description

_atom_type_scat_dispersion_real

_atom_type_scat_dispersion_imag

_atom_type_scat_source

'C' 'C' 0.0033 0.0016

178

Page 192: Synthesis and Evaluation of Derivatives and Analogs of

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'H' 'H' 0.0000 0.0000

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'I' 'I' -0.4742 1.8119

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'N' 'N' 0.0061 0.0033

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'O' 'O' 0.0106 0.0060

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_space_group_name_H-M 'P 21/c '

_symmetry_space_group_name_Hall '-P 2ybc'

_symmetry_cell_setting 'Monoclinic'

loop_

_symmetry_equiv_pos_as_xyz

'x, y, z'

'-x, y+1/2, -z+1/2'

'-x, -y, -z'

'x, -y-1/2, z-1/2'

_cell_length_a 20.111(3)

_cell_length_b 9.721(2)

_cell_length_c 18.261(3)

_cell_angle_alpha 90

_cell_angle_beta 103.354(4)

_cell_angle_gamma 90

_cell_volume 3473.5(11)

_cell_formula_units_Z 4

_cell_measurement_temperature 110

_cell_measurement_reflns_used 7540

_cell_measurement_theta_min 2.5

_cell_measurement_theta_max 27.9

_exptl_crystal_description plate

_exptl_crystal_colour 'blue-bronze'

_exptl_crystal_size_max 0.42

_exptl_crystal_size_mid 0.18

_exptl_crystal_size_min 0.03

_exptl_crystal_density_meas ?

_exptl_crystal_density_diffrn 1.332

_exptl_crystal_density_method 'not measured'

_exptl_crystal_F_000 1432

_exptl_absorpt_coefficient_mu 0.957

_exptl_absorpt_correction_type 'multi-scan'

_exptl_absorpt_correction_T_min 0.689

_exptl_absorpt_correction_T_max 0.972

_exptl_absorpt_process_details 'HKL Scalepack (Otwinowski & Minor 1997)'

179

Page 193: Synthesis and Evaluation of Derivatives and Analogs of

_exptl_special_details

;

?

;

_diffrn_ambient_temperature 110

_diffrn_radiation_wavelength 0.71073

_diffrn_radiation_type MoK\a

_diffrn_radiation_source 'fine-focus sealed tube'

_diffrn_radiation_monochromator graphite

_diffrn_measurement_device 'KappaCCD (with Oxford Cryostream)'

_diffrn_measurement_method ' \w scans with \k offsets'

_diffrn_detector_area_resol_mean ?

_diffrn_standards_number 0

_diffrn_standards_interval_count ?

_diffrn_standards_interval_time ?

_diffrn_standards_decay_% <2

_diffrn_reflns_number 39781

_diffrn_reflns_av_R_equivalents 0.053

_diffrn_reflns_av_sigmaI/netI 0.0836

_diffrn_reflns_limit_h_min -26

_diffrn_reflns_limit_h_max 26

_diffrn_reflns_limit_k_min -11

_diffrn_reflns_limit_k_max 12

_diffrn_reflns_limit_l_min -23

_diffrn_reflns_limit_l_max 24

_diffrn_reflns_theta_min 2.7

_diffrn_reflns_theta_max 27.9

_reflns_number_total 8271

_reflns_number_gt 5606

_reflns_threshold_expression I>2\s(I)

_computing_data_collection 'COLLECT (Nonius, 2000)'

_computing_cell_refinement 'HKL Scalepack (Otwinowski & Minor 1997)'

_computing_data_reduction 'HKL Denzo and Scalepack (Otwinowski & Minor 1997)'

_computing_structure_solution 'SIR97 (Altomare et al., 1999)'

_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'

_computing_molecular_graphics 'ORTEP-3 for Windows (Farrugia, 1997)'

_computing_publication_material 'SHELXL-97 (Sheldrick, 1997)'

_refine_special_details

;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F^2^, conventional R-factors R are based

on F, with F set to zero for negative F^2^. The threshold expression of

F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F^2^ are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

180

Page 194: Synthesis and Evaluation of Derivatives and Analogs of

;

_refine_ls_structure_factor_coef Fsqd

_refine_ls_matrix_type full

_refine_ls_weighting_scheme calc

_refine_ls_weighting_details

'calc w=1/[\s^2^(Fo^2^)+(0.0373P)^2^+2.2694P] where P=(Fo^2^+2Fc^2^)/3'

_atom_sites_solution_primary direct

_atom_sites_solution_secondary difmap

_atom_sites_solution_hydrogens geom

_refine_ls_hydrogen_treatment constr

_refine_ls_extinction_method none

_refine_ls_extinction_coef ?

_refine_ls_number_reflns 8271

_refine_ls_number_parameters 403

_refine_ls_number_restraints 0

_refine_ls_R_factor_all 0.088

_refine_ls_R_factor_gt 0.047

_refine_ls_wR_factor_ref 0.101

_refine_ls_wR_factor_gt 0.089

_refine_ls_goodness_of_fit_ref 1.016

_refine_ls_restrained_S_all 1.016

_refine_ls_shift/su_max 0.001

_refine_ls_shift/su_mean 0.000

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_U_iso_or_equiv

_atom_site_adp_type

_atom_site_occupancy

_atom_site_symmetry_multiplicity

_atom_site_calc_flag

_atom_site_refinement_flags

_atom_site_disorder_assembly

_atom_site_disorder_group

I1 I 0.157473(11) 0.93298(2) 0.540838(13) 0.02793(8) Uani 1 1 d . . .

O1 O 0.30592(11) 0.2663(2) 0.73597(14) 0.0282(5) Uani 1 1 d . . .

O2 O 0.11754(15) 0.4823(3) 0.43042(16) 0.0461(7) Uani 1 1 d . . .

N1 N 0.03128(13) 0.2755(3) 0.84314(15) 0.0232(6) Uani 1 1 d . . .

N2 N 0.61844(14) 0.3990(3) 0.77448(18) 0.0319(7) Uani 1 1 d . . .

C1 C -0.03016(16) 0.2346(3) 0.79227(19) 0.0218(7) Uani 1 1 d . . .

C2 C -0.09522(17) 0.2255(3) 0.8048(2) 0.0268(8) Uani 1 1 d . . .

H2 H -0.1040 0.2427 0.8529 0.032 Uiso 1 1 calc R . .

C3 C -0.14706(18) 0.1900(3) 0.7432(2) 0.0306(8) Uani 1 1 d . . .

H3 H -0.1927 0.1836 0.7492 0.037 Uiso 1 1 calc R . .

181

Page 195: Synthesis and Evaluation of Derivatives and Analogs of

C4 C -0.13398(18) 0.1637(3) 0.6735(2) 0.0313(8) Uani 1 1 d . . .

H4 H -0.1706 0.1396 0.6326 0.038 Uiso 1 1 calc R . .

C5 C -0.06799(17) 0.1722(3) 0.6626(2) 0.0289(8) Uani 1 1 d . . .

H5 H -0.0589 0.1539 0.6148 0.035 Uiso 1 1 calc R . .

C6 C -0.01594(16) 0.2078(3) 0.72327(19) 0.0237(7) Uani 1 1 d . . .

C7 C 0.05994(16) 0.2277(3) 0.72901(19) 0.0249(8) Uani 1 1 d . . .

C8 C 0.08407(16) 0.2741(3) 0.81084(19) 0.0223(7) Uani 1 1 d . . .

C9 C 0.03236(18) 0.3073(4) 0.92199(19) 0.0315(8) Uani 1 1 d . . .

H9A H 0.0395 0.2224 0.9517 0.047 Uiso 1 1 calc R . .

H9B H -0.0113 0.3489 0.9251 0.047 Uiso 1 1 calc R . .

H9C H 0.0696 0.3718 0.9418 0.047 Uiso 1 1 calc R . .

C10 C 0.09212(18) 0.0886(3) 0.7157(2) 0.0347(9) Uani 1 1 d . . .

H10A H 0.0860 0.0226 0.7542 0.052 Uiso 1 1 calc R . .

H10B H 0.1410 0.1012 0.7186 0.052 Uiso 1 1 calc R . .

H10C H 0.0698 0.0534 0.6657 0.052 Uiso 1 1 calc R . .

C11 C 0.07064(18) 0.3399(4) 0.6730(2) 0.0340(9) Uani 1 1 d . . .

H11A H 0.0497 0.3105 0.6216 0.051 Uiso 1 1 calc R . .

H11B H 0.1197 0.3547 0.6780 0.051 Uiso 1 1 calc R . .

H11C H 0.0494 0.4259 0.6840 0.051 Uiso 1 1 calc R . .

C12 C 0.15120(16) 0.3125(3) 0.84881(19) 0.0241(7) Uani 1 1 d . . .

H12 H 0.1584 0.3475 0.8986 0.029 Uiso 1 1 calc R . .

C13 C 0.20589(16) 0.3011(3) 0.8167(2) 0.0264(8) Uani 1 1 d . . .

H13 H 0.1970 0.2644 0.7672 0.032 Uiso 1 1 calc R . .

C14 C 0.27506(17) 0.3384(3) 0.84942(19) 0.0261(8) Uani 1 1 d . . .

C15 C 0.32398(17) 0.3229(3) 0.80854(19) 0.0258(8) Uani 1 1 d . . .

C16 C 0.39572(16) 0.3485(3) 0.8363(2) 0.0272(8) Uani 1 1 d . . .

C17 C 0.41796(18) 0.3847(4) 0.9183(2) 0.0390(9) Uani 1 1 d . . .

H17A H 0.4610 0.4382 0.9270 0.047 Uiso 1 1 calc R . .

H17B H 0.4271 0.2992 0.9484 0.047 Uiso 1 1 calc R . .

C18 C 0.36389(19) 0.4683(5) 0.9442(2) 0.0445(11) Uani 1 1 d . . .

H18A H 0.3577 0.5575 0.9174 0.053 Uiso 1 1 calc R . .

H18B H 0.3793 0.4872 0.9987 0.053 Uiso 1 1 calc R . .

C19 C 0.29605(18) 0.3923(4) 0.9291(2) 0.0357(9) Uani 1 1 d . . .

H19A H 0.2996 0.3143 0.9646 0.043 Uiso 1 1 calc R . .

H19B H 0.2602 0.4552 0.9384 0.043 Uiso 1 1 calc R . .

C20 C 0.43803(16) 0.3426(3) 0.7877(2) 0.0266(8) Uani 1 1 d . . .

H20 H 0.4175 0.3207 0.7369 0.032 Uiso 1 1 calc R . .

C21 C 0.50982(16) 0.3661(3) 0.8055(2) 0.0270(8) Uani 1 1 d . . .

H21 H 0.5320 0.3769 0.8570 0.032 Uiso 1 1 calc R . .

C22 C 0.54918(16) 0.3741(3) 0.7539(2) 0.0264(8) Uani 1 1 d . . .

C23 C 0.52814(17) 0.3627(4) 0.6684(2) 0.0286(8) Uani 1 1 d . . .

C24 C 0.5959(2) 0.3887(4) 0.6467(2) 0.0364(9) Uani 1 1 d . . .

C25 C 0.6113(2) 0.3938(5) 0.5776(3) 0.0522(12) Uani 1 1 d . . .

H25 H 0.5771 0.3787 0.5329 0.063 Uiso 1 1 calc R . .

C26 C 0.6797(3) 0.4224(5) 0.5747(3) 0.0669(14) Uani 1 1 d . . .

H26 H 0.6916 0.4267 0.5273 0.080 Uiso 1 1 calc R . .

C27 C 0.7287(3) 0.4438(5) 0.6389(3) 0.0605(13) Uani 1 1 d . . .

H27 H 0.7741 0.4636 0.6355 0.073 Uiso 1 1 calc R . .

C28 C 0.7137(2) 0.4373(4) 0.7090(3) 0.0462(11) Uani 1 1 d . . .

182

Page 196: Synthesis and Evaluation of Derivatives and Analogs of

H28 H 0.7480 0.4512 0.7538 0.055 Uiso 1 1 calc R . .

C29 C 0.64664(19) 0.4096(4) 0.7114(2) 0.0344(9) Uani 1 1 d . . .

C30 C 0.65612(19) 0.4133(4) 0.8515(2) 0.0465(11) Uani 1 1 d . . .

H30A H 0.6408 0.4961 0.8734 0.070 Uiso 1 1 calc R . .

H30B H 0.7050 0.4211 0.8530 0.070 Uiso 1 1 calc R . .

H30C H 0.6482 0.3324 0.8803 0.070 Uiso 1 1 calc R . .

C31 C 0.4757(2) 0.4726(4) 0.6325(2) 0.0437(10) Uani 1 1 d . . .

H31A H 0.4929 0.5639 0.6503 0.066 Uiso 1 1 calc R . .

H31B H 0.4323 0.4555 0.6467 0.066 Uiso 1 1 calc R . .

H31C H 0.4685 0.4686 0.5776 0.066 Uiso 1 1 calc R . .

C32 C 0.5021(2) 0.2178(4) 0.6435(2) 0.0394(9) Uani 1 1 d . . .

H32A H 0.4945 0.2103 0.5887 0.059 Uiso 1 1 calc R . .

H32B H 0.4591 0.2009 0.6584 0.059 Uiso 1 1 calc R . .

H32C H 0.5361 0.1496 0.6674 0.059 Uiso 1 1 calc R . .

C33 C 0.27210(15) 0.3422(3) 0.67663(18) 0.0230(7) Uani 1 1 d . . .

C34 C 0.26866(18) 0.4866(4) 0.6756(2) 0.0294(8) Uani 1 1 d . . .

H34 H 0.2918 0.5391 0.7177 0.035 Uiso 1 1 calc R . .

C35 C 0.23053(19) 0.5506(4) 0.6115(2) 0.0341(9) Uani 1 1 d . . .

H35 H 0.2281 0.6482 0.6097 0.041 Uiso 1 1 calc R . .

C36 C 0.19596(18) 0.4749(4) 0.5499(2) 0.0300(8) Uani 1 1 d . . .

C37 C 0.20149(18) 0.3330(4) 0.5519(2) 0.0334(9) Uani 1 1 d . . .

H37 H 0.1790 0.2804 0.5095 0.040 Uiso 1 1 calc R . .

C38 C 0.23918(18) 0.2672(4) 0.6145(2) 0.0317(8) Uani 1 1 d . . .

H38 H 0.2426 0.1697 0.6151 0.038 Uiso 1 1 calc R . .

C39 C 0.1523(2) 0.5433(4) 0.4838(2) 0.0379(9) Uani 1 1 d . . .

H39 H 0.1513 0.6410 0.4829 0.045 Uiso 1 1 calc R . .

loop_

_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_atom_site_aniso_U_23

_atom_site_aniso_U_13

_atom_site_aniso_U_12

I1 0.02452(12) 0.03092(13) 0.02691(13) 0.00382(10) 0.00299(9) -0.00146(10)

O1 0.0206(12) 0.0297(13) 0.0353(15) -0.0030(11) 0.0083(11) 0.0013(10)

O2 0.0522(18) 0.0462(16) 0.0366(17) 0.0001(14) 0.0035(15) 0.0011(14)

N1 0.0194(15) 0.0250(14) 0.0263(16) -0.0016(12) 0.0078(12) 0.0007(11)

N2 0.0172(15) 0.0413(18) 0.0381(19) -0.0070(14) 0.0081(14) -0.0035(12)

C1 0.0199(17) 0.0180(16) 0.0266(19) -0.0010(14) 0.0036(15) -0.0007(13)

C2 0.0256(19) 0.0276(18) 0.030(2) -0.0066(15) 0.0128(16) -0.0030(14)

C3 0.0225(19) 0.0300(19) 0.040(2) -0.0036(17) 0.0096(17) -0.0076(15)

C4 0.0256(19) 0.036(2) 0.030(2) -0.0024(16) 0.0006(16) -0.0064(15)

C5 0.0269(19) 0.035(2) 0.025(2) -0.0010(15) 0.0064(16) -0.0010(15)

C6 0.0224(18) 0.0205(16) 0.030(2) -0.0025(15) 0.0101(15) -0.0008(13)

C7 0.0186(17) 0.0294(18) 0.029(2) -0.0051(15) 0.0094(15) -0.0005(14)

C8 0.0231(18) 0.0176(16) 0.0293(19) 0.0003(14) 0.0123(15) 0.0008(13)

C9 0.0250(19) 0.043(2) 0.027(2) -0.0085(17) 0.0066(16) -0.0051(16)

183

Page 197: Synthesis and Evaluation of Derivatives and Analogs of

C10 0.0259(19) 0.036(2) 0.043(2) -0.0154(17) 0.0108(17) 0.0011(15)

C11 0.0253(19) 0.046(2) 0.033(2) 0.0067(18) 0.0118(17) -0.0067(16)

C12 0.0187(17) 0.0274(18) 0.0267(19) 0.0008(15) 0.0060(15) 0.0000(14)

C13 0.0235(18) 0.0263(18) 0.031(2) -0.0044(15) 0.0086(16) 0.0007(14)

C14 0.0208(17) 0.0302(19) 0.028(2) -0.0008(15) 0.0073(15) -0.0008(14)

C15 0.0239(18) 0.0282(18) 0.026(2) -0.0005(15) 0.0070(15) -0.0001(14)

C16 0.0196(18) 0.0323(19) 0.030(2) -0.0024(16) 0.0062(15) -0.0013(14)

C17 0.0211(19) 0.065(3) 0.032(2) 0.0025(19) 0.0082(17) -0.0048(18)

C18 0.031(2) 0.072(3) 0.031(2) -0.016(2) 0.0083(18) -0.005(2)

C19 0.0228(19) 0.052(2) 0.034(2) -0.0012(18) 0.0104(17) -0.0013(16)

C20 0.0198(17) 0.0255(18) 0.033(2) -0.0019(15) 0.0030(15) 0.0010(14)

C21 0.0207(18) 0.0309(18) 0.029(2) -0.0029(16) 0.0050(15) -0.0003(14)

C22 0.0162(17) 0.0268(17) 0.035(2) -0.0008(16) 0.0043(15) 0.0003(14)

C23 0.0222(18) 0.0332(19) 0.031(2) 0.0028(16) 0.0080(16) -0.0005(15)

C24 0.036(2) 0.038(2) 0.040(2) 0.0056(18) 0.0180(19) -0.0007(17)

C25 0.046(3) 0.072(3) 0.044(3) 0.008(2) 0.020(2) -0.001(2)

C26 0.061(3) 0.090(4) 0.064(3) 0.013(3) 0.045(3) -0.003(3)

C27 0.047(3) 0.066(3) 0.082(4) 0.001(3) 0.041(3) -0.010(2)

C28 0.028(2) 0.049(2) 0.066(3) -0.009(2) 0.020(2) -0.0085(19)

C29 0.029(2) 0.033(2) 0.045(2) -0.0013(17) 0.0161(18) -0.0012(15)

C30 0.0188(19) 0.073(3) 0.045(3) -0.012(2) 0.0006(18) -0.0029(19)

C31 0.034(2) 0.052(2) 0.044(3) 0.011(2) 0.0074(19) 0.0078(19)

C32 0.037(2) 0.046(2) 0.037(2) -0.0102(19) 0.0129(19) -0.0050(18)

C33 0.0101(15) 0.038(2) 0.0227(19) -0.0030(16) 0.0082(14) -0.0044(14)

C34 0.0264(19) 0.0325(19) 0.030(2) -0.0078(16) 0.0092(16) -0.0056(15)

C35 0.036(2) 0.031(2) 0.038(2) -0.0013(18) 0.0144(18) 0.0001(17)

C36 0.028(2) 0.035(2) 0.030(2) -0.0030(16) 0.0123(16) -0.0019(15)

C37 0.032(2) 0.041(2) 0.027(2) -0.0083(17) 0.0070(17) 0.0005(17)

C38 0.028(2) 0.033(2) 0.035(2) -0.0077(17) 0.0092(17) -0.0008(15)

C39 0.047(2) 0.038(2) 0.030(2) -0.0024(18) 0.0113(19) -0.0009(18)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

;

loop_

_geom_bond_atom_site_label_1

_geom_bond_atom_site_label_2

_geom_bond_distance

_geom_bond_site_symmetry_2

_geom_bond_publ_flag

O1 C33 1.357(4) . ?

O1 C15 1.403(4) . ?

184

Page 198: Synthesis and Evaluation of Derivatives and Analogs of

O2 C39 1.214(4) . ?

N1 C8 1.328(4) . ?

N1 C1 1.420(4) . ?

N1 C9 1.468(4) . ?

N2 C22 1.378(4) . ?

N2 C29 1.399(5) . ?

N2 C30 1.441(5) . ?

C1 C6 1.380(4) . ?

C1 C2 1.382(4) . ?

C2 C3 1.389(5) . ?

C2 H2 0.9500 . ?

C3 C4 1.381(5) . ?

C3 H3 0.9500 . ?

C4 C5 1.389(5) . ?

C4 H4 0.9500 . ?

C5 C6 1.380(5) . ?

C5 H5 0.9500 . ?

C6 C7 1.518(4) . ?

C7 C8 1.529(5) . ?

C7 C10 1.543(5) . ?

C7 C11 1.544(5) . ?

C8 C12 1.418(4) . ?

C9 H9A 0.9800 . ?

C9 H9B 0.9800 . ?

C9 H9C 0.9800 . ?

C10 H10A 0.9800 . ?

C10 H10B 0.9800 . ?

C10 H10C 0.9800 . ?

C11 H11A 0.9800 . ?

C11 H11B 0.9800 . ?

C11 H11C 0.9800 . ?

C12 C13 1.365(4) . ?

C12 H12 0.9500 . ?

C13 C14 1.428(5) . ?

C13 H13 0.9500 . ?

C14 C15 1.374(4) . ?

C14 C19 1.512(5) . ?

C15 C16 1.436(5) . ?

C16 C20 1.364(5) . ?

C16 C17 1.503(5) . ?

C17 C18 1.517(5) . ?

C17 H17A 0.9900 . ?

C17 H17B 0.9900 . ?

C18 C19 1.520(5) . ?

C18 H18A 0.9900 . ?

C18 H18B 0.9900 . ?

C19 H19A 0.9900 . ?

C19 H19B 0.9900 . ?

C20 C21 1.423(4) . ?

185

Page 199: Synthesis and Evaluation of Derivatives and Analogs of

C20 H20 0.9500 . ?

C21 C22 1.366(5) . ?

C21 H21 0.9500 . ?

C22 C23 1.523(5) . ?

C23 C24 1.526(5) . ?

C23 C32 1.535(5) . ?

C23 C31 1.538(5) . ?

C24 C25 1.367(5) . ?

C24 C29 1.387(5) . ?

C25 C26 1.417(6) . ?

C25 H25 0.9500 . ?

C26 C27 1.363(7) . ?

C26 H26 0.9500 . ?

C27 C28 1.382(6) . ?

C27 H27 0.9500 . ?

C28 C29 1.386(5) . ?

C28 H28 0.9500 . ?

C30 H30A 0.9800 . ?

C30 H30B 0.9800 . ?

C30 H30C 0.9800 . ?

C31 H31A 0.9800 . ?

C31 H31B 0.9800 . ?

C31 H31C 0.9800 . ?

C32 H32A 0.9800 . ?

C32 H32B 0.9800 . ?

C32 H32C 0.9800 . ?

C33 C38 1.382(5) . ?

C33 C34 1.405(5) . ?

C34 C35 1.390(5) . ?

C34 H34 0.9500 . ?

C35 C36 1.388(5) . ?

C35 H35 0.9500 . ?

C36 C37 1.384(5) . ?

C36 C39 1.477(5) . ?

C37 C38 1.375(5) . ?

C37 H37 0.9500 . ?

C38 H38 0.9500 . ?

C39 H39 0.9500 . ?

loop_

_geom_angle_atom_site_label_1

_geom_angle_atom_site_label_2

_geom_angle_atom_site_label_3

_geom_angle

_geom_angle_site_symmetry_1

_geom_angle_site_symmetry_3

_geom_angle_publ_flag

C33 O1 C15 120.9(3) . . ?

C8 N1 C1 111.7(3) . . ?

186

Page 200: Synthesis and Evaluation of Derivatives and Analogs of

C8 N1 C9 127.3(3) . . ?

C1 N1 C9 120.9(3) . . ?

C22 N2 C29 111.4(3) . . ?

C22 N2 C30 123.7(3) . . ?

C29 N2 C30 125.0(3) . . ?

C6 C1 C2 122.9(3) . . ?

C6 C1 N1 108.5(3) . . ?

C2 C1 N1 128.5(3) . . ?

C1 C2 C3 116.4(3) . . ?

C1 C2 H2 121.8 . . ?

C3 C2 H2 121.8 . . ?

C4 C3 C2 121.6(3) . . ?

C4 C3 H3 119.2 . . ?

C2 C3 H3 119.2 . . ?

C3 C4 C5 120.8(3) . . ?

C3 C4 H4 119.6 . . ?

C5 C4 H4 119.6 . . ?

C6 C5 C4 118.2(3) . . ?

C6 C5 H5 120.9 . . ?

C4 C5 H5 120.9 . . ?

C1 C6 C5 120.1(3) . . ?

C1 C6 C7 109.3(3) . . ?

C5 C6 C7 130.7(3) . . ?

C6 C7 C8 101.1(3) . . ?

C6 C7 C10 109.2(3) . . ?

C8 C7 C10 111.3(3) . . ?

C6 C7 C11 109.6(3) . . ?

C8 C7 C11 112.2(3) . . ?

C10 C7 C11 112.8(3) . . ?

N1 C8 C12 123.3(3) . . ?

N1 C8 C7 109.3(3) . . ?

C12 C8 C7 127.4(3) . . ?

N1 C9 H9A 109.5 . . ?

N1 C9 H9B 109.5 . . ?

H9A C9 H9B 109.5 . . ?

N1 C9 H9C 109.5 . . ?

H9A C9 H9C 109.5 . . ?

H9B C9 H9C 109.5 . . ?

C7 C10 H10A 109.5 . . ?

C7 C10 H10B 109.5 . . ?

H10A C10 H10B 109.5 . . ?

C7 C10 H10C 109.5 . . ?

H10A C10 H10C 109.5 . . ?

H10B C10 H10C 109.5 . . ?

C7 C11 H11A 109.5 . . ?

C7 C11 H11B 109.5 . . ?

H11A C11 H11B 109.5 . . ?

C7 C11 H11C 109.5 . . ?

H11A C11 H11C 109.5 . . ?

187

Page 201: Synthesis and Evaluation of Derivatives and Analogs of

H11B C11 H11C 109.5 . . ?

C13 C12 C8 122.6(3) . . ?

C13 C12 H12 118.7 . . ?

C8 C12 H12 118.7 . . ?

C12 C13 C14 127.1(3) . . ?

C12 C13 H13 116.4 . . ?

C14 C13 H13 116.4 . . ?

C15 C14 C13 119.7(3) . . ?

C15 C14 C19 119.0(3) . . ?

C13 C14 C19 121.3(3) . . ?

C14 C15 O1 119.6(3) . . ?

C14 C15 C16 125.2(3) . . ?

O1 C15 C16 114.9(3) . . ?

C20 C16 C15 119.4(3) . . ?

C20 C16 C17 124.8(3) . . ?

C15 C16 C17 115.8(3) . . ?

C16 C17 C18 111.5(3) . . ?

C16 C17 H17A 109.3 . . ?

C18 C17 H17A 109.3 . . ?

C16 C17 H17B 109.3 . . ?

C18 C17 H17B 109.3 . . ?

H17A C17 H17B 108.0 . . ?

C17 C18 C19 111.2(3) . . ?

C17 C18 H18A 109.4 . . ?

C19 C18 H18A 109.4 . . ?

C17 C18 H18B 109.4 . . ?

C19 C18 H18B 109.4 . . ?

H18A C18 H18B 108.0 . . ?

C14 C19 C18 112.5(3) . . ?

C14 C19 H19A 109.1 . . ?

C18 C19 H19A 109.1 . . ?

C14 C19 H19B 109.1 . . ?

C18 C19 H19B 109.1 . . ?

H19A C19 H19B 107.8 . . ?

C16 C20 C21 126.7(3) . . ?

C16 C20 H20 116.7 . . ?

C21 C20 H20 116.7 . . ?

C22 C21 C20 124.8(3) . . ?

C22 C21 H21 117.6 . . ?

C20 C21 H21 117.6 . . ?

C21 C22 N2 122.1(3) . . ?

C21 C22 C23 129.4(3) . . ?

N2 C22 C23 108.5(3) . . ?

C22 C23 C24 101.6(3) . . ?

C22 C23 C32 111.4(3) . . ?

C24 C23 C32 109.8(3) . . ?

C22 C23 C31 112.8(3) . . ?

C24 C23 C31 109.8(3) . . ?

C32 C23 C31 111.0(3) . . ?

188

Page 202: Synthesis and Evaluation of Derivatives and Analogs of

C25 C24 C29 120.2(4) . . ?

C25 C24 C23 130.6(4) . . ?

C29 C24 C23 109.1(3) . . ?

C24 C25 C26 118.0(5) . . ?

C24 C25 H25 121.0 . . ?

C26 C25 H25 121.0 . . ?

C27 C26 C25 120.8(4) . . ?

C27 C26 H26 119.6 . . ?

C25 C26 H26 119.6 . . ?

C26 C27 C28 121.5(4) . . ?

C26 C27 H27 119.3 . . ?

C28 C27 H27 119.3 . . ?

C27 C28 C29 117.4(4) . . ?

C27 C28 H28 121.3 . . ?

C29 C28 H28 121.3 . . ?

C28 C29 C24 122.1(4) . . ?

C28 C29 N2 128.5(4) . . ?

C24 C29 N2 109.4(3) . . ?

N2 C30 H30A 109.5 . . ?

N2 C30 H30B 109.5 . . ?

H30A C30 H30B 109.5 . . ?

N2 C30 H30C 109.5 . . ?

H30A C30 H30C 109.5 . . ?

H30B C30 H30C 109.5 . . ?

C23 C31 H31A 109.5 . . ?

C23 C31 H31B 109.5 . . ?

H31A C31 H31B 109.5 . . ?

C23 C31 H31C 109.5 . . ?

H31A C31 H31C 109.5 . . ?

H31B C31 H31C 109.5 . . ?

C23 C32 H32A 109.5 . . ?

C23 C32 H32B 109.5 . . ?

H32A C32 H32B 109.5 . . ?

C23 C32 H32C 109.5 . . ?

H32A C32 H32C 109.5 . . ?

H32B C32 H32C 109.5 . . ?

O1 C33 C38 115.1(3) . . ?

O1 C33 C34 124.6(3) . . ?

C38 C33 C34 120.2(3) . . ?

C35 C34 C33 118.3(3) . . ?

C35 C34 H34 120.8 . . ?

C33 C34 H34 120.8 . . ?

C36 C35 C34 121.3(3) . . ?

C36 C35 H35 119.3 . . ?

C34 C35 H35 119.3 . . ?

C37 C36 C35 119.0(3) . . ?

C37 C36 C39 119.9(3) . . ?

C35 C36 C39 121.0(3) . . ?

C38 C37 C36 120.7(3) . . ?

189

Page 203: Synthesis and Evaluation of Derivatives and Analogs of

C38 C37 H37 119.6 . . ?

C36 C37 H37 119.6 . . ?

C37 C38 C33 120.3(3) . . ?

C37 C38 H38 119.9 . . ?

C33 C38 H38 119.9 . . ?

O2 C39 C36 124.0(4) . . ?

O2 C39 H39 118.0 . . ?

C36 C39 H39 118.0 . . ?

loop_

_geom_torsion_atom_site_label_1

_geom_torsion_atom_site_label_2

_geom_torsion_atom_site_label_3

_geom_torsion_atom_site_label_4

_geom_torsion

_geom_torsion_site_symmetry_1

_geom_torsion_site_symmetry_2

_geom_torsion_site_symmetry_3

_geom_torsion_site_symmetry_4

_geom_torsion_publ_flag

C8 N1 C1 C6 -1.0(4) . . . . ?

C9 N1 C1 C6 -178.3(3) . . . . ?

C8 N1 C1 C2 -178.9(3) . . . . ?

C9 N1 C1 C2 3.8(5) . . . . ?

C6 C1 C2 C3 -1.2(5) . . . . ?

N1 C1 C2 C3 176.3(3) . . . . ?

C1 C2 C3 C4 0.7(5) . . . . ?

C2 C3 C4 C5 -0.1(5) . . . . ?

C3 C4 C5 C6 -0.1(5) . . . . ?

C2 C1 C6 C5 1.0(5) . . . . ?

N1 C1 C6 C5 -176.9(3) . . . . ?

C2 C1 C6 C7 179.8(3) . . . . ?

N1 C1 C6 C7 1.8(3) . . . . ?

C4 C5 C6 C1 -0.3(5) . . . . ?

C4 C5 C6 C7 -178.8(3) . . . . ?

C1 C6 C7 C8 -1.8(3) . . . . ?

C5 C6 C7 C8 176.8(3) . . . . ?

C1 C6 C7 C10 115.5(3) . . . . ?

C5 C6 C7 C10 -65.9(5) . . . . ?

C1 C6 C7 C11 -120.4(3) . . . . ?

C5 C6 C7 C11 58.2(4) . . . . ?

C1 N1 C8 C12 179.0(3) . . . . ?

C9 N1 C8 C12 -3.9(5) . . . . ?

C1 N1 C8 C7 -0.2(3) . . . . ?

C9 N1 C8 C7 176.9(3) . . . . ?

C6 C7 C8 N1 1.2(3) . . . . ?

C10 C7 C8 N1 -114.6(3) . . . . ?

C11 C7 C8 N1 118.0(3) . . . . ?

C6 C7 C8 C12 -178.0(3) . . . . ?

190

Page 204: Synthesis and Evaluation of Derivatives and Analogs of

C10 C7 C8 C12 66.2(4) . . . . ?

C11 C7 C8 C12 -61.2(4) . . . . ?

N1 C8 C12 C13 175.1(3) . . . . ?

C7 C8 C12 C13 -5.8(5) . . . . ?

C8 C12 C13 C14 179.1(3) . . . . ?

C12 C13 C14 C15 -178.6(3) . . . . ?

C12 C13 C14 C19 2.6(5) . . . . ?

C13 C14 C15 O1 -2.1(5) . . . . ?

C19 C14 C15 O1 176.7(3) . . . . ?

C13 C14 C15 C16 -176.0(3) . . . . ?

C19 C14 C15 C16 2.8(5) . . . . ?

C33 O1 C15 C14 76.9(4) . . . . ?

C33 O1 C15 C16 -108.6(3) . . . . ?

C14 C15 C16 C20 -173.4(3) . . . . ?

O1 C15 C16 C20 12.4(5) . . . . ?

C14 C15 C16 C17 4.8(5) . . . . ?

O1 C15 C16 C17 -169.4(3) . . . . ?

C20 C16 C17 C18 143.6(4) . . . . ?

C15 C16 C17 C18 -34.5(5) . . . . ?

C16 C17 C18 C19 56.8(5) . . . . ?

C15 C14 C19 C18 20.0(5) . . . . ?

C13 C14 C19 C18 -161.2(3) . . . . ?

C17 C18 C19 C14 -49.3(5) . . . . ?

C15 C16 C20 C21 179.5(3) . . . . ?

C17 C16 C20 C21 1.5(6) . . . . ?

C16 C20 C21 C22 -172.5(3) . . . . ?

C20 C21 C22 N2 179.0(3) . . . . ?

C20 C21 C22 C23 0.8(6) . . . . ?

C29 N2 C22 C21 -176.9(3) . . . . ?

C30 N2 C22 C21 2.6(5) . . . . ?

C29 N2 C22 C23 1.6(4) . . . . ?

C30 N2 C22 C23 -178.9(3) . . . . ?

C21 C22 C23 C24 177.0(4) . . . . ?

N2 C22 C23 C24 -1.4(3) . . . . ?

C21 C22 C23 C32 -66.1(5) . . . . ?

N2 C22 C23 C32 115.5(3) . . . . ?

C21 C22 C23 C31 59.6(5) . . . . ?

N2 C22 C23 C31 -118.8(3) . . . . ?

C22 C23 C24 C25 -179.2(4) . . . . ?

C32 C23 C24 C25 62.7(5) . . . . ?

C31 C23 C24 C25 -59.6(5) . . . . ?

C22 C23 C24 C29 0.6(4) . . . . ?

C32 C23 C24 C29 -117.4(3) . . . . ?

C31 C23 C24 C29 120.2(3) . . . . ?

C29 C24 C25 C26 -0.7(6) . . . . ?

C23 C24 C25 C26 179.1(4) . . . . ?

C24 C25 C26 C27 0.2(7) . . . . ?

C25 C26 C27 C28 0.6(8) . . . . ?

C26 C27 C28 C29 -0.7(7) . . . . ?

191

Page 205: Synthesis and Evaluation of Derivatives and Analogs of

C27 C28 C29 C24 0.1(6) . . . . ?

C27 C28 C29 N2 -179.4(4) . . . . ?

C25 C24 C29 C28 0.6(6) . . . . ?

C23 C24 C29 C28 -179.3(3) . . . . ?

C25 C24 C29 N2 -179.8(4) . . . . ?

C23 C24 C29 N2 0.3(4) . . . . ?

C22 N2 C29 C28 178.3(4) . . . . ?

C30 N2 C29 C28 -1.1(6) . . . . ?

C22 N2 C29 C24 -1.2(4) . . . . ?

C30 N2 C29 C24 179.3(3) . . . . ?

C15 O1 C33 C38 -161.0(3) . . . . ?

C15 O1 C33 C34 18.5(4) . . . . ?

O1 C33 C34 C35 -178.3(3) . . . . ?

C38 C33 C34 C35 1.2(5) . . . . ?

C33 C34 C35 C36 0.6(5) . . . . ?

C34 C35 C36 C37 -2.0(5) . . . . ?

C34 C35 C36 C39 176.4(3) . . . . ?

C35 C36 C37 C38 1.6(5) . . . . ?

C39 C36 C37 C38 -176.7(3) . . . . ?

C36 C37 C38 C33 0.1(5) . . . . ?

O1 C33 C38 C37 178.0(3) . . . . ?

C34 C33 C38 C37 -1.5(5) . . . . ?

C37 C36 C39 O2 3.1(6) . . . . ?

C35 C36 C39 O2 -175.2(4) . . . . ?

_diffrn_measured_fraction_theta_max 0.994

_diffrn_reflns_theta_full 27.9

_diffrn_measured_fraction_theta_full 0.994

_refine_diff_density_max 1.59

_refine_diff_density_min -1.06

_refine_diff_density_rms 0.097

# END OF CIF

192

Page 206: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX BB: CRYSTALLOGRAPHIC DATA FOR COMPOUND 3.8

data_NIR-3

_audit_creation_method SHELXL-97

_chemical_name_systematic

;

?

;

_chemical_name_common ?

_chemical_melting_point ?

_chemical_compound_source 'local laboratory'

_chemical_formula_moiety 'C49 H61 N2 O2 1+, I 1-'

_chemical_formula_sum 'C49 H61 I N2 O2'

_chemical_formula_weight 836.90

loop_

_atom_type_symbol

_atom_type_description

_atom_type_scat_dispersion_real

_atom_type_scat_dispersion_imag

_atom_type_scat_source

'C' 'C' 0.0033 0.0016

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'H' 'H' 0.0000 0.0000

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

193

Page 207: Synthesis and Evaluation of Derivatives and Analogs of

'I' 'I' -0.4742 1.8119

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'N' 'N' 0.0061 0.0033

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'O' 'O' 0.0106 0.0060

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_space_group_name_H-M 'P 21/n '

_symmetry_space_group_name_Hall '-P 2yn'

_symmetry_cell_setting 'Monoclinic'

loop_

_symmetry_equiv_pos_as_xyz

'x, y, z'

'-x+1/2, y+1/2, -z+1/2'

'-x, -y, -z'

'x-1/2, -y-1/2, z-1/2'

_cell_length_a 15.066(2)

_cell_length_b 19.470(3)

_cell_length_c 16.580(2)

_cell_angle_alpha 90

_cell_angle_beta 112.441(7)

_cell_angle_gamma 90

_cell_volume 4495.2(11)

_cell_formula_units_Z 4

_cell_measurement_temperature 90

_cell_measurement_reflns_used 9378

_cell_measurement_theta_min 2.5

_cell_measurement_theta_max 27.1

_exptl_crystal_description plate

_exptl_crystal_colour 'blue-green/bronze dichroic'

_exptl_crystal_size_max 0.27

_exptl_crystal_size_mid 0.23

_exptl_crystal_size_min 0.05

_exptl_crystal_density_meas ?

_exptl_crystal_density_diffrn 1.237

_exptl_crystal_density_method 'not measured'

_exptl_crystal_F_000 1752

_exptl_absorpt_coefficient_mu 0.751

_exptl_absorpt_correction_type 'multi-scan'

_exptl_absorpt_correction_T_min 0.823

_exptl_absorpt_correction_T_max 0.963

_exptl_absorpt_process_details 'HKL Scalepack (Otwinowski & Minor 1997)'

_exptl_special_details

;

?

194

Page 208: Synthesis and Evaluation of Derivatives and Analogs of

;

_diffrn_ambient_temperature 90

_diffrn_radiation_wavelength 0.71073

_diffrn_radiation_type MoK\a

_diffrn_radiation_source 'fine-focus sealed tube'

_diffrn_radiation_monochromator graphite

_diffrn_measurement_device 'KappaCCD (with Oxford Cryostream)'

_diffrn_measurement_method ' \w scans with \k offsets'

_diffrn_detector_area_resol_mean ?

_diffrn_standards_number 0

_diffrn_standards_interval_count ?

_diffrn_standards_interval_time ?

_diffrn_standards_decay_% <2

_diffrn_reflns_number 37226

_diffrn_reflns_av_R_equivalents 0.036

_diffrn_reflns_av_sigmaI/netI 0.0570

_diffrn_reflns_limit_h_min -19

_diffrn_reflns_limit_h_max 19

_diffrn_reflns_limit_k_min -24

_diffrn_reflns_limit_k_max 23

_diffrn_reflns_limit_l_min -21

_diffrn_reflns_limit_l_max 21

_diffrn_reflns_theta_min 2.5

_diffrn_reflns_theta_max 27.1

_reflns_number_total 9881

_reflns_number_gt 7440

_reflns_threshold_expression I>2\s(I)

_computing_data_collection 'COLLECT (Nonius, 2000)'

_computing_cell_refinement 'HKL Scalepack (Otwinowski & Minor 1997)'

_computing_data_reduction 'HKL Denzo and Scalepack (Otwinowski & Minor 1997)'

_computing_structure_solution 'SIR97 (Altomare et al., 1999)'

_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'

_computing_molecular_graphics 'ORTEP-3 for Windows (Farrugia, 1997)'

_computing_publication_material 'SHELXL-97 (Sheldrick, 1997)'

_refine_special_details

;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F^2^, conventional R-factors R are based

on F, with F set to zero for negative F^2^. The threshold expression of

F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F^2^ are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef Fsqd

195

Page 209: Synthesis and Evaluation of Derivatives and Analogs of

_refine_ls_matrix_type full

_refine_ls_weighting_scheme calc

_refine_ls_weighting_details

'calc w=1/[\s^2^(Fo^2^)+(0.0335P)^2^+4.8374P] where P=(Fo^2^+2Fc^2^)/3'

_atom_sites_solution_primary direct

_atom_sites_solution_secondary difmap

_atom_sites_solution_hydrogens geom

_refine_ls_hydrogen_treatment constr

_refine_ls_extinction_method SHELXL

_refine_ls_extinction_coef 0.00129(13)

_refine_ls_extinction_expression

'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^'

_refine_ls_number_reflns 9881

_refine_ls_number_parameters 494

_refine_ls_number_restraints 0

_refine_ls_R_factor_all 0.065

_refine_ls_R_factor_gt 0.039

_refine_ls_wR_factor_ref 0.089

_refine_ls_wR_factor_gt 0.080

_refine_ls_goodness_of_fit_ref 1.009

_refine_ls_restrained_S_all 1.009

_refine_ls_shift/su_max 0.003

_refine_ls_shift/su_mean 0.000

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_U_iso_or_equiv

_atom_site_adp_type

_atom_site_occupancy

_atom_site_symmetry_multiplicity

_atom_site_calc_flag

_atom_site_refinement_flags

_atom_site_disorder_assembly

_atom_site_disorder_group

I1 I 0.151479(13) 0.595518(9) 0.128776(11) 0.01932(7) Uani 1 1 d . . .

O1 O 0.57552(13) 0.43045(9) 0.35942(12) 0.0169(4) Uani 1 1 d . . .

O2 O 0.9361(2) 0.24256(15) 0.3985(2) 0.0631(9) Uani 1 1 d . . .

N1 N 0.18082(16) 0.35305(11) 0.06228(15) 0.0181(5) Uani 1 1 d . . .

N2 N 0.80668(17) 0.67725(12) 0.60286(14) 0.0184(5) Uani 1 1 d . . .

C1 C 0.14040(19) 0.28656(14) 0.05482(17) 0.0169(6) Uani 1 1 d . . .

C2 C 0.0485(2) 0.26512(14) 0.00100(18) 0.0192(6) Uani 1 1 d . . .

H2 H 0.0038 0.2954 -0.0392 0.023 Uiso 1 1 calc R . .

C3 C 0.0261(2) 0.19663(14) 0.00955(18) 0.0200(6) Uani 1 1 d . . .

H3 H -0.0355 0.1796 -0.0261 0.024 Uiso 1 1 calc R . .

C4 C 0.0917(2) 0.15273(15) 0.06896(19) 0.0227(6) Uani 1 1 d . . .

196

Page 210: Synthesis and Evaluation of Derivatives and Analogs of

H4 H 0.0738 0.1065 0.0736 0.027 Uiso 1 1 calc R . .

C5 C 0.1830(2) 0.17537(15) 0.12174(19) 0.0218(6) Uani 1 1 d . . .

H5 H 0.2278 0.1452 0.1621 0.026 Uiso 1 1 calc R . .

C6 C 0.2070(2) 0.24305(14) 0.11383(18) 0.0192(6) Uani 1 1 d . . .

C7 C 0.29867(19) 0.28296(14) 0.16244(18) 0.0188(6) Uani 1 1 d . . .

C8 C 0.27080(19) 0.35475(14) 0.12277(17) 0.0180(6) Uani 1 1 d . . .

C9 C 0.1273(2) 0.41364(14) 0.01406(18) 0.0214(6) Uani 1 1 d . . .

H9A H 0.1386 0.4526 0.0551 0.026 Uiso 1 1 calc R . .

H9B H 0.0577 0.4032 -0.0092 0.026 Uiso 1 1 calc R . .

C10 C 0.3202(2) 0.28301(15) 0.26136(18) 0.0240(6) Uani 1 1 d . . .

H10A H 0.3815 0.3063 0.2925 0.036 Uiso 1 1 calc R . .

H10B H 0.3241 0.2356 0.2822 0.036 Uiso 1 1 calc R . .

H10C H 0.2688 0.3072 0.2721 0.036 Uiso 1 1 calc R . .

C11 C 0.3831(2) 0.25275(16) 0.1442(2) 0.0265(7) Uani 1 1 d . . .

H11A H 0.3692 0.2553 0.0816 0.040 Uiso 1 1 calc R . .

H11B H 0.3925 0.2047 0.1631 0.040 Uiso 1 1 calc R . .

H11C H 0.4414 0.2790 0.1764 0.040 Uiso 1 1 calc R . .

C12 C 0.3243(2) 0.41555(14) 0.14422(18) 0.0203(6) Uani 1 1 d . . .

H12 H 0.2965 0.4554 0.1112 0.024 Uiso 1 1 calc R . .

C13 C 0.41407(19) 0.42215(14) 0.20950(18) 0.0185(6) Uani 1 1 d . . .

H13 H 0.4447 0.3818 0.2397 0.022 Uiso 1 1 calc R . .

C14 C 0.46307(19) 0.48509(14) 0.23414(17) 0.0180(6) Uani 1 1 d . . .

C15 C 0.54248(19) 0.49106(14) 0.31197(17) 0.0165(6) Uani 1 1 d . . .

C16 C 0.58543(19) 0.55393(14) 0.35052(17) 0.0165(6) Uani 1 1 d . . .

C17 C 0.5535(2) 0.61829(14) 0.29596(18) 0.0207(6) Uani 1 1 d . . .

H17A H 0.6097 0.6486 0.3068 0.025 Uiso 1 1 calc R . .

H17B H 0.5067 0.6434 0.3137 0.025 Uiso 1 1 calc R . .

C18 C 0.5075(2) 0.60161(14) 0.19858(18) 0.0205(6) Uani 1 1 d . . .

H18A H 0.4816 0.6442 0.1653 0.025 Uiso 1 1 calc R . .

H18B H 0.5568 0.5829 0.1787 0.025 Uiso 1 1 calc R . .

C19 C 0.4267(2) 0.54947(14) 0.18035(19) 0.0237(7) Uani 1 1 d . . .

H19A H 0.3743 0.5699 0.1946 0.028 Uiso 1 1 calc R . .

H19B H 0.4003 0.5375 0.1176 0.028 Uiso 1 1 calc R . .

C20 C 0.65164(19) 0.55527(14) 0.43533(17) 0.0174(6) Uani 1 1 d . . .

H20 H 0.6685 0.5128 0.4655 0.021 Uiso 1 1 calc R . .

C21 C 0.6959(2) 0.61523(14) 0.48032(17) 0.0180(6) Uani 1 1 d . . .

H21 H 0.6761 0.6578 0.4509 0.022 Uiso 1 1 calc R . .

C22 C 0.76536(19) 0.61719(14) 0.56308(17) 0.0166(6) Uani 1 1 d . . .

C23 C 0.8090(2) 0.55746(14) 0.62676(18) 0.0191(6) Uani 1 1 d . . .

C24 C 0.88296(19) 0.59508(15) 0.70392(17) 0.0186(6) Uani 1 1 d . . .

C25 C 0.9466(2) 0.57044(16) 0.78297(18) 0.0228(6) Uani 1 1 d . . .

H25 H 0.9495 0.5228 0.7961 0.027 Uiso 1 1 calc R . .

C26 C 1.0069(2) 0.61722(15) 0.84332(19) 0.0239(7) Uani 1 1 d . . .

H26 H 1.0514 0.6013 0.8980 0.029 Uiso 1 1 calc R . .

C27 C 1.0016(2) 0.68700(16) 0.82340(18) 0.0239(7) Uani 1 1 d . . .

H27 H 1.0434 0.7180 0.8648 0.029 Uiso 1 1 calc R . .

C28 C 0.9371(2) 0.71234(15) 0.74484(17) 0.0200(6) Uani 1 1 d . . .

H28 H 0.9334 0.7600 0.7318 0.024 Uiso 1 1 calc R . .

C29 C 0.87823(19) 0.66515(14) 0.68599(17) 0.0172(6) Uani 1 1 d . . .

197

Page 211: Synthesis and Evaluation of Derivatives and Analogs of

C30 C 0.7768(2) 0.74577(13) 0.56621(18) 0.0186(6) Uani 1 1 d . . .

H30A H 0.7968 0.7797 0.6143 0.022 Uiso 1 1 calc R . .

H30B H 0.7058 0.7470 0.5381 0.022 Uiso 1 1 calc R . .

C31 C 0.8597(2) 0.50405(16) 0.5908(2) 0.0320(8) Uani 1 1 d . . .

H31A H 0.9061 0.5273 0.5718 0.048 Uiso 1 1 calc R . .

H31B H 0.8120 0.4801 0.5411 0.048 Uiso 1 1 calc R . .

H31C H 0.8934 0.4707 0.6366 0.048 Uiso 1 1 calc R . .

C32 C 0.7319(2) 0.52400(16) 0.65398(19) 0.0286(7) Uani 1 1 d . . .

H32A H 0.7624 0.4909 0.7009 0.043 Uiso 1 1 calc R . .

H32B H 0.6847 0.5003 0.6037 0.043 Uiso 1 1 calc R . .

H32C H 0.6996 0.5596 0.6746 0.043 Uiso 1 1 calc R . .

C33 C 0.65907(19) 0.40165(14) 0.35907(16) 0.0169(5) Uani 1 1 d . . .

C34 C 0.7232(2) 0.43566(16) 0.33065(18) 0.0240(6) Uani 1 1 d . . .

H34 H 0.7100 0.4809 0.3076 0.029 Uiso 1 1 calc R . .

C35 C 0.8070(2) 0.40207(17) 0.3367(2) 0.0285(7) Uani 1 1 d . . .

H35 H 0.8517 0.4249 0.3182 0.034 Uiso 1 1 calc R . .

C36 C 0.8262(2) 0.33585(17) 0.3692(2) 0.0290(7) Uani 1 1 d . . .

C37 C 0.7603(2) 0.30230(16) 0.39593(19) 0.0278(7) Uani 1 1 d . . .

H37 H 0.7724 0.2564 0.4169 0.033 Uiso 1 1 calc R . .

C38 C 0.6777(2) 0.33534(15) 0.39214(18) 0.0233(6) Uani 1 1 d . . .

H38 H 0.6338 0.3128 0.4120 0.028 Uiso 1 1 calc R . .

C39 C 0.9151(3) 0.3017(2) 0.3742(3) 0.0478(10) Uani 1 1 d . . .

H39 H 0.9590 0.3273 0.3575 0.057 Uiso 1 1 calc R . .

C40 C 0.1559(2) 0.43522(16) -0.0617(2) 0.0295(7) Uani 1 1 d . . .

H40A H 0.1279 0.4809 -0.0828 0.035 Uiso 1 1 calc R . .

H40B H 0.2267 0.4399 -0.0394 0.035 Uiso 1 1 calc R . .

C41 C 0.1243(3) 0.38569(17) -0.1383(2) 0.0342(8) Uani 1 1 d . . .

H41A H 0.0543 0.3778 -0.1577 0.041 Uiso 1 1 calc R . .

H41B H 0.1569 0.3411 -0.1187 0.041 Uiso 1 1 calc R . .

C42 C 0.1465(3) 0.41163(19) -0.2155(2) 0.0392(8) Uani 1 1 d . . .

H42A H 0.2169 0.4160 -0.1971 0.047 Uiso 1 1 calc R . .

H42B H 0.1184 0.4580 -0.2317 0.047 Uiso 1 1 calc R . .

C43 C 0.1082(3) 0.3653(2) -0.2960(2) 0.0486(10) Uani 1 1 d . . .

H43A H 0.1408 0.3202 -0.2812 0.058 Uiso 1 1 calc R . .

H43B H 0.0388 0.3575 -0.3111 0.058 Uiso 1 1 calc R . .

C44 C 0.1223(3) 0.3940(2) -0.3752(3) 0.0559(11) Uani 1 1 d . . .

H44A H 0.0922 0.4394 -0.3893 0.084 Uiso 1 1 calc R . .

H44B H 0.0926 0.3631 -0.4250 0.084 Uiso 1 1 calc R . .

H44C H 0.1911 0.3981 -0.3627 0.084 Uiso 1 1 calc R . .

C45 C 0.8188(2) 0.76662(14) 0.49936(19) 0.0221(6) Uani 1 1 d . . .

H45A H 0.7978 0.7335 0.4503 0.026 Uiso 1 1 calc R . .

H45B H 0.8898 0.7651 0.5268 0.026 Uiso 1 1 calc R . .

C46 C 0.7866(2) 0.83934(15) 0.46425(19) 0.0260(7) Uani 1 1 d . . .

H46A H 0.7172 0.8444 0.4520 0.031 Uiso 1 1 calc R . .

H46B H 0.8217 0.8732 0.5098 0.031 Uiso 1 1 calc R . .

C47 C 0.8041(3) 0.85534(18) 0.3811(2) 0.0335(8) Uani 1 1 d . . .

H47A H 0.7672 0.8221 0.3354 0.040 Uiso 1 1 calc R . .

H47B H 0.7784 0.9017 0.3606 0.040 Uiso 1 1 calc R . .

C48 C 0.9083(3) 0.85293(19) 0.3907(2) 0.0389(9) Uani 1 1 d . . .

198

Page 212: Synthesis and Evaluation of Derivatives and Analogs of

H48A H 0.9113 0.8582 0.3324 0.047 Uiso 1 1 calc R . .

H48B H 0.9353 0.8073 0.4137 0.047 Uiso 1 1 calc R . .

C49 C 0.9701(3) 0.9084(2) 0.4512(3) 0.0603(12) Uani 1 1 d . . .

H49A H 0.9411 0.9536 0.4315 0.091 Uiso 1 1 calc R . .

H49B H 1.0347 0.9073 0.4502 0.091 Uiso 1 1 calc R . .

H49C H 0.9742 0.9001 0.5108 0.091 Uiso 1 1 calc R . .

loop_

_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_atom_site_aniso_U_23

_atom_site_aniso_U_13

_atom_site_aniso_U_12

I1 0.01561(10) 0.01293(9) 0.02478(11) 0.00072(8) 0.00253(7) -0.00016(8)

O1 0.0118(9) 0.0131(9) 0.0249(10) 0.0028(8) 0.0061(8) 0.0022(8)

O2 0.0407(16) 0.0445(18) 0.102(2) -0.0049(16) 0.0246(16) 0.0201(14)

N1 0.0122(11) 0.0122(11) 0.0250(12) -0.0012(10) 0.0016(10) -0.0010(9)

N2 0.0180(12) 0.0144(12) 0.0211(12) -0.0013(9) 0.0055(10) -0.0023(10)

C1 0.0154(13) 0.0128(13) 0.0240(14) -0.0029(11) 0.0093(12) 0.0003(11)

C2 0.0148(13) 0.0174(14) 0.0238(15) -0.0019(11) 0.0055(12) 0.0006(11)

C3 0.0163(14) 0.0171(14) 0.0269(15) -0.0065(12) 0.0086(12) -0.0043(11)

C4 0.0245(16) 0.0144(14) 0.0308(16) -0.0033(12) 0.0122(13) -0.0027(12)

C5 0.0205(14) 0.0154(14) 0.0285(16) 0.0003(12) 0.0081(13) 0.0014(12)

C6 0.0152(13) 0.0155(14) 0.0264(15) -0.0015(12) 0.0075(12) -0.0016(11)

C7 0.0150(13) 0.0120(13) 0.0252(15) -0.0011(11) 0.0031(12) 0.0015(11)

C8 0.0124(13) 0.0171(14) 0.0223(14) -0.0013(11) 0.0041(11) 0.0006(11)

C9 0.0169(14) 0.0112(14) 0.0277(15) 0.0014(11) -0.0011(12) 0.0025(11)

C10 0.0235(15) 0.0191(15) 0.0261(15) 0.0000(12) 0.0059(13) -0.0051(13)

C11 0.0169(14) 0.0226(16) 0.0365(17) -0.0031(13) 0.0064(13) 0.0024(12)

C12 0.0176(14) 0.0150(15) 0.0240(15) 0.0013(11) 0.0031(12) -0.0009(11)

C13 0.0141(13) 0.0142(14) 0.0257(15) 0.0019(11) 0.0057(12) 0.0004(11)

C14 0.0129(13) 0.0146(14) 0.0238(15) -0.0003(11) 0.0041(11) 0.0000(11)

C15 0.0154(13) 0.0130(13) 0.0216(14) 0.0026(11) 0.0077(11) 0.0041(11)

C16 0.0126(13) 0.0143(14) 0.0219(14) -0.0014(11) 0.0058(11) 0.0009(11)

C17 0.0201(14) 0.0138(13) 0.0254(15) -0.0016(11) 0.0056(12) 0.0012(11)

C18 0.0203(14) 0.0129(13) 0.0239(14) 0.0023(11) 0.0035(12) 0.0007(12)

C19 0.0190(15) 0.0154(14) 0.0282(16) 0.0026(12) -0.0005(13) -0.0014(12)

C20 0.0147(14) 0.0139(14) 0.0244(15) 0.0010(11) 0.0086(12) 0.0005(11)

C21 0.0189(14) 0.0123(13) 0.0227(14) 0.0011(11) 0.0081(12) 0.0007(11)

C22 0.0167(14) 0.0121(13) 0.0226(14) -0.0032(11) 0.0094(12) -0.0002(11)

C23 0.0152(14) 0.0132(14) 0.0234(15) -0.0005(11) 0.0013(12) 0.0007(11)

C24 0.0160(13) 0.0151(13) 0.0227(14) -0.0049(12) 0.0051(11) -0.0022(12)

C25 0.0180(15) 0.0174(14) 0.0292(16) 0.0020(12) 0.0048(13) -0.0004(12)

C26 0.0194(15) 0.0249(16) 0.0235(15) -0.0001(12) 0.0040(13) -0.0017(12)

C27 0.0208(15) 0.0256(16) 0.0243(15) -0.0088(12) 0.0075(13) -0.0080(13)

C28 0.0229(15) 0.0153(14) 0.0231(15) -0.0020(12) 0.0101(12) -0.0022(12)

C29 0.0158(14) 0.0169(14) 0.0187(14) -0.0024(11) 0.0065(11) -0.0010(11)

199

Page 213: Synthesis and Evaluation of Derivatives and Analogs of

C30 0.0215(14) 0.0106(13) 0.0228(14) -0.0010(11) 0.0075(12) 0.0010(11)

C31 0.0269(17) 0.0210(16) 0.0361(18) -0.0109(14) -0.0013(14) 0.0098(14)

C32 0.0300(17) 0.0219(16) 0.0270(16) 0.0026(13) 0.0031(14) -0.0102(14)

C33 0.0179(13) 0.0163(13) 0.0145(12) -0.0020(11) 0.0039(11) 0.0036(12)

C34 0.0263(16) 0.0192(15) 0.0276(16) 0.0002(12) 0.0114(13) 0.0010(13)

C35 0.0255(16) 0.0280(17) 0.0360(17) -0.0075(14) 0.0161(14) -0.0031(15)

C36 0.0241(17) 0.0277(17) 0.0337(17) -0.0058(14) 0.0095(14) 0.0053(13)

C37 0.0305(17) 0.0229(16) 0.0306(17) 0.0070(13) 0.0125(14) 0.0109(14)

C38 0.0241(16) 0.0198(15) 0.0269(16) 0.0060(12) 0.0107(13) 0.0033(13)

C39 0.0304(19) 0.044(2) 0.073(3) -0.011(2) 0.0236(19) 0.0061(18)

C40 0.0249(16) 0.0202(16) 0.0351(18) 0.0076(14) 0.0022(14) -0.0029(13)

C41 0.039(2) 0.0243(17) 0.0423(19) 0.0002(14) 0.0184(17) -0.0035(15)

C42 0.039(2) 0.036(2) 0.046(2) 0.0031(16) 0.0205(17) -0.0014(17)

C43 0.059(3) 0.043(2) 0.054(2) -0.0089(19) 0.033(2) -0.014(2)

C44 0.076(3) 0.050(3) 0.054(2) -0.011(2) 0.039(2) -0.009(2)

C45 0.0236(15) 0.0145(14) 0.0296(16) -0.0008(12) 0.0118(13) -0.0006(12)

C46 0.0301(17) 0.0197(15) 0.0301(16) 0.0022(13) 0.0136(14) 0.0016(13)

C47 0.043(2) 0.0286(18) 0.0285(17) 0.0061(14) 0.0125(15) 0.0038(16)

C48 0.050(2) 0.040(2) 0.0327(18) 0.0080(16) 0.0224(17) 0.0033(18)

C49 0.058(3) 0.081(3) 0.046(2) -0.005(2) 0.024(2) -0.024(3)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

;

loop_

_geom_bond_atom_site_label_1

_geom_bond_atom_site_label_2

_geom_bond_distance

_geom_bond_site_symmetry_2

_geom_bond_publ_flag

O1 C33 1.380(3) . ?

O1 C15 1.400(3) . ?

O2 C39 1.221(5) . ?

N1 C8 1.344(3) . ?

N1 C1 1.416(3) . ?

N1 C9 1.480(3) . ?

N2 C22 1.370(3) . ?

N2 C29 1.408(3) . ?

N2 C30 1.464(3) . ?

C1 C6 1.390(4) . ?

C1 C2 1.394(4) . ?

C2 C3 1.396(4) . ?

200

Page 214: Synthesis and Evaluation of Derivatives and Analogs of

C2 H2 0.9500 . ?

C3 C4 1.390(4) . ?

C3 H3 0.9500 . ?

C4 C5 1.391(4) . ?

C4 H4 0.9500 . ?

C5 C6 1.386(4) . ?

C5 H5 0.9500 . ?

C6 C7 1.521(4) . ?

C7 C11 1.532(4) . ?

C7 C8 1.533(4) . ?

C7 C10 1.545(4) . ?

C8 C12 1.400(4) . ?

C9 C40 1.534(4) . ?

C9 H9A 0.9900 . ?

C9 H9B 0.9900 . ?

C10 H10A 0.9800 . ?

C10 H10B 0.9800 . ?

C10 H10C 0.9800 . ?

C11 H11A 0.9800 . ?

C11 H11B 0.9800 . ?

C11 H11C 0.9800 . ?

C12 C13 1.378(4) . ?

C12 H12 0.9500 . ?

C13 C14 1.408(4) . ?

C13 H13 0.9500 . ?

C14 C15 1.390(4) . ?

C14 C19 1.515(4) . ?

C15 C16 1.418(4) . ?

C16 C20 1.379(4) . ?

C16 C17 1.513(4) . ?

C17 C18 1.529(4) . ?

C17 H17A 0.9900 . ?

C17 H17B 0.9900 . ?

C18 C19 1.524(4) . ?

C18 H18A 0.9900 . ?

C18 H18B 0.9900 . ?

C19 H19A 0.9900 . ?

C19 H19B 0.9900 . ?

C20 C21 1.409(4) . ?

C20 H20 0.9500 . ?

C21 C22 1.372(4) . ?

C21 H21 0.9500 . ?

C22 C23 1.539(4) . ?

C23 C24 1.525(4) . ?

C23 C31 1.539(4) . ?

C23 C32 1.542(4) . ?

C24 C25 1.381(4) . ?

C24 C29 1.392(4) . ?

C25 C26 1.400(4) . ?

201

Page 215: Synthesis and Evaluation of Derivatives and Analogs of

C25 H25 0.9500 . ?

C26 C27 1.393(4) . ?

C26 H26 0.9500 . ?

C27 C28 1.385(4) . ?

C27 H27 0.9500 . ?

C28 C29 1.387(4) . ?

C28 H28 0.9500 . ?

C30 C45 1.526(4) . ?

C30 H30A 0.9900 . ?

C30 H30B 0.9900 . ?

C31 H31A 0.9800 . ?

C31 H31B 0.9800 . ?

C31 H31C 0.9800 . ?

C32 H32A 0.9800 . ?

C32 H32B 0.9800 . ?

C32 H32C 0.9800 . ?

C33 C38 1.389(4) . ?

C33 C34 1.394(4) . ?

C34 C35 1.391(4) . ?

C34 H34 0.9500 . ?

C35 C36 1.385(5) . ?

C35 H35 0.9500 . ?

C36 C37 1.394(5) . ?

C36 C39 1.468(5) . ?

C37 C38 1.382(4) . ?

C37 H37 0.9500 . ?

C38 H38 0.9500 . ?

C39 H39 0.9500 . ?

C40 C41 1.520(4) . ?

C40 H40A 0.9900 . ?

C40 H40B 0.9900 . ?

C41 C42 1.527(5) . ?

C41 H41A 0.9900 . ?

C41 H41B 0.9900 . ?

C42 C43 1.529(5) . ?

C42 H42A 0.9900 . ?

C42 H42B 0.9900 . ?

C43 C44 1.515(5) . ?

C43 H43A 0.9900 . ?

C43 H43B 0.9900 . ?

C44 H44A 0.9800 . ?

C44 H44B 0.9800 . ?

C44 H44C 0.9800 . ?

C45 C46 1.537(4) . ?

C45 H45A 0.9900 . ?

C45 H45B 0.9900 . ?

C46 C47 1.531(4) . ?

C46 H46A 0.9900 . ?

C46 H46B 0.9900 . ?

202

Page 216: Synthesis and Evaluation of Derivatives and Analogs of

C47 C48 1.518(5) . ?

C47 H47A 0.9900 . ?

C47 H47B 0.9900 . ?

C48 C49 1.526(5) . ?

C48 H48A 0.9900 . ?

C48 H48B 0.9900 . ?

C49 H49A 0.9800 . ?

C49 H49B 0.9800 . ?

C49 H49C 0.9800 . ?

loop_

_geom_angle_atom_site_label_1

_geom_angle_atom_site_label_2

_geom_angle_atom_site_label_3

_geom_angle

_geom_angle_site_symmetry_1

_geom_angle_site_symmetry_3

_geom_angle_publ_flag

C33 O1 C15 118.0(2) . . ?

C8 N1 C1 111.4(2) . . ?

C8 N1 C9 124.8(2) . . ?

C1 N1 C9 123.7(2) . . ?

C22 N2 C29 111.5(2) . . ?

C22 N2 C30 124.5(2) . . ?

C29 N2 C30 123.9(2) . . ?

C6 C1 C2 122.8(3) . . ?

C6 C1 N1 109.0(2) . . ?

C2 C1 N1 128.2(2) . . ?

C1 C2 C3 116.1(3) . . ?

C1 C2 H2 121.9 . . ?

C3 C2 H2 121.9 . . ?

C4 C3 C2 121.7(3) . . ?

C4 C3 H3 119.2 . . ?

C2 C3 H3 119.2 . . ?

C3 C4 C5 121.0(3) . . ?

C3 C4 H4 119.5 . . ?

C5 C4 H4 119.5 . . ?

C6 C5 C4 118.2(3) . . ?

C6 C5 H5 120.9 . . ?

C4 C5 H5 120.9 . . ?

C5 C6 C1 120.1(3) . . ?

C5 C6 C7 130.7(3) . . ?

C1 C6 C7 109.1(2) . . ?

C6 C7 C11 110.7(2) . . ?

C6 C7 C8 101.2(2) . . ?

C11 C7 C8 112.2(2) . . ?

C6 C7 C10 110.1(2) . . ?

C11 C7 C10 110.8(2) . . ?

C8 C7 C10 111.5(2) . . ?

203

Page 217: Synthesis and Evaluation of Derivatives and Analogs of

N1 C8 C12 122.0(2) . . ?

N1 C8 C7 109.3(2) . . ?

C12 C8 C7 128.7(2) . . ?

N1 C9 C40 113.2(2) . . ?

N1 C9 H9A 108.9 . . ?

C40 C9 H9A 108.9 . . ?

N1 C9 H9B 108.9 . . ?

C40 C9 H9B 108.9 . . ?

H9A C9 H9B 107.7 . . ?

C7 C10 H10A 109.5 . . ?

C7 C10 H10B 109.5 . . ?

H10A C10 H10B 109.5 . . ?

C7 C10 H10C 109.5 . . ?

H10A C10 H10C 109.5 . . ?

H10B C10 H10C 109.5 . . ?

C7 C11 H11A 109.5 . . ?

C7 C11 H11B 109.5 . . ?

H11A C11 H11B 109.5 . . ?

C7 C11 H11C 109.5 . . ?

H11A C11 H11C 109.5 . . ?

H11B C11 H11C 109.5 . . ?

C13 C12 C8 125.2(3) . . ?

C13 C12 H12 117.4 . . ?

C8 C12 H12 117.4 . . ?

C12 C13 C14 123.9(3) . . ?

C12 C13 H13 118.1 . . ?

C14 C13 H13 118.1 . . ?

C15 C14 C13 120.8(2) . . ?

C15 C14 C19 117.9(2) . . ?

C13 C14 C19 121.2(2) . . ?

C14 C15 O1 116.5(2) . . ?

C14 C15 C16 125.0(2) . . ?

O1 C15 C16 118.1(2) . . ?

C20 C16 C15 120.3(2) . . ?

C20 C16 C17 122.4(2) . . ?

C15 C16 C17 117.4(2) . . ?

C16 C17 C18 111.6(2) . . ?

C16 C17 H17A 109.3 . . ?

C18 C17 H17A 109.3 . . ?

C16 C17 H17B 109.3 . . ?

C18 C17 H17B 109.3 . . ?

H17A C17 H17B 108.0 . . ?

C19 C18 C17 110.9(2) . . ?

C19 C18 H18A 109.5 . . ?

C17 C18 H18A 109.5 . . ?

C19 C18 H18B 109.5 . . ?

C17 C18 H18B 109.5 . . ?

H18A C18 H18B 108.0 . . ?

C14 C19 C18 110.6(2) . . ?

204

Page 218: Synthesis and Evaluation of Derivatives and Analogs of

C14 C19 H19A 109.5 . . ?

C18 C19 H19A 109.5 . . ?

C14 C19 H19B 109.5 . . ?

C18 C19 H19B 109.5 . . ?

H19A C19 H19B 108.1 . . ?

C16 C20 C21 124.6(3) . . ?

C16 C20 H20 117.7 . . ?

C21 C20 H20 117.7 . . ?

C22 C21 C20 125.4(3) . . ?

C22 C21 H21 117.3 . . ?

C20 C21 H21 117.3 . . ?

N2 C22 C21 122.6(2) . . ?

N2 C22 C23 108.5(2) . . ?

C21 C22 C23 128.9(2) . . ?

C24 C23 C31 109.7(2) . . ?

C24 C23 C22 101.3(2) . . ?

C31 C23 C22 113.0(2) . . ?

C24 C23 C32 110.4(2) . . ?

C31 C23 C32 111.6(3) . . ?

C22 C23 C32 110.3(2) . . ?

C25 C24 C29 120.2(3) . . ?

C25 C24 C23 130.5(3) . . ?

C29 C24 C23 109.3(2) . . ?

C24 C25 C26 118.6(3) . . ?

C24 C25 H25 120.7 . . ?

C26 C25 H25 120.7 . . ?

C27 C26 C25 120.2(3) . . ?

C27 C26 H26 119.9 . . ?

C25 C26 H26 119.9 . . ?

C28 C27 C26 121.7(3) . . ?

C28 C27 H27 119.1 . . ?

C26 C27 H27 119.1 . . ?

C27 C28 C29 117.2(3) . . ?

C27 C28 H28 121.4 . . ?

C29 C28 H28 121.4 . . ?

C28 C29 C24 122.2(2) . . ?

C28 C29 N2 128.5(3) . . ?

C24 C29 N2 109.3(2) . . ?

N2 C30 C45 113.4(2) . . ?

N2 C30 H30A 108.9 . . ?

C45 C30 H30A 108.9 . . ?

N2 C30 H30B 108.9 . . ?

C45 C30 H30B 108.9 . . ?

H30A C30 H30B 107.7 . . ?

C23 C31 H31A 109.5 . . ?

C23 C31 H31B 109.5 . . ?

H31A C31 H31B 109.5 . . ?

C23 C31 H31C 109.5 . . ?

H31A C31 H31C 109.5 . . ?

205

Page 219: Synthesis and Evaluation of Derivatives and Analogs of

H31B C31 H31C 109.5 . . ?

C23 C32 H32A 109.5 . . ?

C23 C32 H32B 109.5 . . ?

H32A C32 H32B 109.5 . . ?

C23 C32 H32C 109.5 . . ?

H32A C32 H32C 109.5 . . ?

H32B C32 H32C 109.5 . . ?

O1 C33 C38 115.0(2) . . ?

O1 C33 C34 124.0(3) . . ?

C38 C33 C34 120.9(3) . . ?

C35 C34 C33 118.7(3) . . ?

C35 C34 H34 120.7 . . ?

C33 C34 H34 120.7 . . ?

C36 C35 C34 121.0(3) . . ?

C36 C35 H35 119.5 . . ?

C34 C35 H35 119.5 . . ?

C35 C36 C37 119.4(3) . . ?

C35 C36 C39 119.6(3) . . ?

C37 C36 C39 120.9(3) . . ?

C38 C37 C36 120.4(3) . . ?

C38 C37 H37 119.8 . . ?

C36 C37 H37 119.8 . . ?

C37 C38 C33 119.5(3) . . ?

C37 C38 H38 120.2 . . ?

C33 C38 H38 120.2 . . ?

O2 C39 C36 124.2(4) . . ?

O2 C39 H39 117.9 . . ?

C36 C39 H39 117.9 . . ?

C41 C40 C9 114.5(3) . . ?

C41 C40 H40A 108.6 . . ?

C9 C40 H40A 108.6 . . ?

C41 C40 H40B 108.6 . . ?

C9 C40 H40B 108.6 . . ?

H40A C40 H40B 107.6 . . ?

C40 C41 C42 113.1(3) . . ?

C40 C41 H41A 109.0 . . ?

C42 C41 H41A 109.0 . . ?

C40 C41 H41B 109.0 . . ?

C42 C41 H41B 109.0 . . ?

H41A C41 H41B 107.8 . . ?

C41 C42 C43 113.9(3) . . ?

C41 C42 H42A 108.8 . . ?

C43 C42 H42A 108.8 . . ?

C41 C42 H42B 108.8 . . ?

C43 C42 H42B 108.8 . . ?

H42A C42 H42B 107.7 . . ?

C44 C43 C42 114.1(3) . . ?

C44 C43 H43A 108.7 . . ?

C42 C43 H43A 108.7 . . ?

206

Page 220: Synthesis and Evaluation of Derivatives and Analogs of

C44 C43 H43B 108.7 . . ?

C42 C43 H43B 108.7 . . ?

H43A C43 H43B 107.6 . . ?

C43 C44 H44A 109.5 . . ?

C43 C44 H44B 109.5 . . ?

H44A C44 H44B 109.5 . . ?

C43 C44 H44C 109.5 . . ?

H44A C44 H44C 109.5 . . ?

H44B C44 H44C 109.5 . . ?

C30 C45 C46 111.2(2) . . ?

C30 C45 H45A 109.4 . . ?

C46 C45 H45A 109.4 . . ?

C30 C45 H45B 109.4 . . ?

C46 C45 H45B 109.4 . . ?

H45A C45 H45B 108.0 . . ?

C47 C46 C45 113.0(3) . . ?

C47 C46 H46A 109.0 . . ?

C45 C46 H46A 109.0 . . ?

C47 C46 H46B 109.0 . . ?

C45 C46 H46B 109.0 . . ?

H46A C46 H46B 107.8 . . ?

C48 C47 C46 115.3(3) . . ?

C48 C47 H47A 108.5 . . ?

C46 C47 H47A 108.5 . . ?

C48 C47 H47B 108.5 . . ?

C46 C47 H47B 108.5 . . ?

H47A C47 H47B 107.5 . . ?

C47 C48 C49 113.2(3) . . ?

C47 C48 H48A 108.9 . . ?

C49 C48 H48A 108.9 . . ?

C47 C48 H48B 108.9 . . ?

C49 C48 H48B 108.9 . . ?

H48A C48 H48B 107.7 . . ?

C48 C49 H49A 109.5 . . ?

C48 C49 H49B 109.5 . . ?

H49A C49 H49B 109.5 . . ?

C48 C49 H49C 109.5 . . ?

H49A C49 H49C 109.5 . . ?

H49B C49 H49C 109.5 . . ?

loop_

_geom_torsion_atom_site_label_1

_geom_torsion_atom_site_label_2

_geom_torsion_atom_site_label_3

_geom_torsion_atom_site_label_4

_geom_torsion

_geom_torsion_site_symmetry_1

_geom_torsion_site_symmetry_2

_geom_torsion_site_symmetry_3

207

Page 221: Synthesis and Evaluation of Derivatives and Analogs of

_geom_torsion_site_symmetry_4

_geom_torsion_publ_flag

C8 N1 C1 C6 0.5(3) . . . . ?

C9 N1 C1 C6 -175.1(2) . . . . ?

C8 N1 C1 C2 178.4(3) . . . . ?

C9 N1 C1 C2 2.8(4) . . . . ?

C6 C1 C2 C3 0.2(4) . . . . ?

N1 C1 C2 C3 -177.4(3) . . . . ?

C1 C2 C3 C4 0.5(4) . . . . ?

C2 C3 C4 C5 -0.7(4) . . . . ?

C3 C4 C5 C6 0.2(4) . . . . ?

C4 C5 C6 C1 0.4(4) . . . . ?

C4 C5 C6 C7 178.8(3) . . . . ?

C2 C1 C6 C5 -0.7(4) . . . . ?

N1 C1 C6 C5 177.4(3) . . . . ?

C2 C1 C6 C7 -179.3(3) . . . . ?

N1 C1 C6 C7 -1.3(3) . . . . ?

C5 C6 C7 C11 63.9(4) . . . . ?

C1 C6 C7 C11 -117.6(3) . . . . ?

C5 C6 C7 C8 -177.0(3) . . . . ?

C1 C6 C7 C8 1.5(3) . . . . ?

C5 C6 C7 C10 -58.9(4) . . . . ?

C1 C6 C7 C10 119.5(3) . . . . ?

C1 N1 C8 C12 -177.5(3) . . . . ?

C9 N1 C8 C12 -2.0(4) . . . . ?

C1 N1 C8 C7 0.5(3) . . . . ?

C9 N1 C8 C7 176.0(2) . . . . ?

C6 C7 C8 N1 -1.2(3) . . . . ?

C11 C7 C8 N1 116.9(3) . . . . ?

C10 C7 C8 N1 -118.2(3) . . . . ?

C6 C7 C8 C12 176.7(3) . . . . ?

C11 C7 C8 C12 -65.3(4) . . . . ?

C10 C7 C8 C12 59.7(4) . . . . ?

C8 N1 C9 C40 79.3(3) . . . . ?

C1 N1 C9 C40 -105.7(3) . . . . ?

N1 C8 C12 C13 175.3(3) . . . . ?

C7 C8 C12 C13 -2.3(5) . . . . ?

C8 C12 C13 C14 -174.8(3) . . . . ?

C12 C13 C14 C15 165.5(3) . . . . ?

C12 C13 C14 C19 -9.8(5) . . . . ?

C13 C14 C15 O1 5.7(4) . . . . ?

C19 C14 C15 O1 -178.9(2) . . . . ?

C13 C14 C15 C16 -167.5(3) . . . . ?

C19 C14 C15 C16 8.0(4) . . . . ?

C33 O1 C15 C14 105.9(3) . . . . ?

C33 O1 C15 C16 -80.5(3) . . . . ?

C14 C15 C16 C20 167.4(3) . . . . ?

O1 C15 C16 C20 -5.7(4) . . . . ?

C14 C15 C16 C17 -10.9(4) . . . . ?

208

Page 222: Synthesis and Evaluation of Derivatives and Analogs of

O1 C15 C16 C17 176.0(2) . . . . ?

C20 C16 C17 C18 161.2(3) . . . . ?

C15 C16 C17 C18 -20.5(4) . . . . ?

C16 C17 C18 C19 53.4(3) . . . . ?

C15 C14 C19 C18 26.0(4) . . . . ?

C13 C14 C19 C18 -158.6(3) . . . . ?

C17 C18 C19 C14 -56.1(3) . . . . ?

C15 C16 C20 C21 -177.9(3) . . . . ?

C17 C16 C20 C21 0.4(4) . . . . ?

C16 C20 C21 C22 -176.6(3) . . . . ?

C29 N2 C22 C21 -177.7(3) . . . . ?

C30 N2 C22 C21 5.6(4) . . . . ?

C29 N2 C22 C23 3.1(3) . . . . ?

C30 N2 C22 C23 -173.6(2) . . . . ?

C20 C21 C22 N2 179.1(3) . . . . ?

C20 C21 C22 C23 -1.9(5) . . . . ?

N2 C22 C23 C24 -2.8(3) . . . . ?

C21 C22 C23 C24 178.1(3) . . . . ?

N2 C22 C23 C31 -120.1(3) . . . . ?

C21 C22 C23 C31 60.8(4) . . . . ?

N2 C22 C23 C32 114.2(3) . . . . ?

C21 C22 C23 C32 -64.9(4) . . . . ?

C31 C23 C24 C25 -60.3(4) . . . . ?

C22 C23 C24 C25 180.0(3) . . . . ?

C32 C23 C24 C25 63.1(4) . . . . ?

C31 C23 C24 C29 121.2(3) . . . . ?

C22 C23 C24 C29 1.6(3) . . . . ?

C32 C23 C24 C29 -115.3(3) . . . . ?

C29 C24 C25 C26 -1.1(4) . . . . ?

C23 C24 C25 C26 -179.4(3) . . . . ?

C24 C25 C26 C27 0.3(4) . . . . ?

C25 C26 C27 C28 0.6(5) . . . . ?

C26 C27 C28 C29 -0.7(4) . . . . ?

C27 C28 C29 C24 -0.2(4) . . . . ?

C27 C28 C29 N2 179.3(3) . . . . ?

C25 C24 C29 C28 1.1(4) . . . . ?

C23 C24 C29 C28 179.7(3) . . . . ?

C25 C24 C29 N2 -178.5(3) . . . . ?

C23 C24 C29 N2 0.1(3) . . . . ?

C22 N2 C29 C28 178.4(3) . . . . ?

C30 N2 C29 C28 -4.9(4) . . . . ?

C22 N2 C29 C24 -2.1(3) . . . . ?

C30 N2 C29 C24 174.6(2) . . . . ?

C22 N2 C30 C45 -81.7(3) . . . . ?

C29 N2 C30 C45 102.1(3) . . . . ?

C15 O1 C33 C38 -167.7(2) . . . . ?

C15 O1 C33 C34 14.2(4) . . . . ?

O1 C33 C34 C35 177.5(2) . . . . ?

C38 C33 C34 C35 -0.5(4) . . . . ?

209

Page 223: Synthesis and Evaluation of Derivatives and Analogs of

C33 C34 C35 C36 0.8(4) . . . . ?

C34 C35 C36 C37 0.3(5) . . . . ?

C34 C35 C36 C39 179.7(3) . . . . ?

C35 C36 C37 C38 -1.6(5) . . . . ?

C39 C36 C37 C38 179.0(3) . . . . ?

C36 C37 C38 C33 1.9(4) . . . . ?

O1 C33 C38 C37 -179.0(2) . . . . ?

C34 C33 C38 C37 -0.8(4) . . . . ?

C35 C36 C39 O2 -176.8(4) . . . . ?

C37 C36 C39 O2 2.5(6) . . . . ?

N1 C9 C40 C41 70.0(3) . . . . ?

C9 C40 C41 C42 175.1(3) . . . . ?

C40 C41 C42 C43 -175.4(3) . . . . ?

C41 C42 C43 C44 174.8(3) . . . . ?

N2 C30 C45 C46 -179.0(2) . . . . ?

C30 C45 C46 C47 -164.8(3) . . . . ?

C45 C46 C47 C48 -61.4(4) . . . . ?

C46 C47 C48 C49 -65.5(4) . . . . ?

_diffrn_measured_fraction_theta_max 0.995

_diffrn_reflns_theta_full 25.0

_diffrn_measured_fraction_theta_full 0.999

_refine_diff_density_max 0.57

_refine_diff_density_min -0.48

_refine_diff_density_rms 0.086

# END OF CIF

210

Page 224: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX CC: CRYSTALLOGRAPHIC DATA FOR COMPOUND 3.9

data_NIR-2Aldehyde

_audit_creation_method SHELXL-97

_chemical_name_systematic

;

?

;

_chemical_name_common ?

_chemical_melting_point ?

_chemical_compound_source 'local laboratory'

_chemical_formula_moiety 'C51 H48 N2 O6, C H4 O'

_chemical_formula_sum 'C52 H52 N2 O7'

_chemical_formula_weight 816.96

loop_

_atom_type_symbol

_atom_type_description

_atom_type_scat_dispersion_real

_atom_type_scat_dispersion_imag

_atom_type_scat_source

'C' 'C' 0.0033 0.0016

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

211

Page 225: Synthesis and Evaluation of Derivatives and Analogs of

'H' 'H' 0.0000 0.0000

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'N' 'N' 0.0061 0.0033

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'O' 'O' 0.0106 0.0060

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_space_group_name_H-M 'P 21/n '

_symmetry_space_group_name_Hall '-P 2yn'

_symmetry_cell_setting 'Monoclinic'

loop_

_symmetry_equiv_pos_as_xyz

'x, y, z'

'-x+1/2, y+1/2, -z+1/2'

'-x, -y, -z'

'x-1/2, -y-1/2, z-1/2'

_cell_length_a 13.9436(11)

_cell_length_b 11.5410(10)

_cell_length_c 25.5730(15)

_cell_angle_alpha 90

_cell_angle_beta 90.840(5)

_cell_angle_gamma 90

_cell_volume 4114.8(5)

_cell_formula_units_Z 4

_cell_measurement_temperature 90

_cell_measurement_reflns_used 9450

_cell_measurement_theta_min 2.5

_cell_measurement_theta_max 27.8

_exptl_crystal_description fragment

_exptl_crystal_colour 'blue-green/bronze dichroic'

_exptl_crystal_size_max 0.40

_exptl_crystal_size_mid 0.35

_exptl_crystal_size_min 0.20

_exptl_crystal_density_meas ?

_exptl_crystal_density_diffrn 1.319

_exptl_crystal_density_method 'not measured'

_exptl_crystal_F_000 1736

_exptl_absorpt_coefficient_mu 0.087

_exptl_absorpt_correction_type none

_exptl_absorpt_correction_T_min ?

_exptl_absorpt_correction_T_max ?

_exptl_absorpt_process_details ?

_exptl_special_details

;

?

212

Page 226: Synthesis and Evaluation of Derivatives and Analogs of

;

_diffrn_ambient_temperature 90

_diffrn_radiation_wavelength 0.71073

_diffrn_radiation_type MoK\a

_diffrn_radiation_source 'fine-focus sealed tube'

_diffrn_radiation_monochromator graphite

_diffrn_measurement_device 'KappaCCD (with Oxford Cryostream)'

_diffrn_measurement_method ' \w scans with \k offsets'

_diffrn_detector_area_resol_mean ?

_diffrn_standards_number 0

_diffrn_standards_interval_count ?

_diffrn_standards_interval_time ?

_diffrn_standards_decay_% <2

_diffrn_reflns_number 52149

_diffrn_reflns_av_R_equivalents 0.029

_diffrn_reflns_av_sigmaI/netI 0.0410

_diffrn_reflns_limit_h_min -18

_diffrn_reflns_limit_h_max 18

_diffrn_reflns_limit_k_min -15

_diffrn_reflns_limit_k_max 14

_diffrn_reflns_limit_l_min -33

_diffrn_reflns_limit_l_max 33

_diffrn_reflns_theta_min 2.7

_diffrn_reflns_theta_max 27.9

_reflns_number_total 9790

_reflns_number_gt 7182

_reflns_threshold_expression I>2\s(I)

_computing_data_collection 'COLLECT (Nonius, 2000)'

_computing_cell_refinement 'HKL Scalepack (Otwinowski & Minor 1997)'

_computing_data_reduction 'HKL Denzo and Scalepack (Otwinowski & Minor 1997)'

_computing_structure_solution 'SIR97 (Altomare et al., 1999)'

_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'

_computing_molecular_graphics 'ORTEP-3 for Windows (Farrugia, 1997)'

_computing_publication_material 'SHELXL-97 (Sheldrick, 1997)'

_refine_special_details

;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F^2^, conventional R-factors R are based

on F, with F set to zero for negative F^2^. The threshold expression of

F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F^2^ are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef Fsqd

213

Page 227: Synthesis and Evaluation of Derivatives and Analogs of

_refine_ls_matrix_type full

_refine_ls_weighting_scheme calc

_refine_ls_weighting_details

'calc w=1/[\s^2^(Fo^2^)+(0.1270P)^2^+4.7080P] where P=(Fo^2^+2Fc^2^)/3'

_atom_sites_solution_primary direct

_atom_sites_solution_secondary difmap

_atom_sites_solution_hydrogens geom

_refine_ls_hydrogen_treatment constr

_refine_ls_extinction_method SHELXL

_refine_ls_extinction_coef 0.0021(10)

_refine_ls_extinction_expression

'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^'

_refine_ls_number_reflns 9790

_refine_ls_number_parameters 556

_refine_ls_number_restraints 0

_refine_ls_R_factor_all 0.104

_refine_ls_R_factor_gt 0.076

_refine_ls_wR_factor_ref 0.232

_refine_ls_wR_factor_gt 0.213

_refine_ls_goodness_of_fit_ref 1.034

_refine_ls_restrained_S_all 1.034

_refine_ls_shift/su_max 0.000

_refine_ls_shift/su_mean 0.000

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_U_iso_or_equiv

_atom_site_adp_type

_atom_site_occupancy

_atom_site_symmetry_multiplicity

_atom_site_calc_flag

_atom_site_refinement_flags

_atom_site_disorder_assembly

_atom_site_disorder_group

O1 O 0.79700(13) 0.30307(18) 0.62131(9) 0.0385(5) Uani 1 1 d . . .

O2 O 0.7677(3) 0.2107(4) 0.86245(14) 0.1037(13) Uani 1 1 d . . .

O3 O 0.25898(14) -0.04821(16) 0.48078(8) 0.0328(4) Uani 1 1 d . . .

H3O H 0.2231 0.0050 0.4695 0.049 Uiso 1 1 calc R . .

O4 O 0.40202(14) -0.06441(16) 0.51789(8) 0.0326(4) Uani 1 1 d . . .

O5 O 0.87840(16) 0.9286(2) 0.55528(9) 0.0485(6) Uani 1 1 d . . .

O6 O 0.90351(18) 0.8352(2) 0.48080(11) 0.0642(8) Uani 1 1 d . . .

N1 N 0.36428(14) 0.12461(18) 0.59966(8) 0.0239(4) Uani 1 1 d . . .

N2 N 1.11397(14) 0.65644(17) 0.55084(8) 0.0221(4) Uani 1 1 d . . .

C1 C 0.32923(17) 0.0312(2) 0.62954(9) 0.0232(5) Uani 1 1 d . . .

C2 C 0.23471(18) -0.0131(2) 0.62807(10) 0.0273(5) Uani 1 1 d . . .

214

Page 228: Synthesis and Evaluation of Derivatives and Analogs of

H2 H 0.1867 0.0187 0.6056 0.033 Uiso 1 1 calc R . .

C3 C 0.21597(19) -0.1039(2) 0.66067(10) 0.0296(6) Uani 1 1 d . . .

H3 H 0.1530 -0.1354 0.6609 0.036 Uiso 1 1 calc R . .

C4 C 0.28689(19) -0.1527(2) 0.69396(10) 0.0277(6) Uani 1 1 d . . .

C5 C 0.2665(2) -0.2492(2) 0.72659(10) 0.0337(6) Uani 1 1 d . . .

H5 H 0.2037 -0.2810 0.7261 0.040 Uiso 1 1 calc R . .

C6 C 0.3346(2) -0.2969(2) 0.75847(11) 0.0373(7) Uani 1 1 d . . .

H6 H 0.3189 -0.3607 0.7802 0.045 Uiso 1 1 calc R . .

C7 C 0.4282(2) -0.2519(3) 0.75928(11) 0.0380(7) Uani 1 1 d . . .

H7 H 0.4755 -0.2857 0.7817 0.046 Uiso 1 1 calc R . .

C8 C 0.4524(2) -0.1597(2) 0.72808(10) 0.0305(6) Uani 1 1 d . . .

H8 H 0.5164 -0.1313 0.7288 0.037 Uiso 1 1 calc R . .

C9 C 0.38326(19) -0.1066(2) 0.69482(9) 0.0254(5) Uani 1 1 d . . .

C10 C 0.40090(17) -0.0113(2) 0.66165(9) 0.0236(5) Uani 1 1 d . . .

C11 C 0.49255(17) 0.0577(2) 0.65210(9) 0.0235(5) Uani 1 1 d . . .

C12 C 0.45743(17) 0.1469(2) 0.61169(9) 0.0227(5) Uani 1 1 d . . .

C13 C 0.56884(19) -0.0207(2) 0.62678(11) 0.0298(6) Uani 1 1 d . . .

H13A H 0.5836 -0.0859 0.6501 0.045 Uiso 1 1 calc R . .

H13B H 0.6273 0.0243 0.6209 0.045 Uiso 1 1 calc R . .

H13C H 0.5440 -0.0503 0.5933 0.045 Uiso 1 1 calc R . .

C14 C 0.5301(2) 0.1171(2) 0.70218(10) 0.0292(6) Uani 1 1 d . . .

H14A H 0.4787 0.1635 0.7175 0.044 Uiso 1 1 calc R . .

H14B H 0.5842 0.1677 0.6936 0.044 Uiso 1 1 calc R . .

H14C H 0.5514 0.0582 0.7274 0.044 Uiso 1 1 calc R . .

C15 C 0.50613(17) 0.2389(2) 0.58926(9) 0.0240(5) Uani 1 1 d . . .

H15 H 0.4704 0.2872 0.5660 0.029 Uiso 1 1 calc R . .

C16 C 0.60215(18) 0.2671(2) 0.59757(10) 0.0256(5) Uani 1 1 d . . .

H16 H 0.6401 0.2162 0.6185 0.031 Uiso 1 1 calc R . .

C17 C 0.31112(18) 0.1758(2) 0.55524(10) 0.0260(5) Uani 1 1 d . . .

H17A H 0.3192 0.2610 0.5559 0.031 Uiso 1 1 calc R . .

H17B H 0.2420 0.1587 0.5588 0.031 Uiso 1 1 calc R . .

C18 C 0.34582(19) 0.1289(2) 0.50276(10) 0.0275(5) Uani 1 1 d . . .

H18A H 0.3065 0.1627 0.4741 0.033 Uiso 1 1 calc R . .

H18B H 0.4133 0.1525 0.4976 0.033 Uiso 1 1 calc R . .

C19 C 0.33874(18) -0.0027(2) 0.50059(10) 0.0259(5) Uani 1 1 d . . .

C20 C 0.64633(18) 0.3657(2) 0.57713(10) 0.0247(5) Uani 1 1 d . . .

C21 C 0.74383(18) 0.3871(2) 0.58747(10) 0.0269(5) Uani 1 1 d . . .

C22 C 0.79732(18) 0.4782(2) 0.56566(10) 0.0260(5) Uani 1 1 d . . .

C23 C 0.74601(18) 0.5595(2) 0.52856(10) 0.0253(5) Uani 1 1 d . . .

H23A H 0.7524 0.5306 0.4923 0.030 Uiso 1 1 calc R . .

H23B H 0.7763 0.6370 0.5306 0.030 Uiso 1 1 calc R . .

C24 C 0.64010(18) 0.5699(2) 0.54158(10) 0.0257(5) Uani 1 1 d . . .

H24A H 0.6074 0.6184 0.5148 0.031 Uiso 1 1 calc R . .

H24B H 0.6336 0.6087 0.5759 0.031 Uiso 1 1 calc R . .

C25 C 0.59161(18) 0.4507(2) 0.54350(10) 0.0247(5) Uani 1 1 d . . .

H25A H 0.5261 0.4597 0.5573 0.030 Uiso 1 1 calc R . .

H25B H 0.5858 0.4195 0.5075 0.030 Uiso 1 1 calc R . .

C26 C 0.89421(18) 0.4889(2) 0.57873(10) 0.0272(5) Uani 1 1 d . . .

H26 H 0.9195 0.4361 0.6039 0.033 Uiso 1 1 calc R . .

215

Page 229: Synthesis and Evaluation of Derivatives and Analogs of

C27 C 0.95766(17) 0.5701(2) 0.55815(10) 0.0257(5) Uani 1 1 d . . .

H27 H 0.9334 0.6237 0.5331 0.031 Uiso 1 1 calc R . .

C28 C 1.05444(17) 0.5773(2) 0.57218(9) 0.0233(5) Uani 1 1 d . . .

C29 C 1.11085(17) 0.5081(2) 0.61372(9) 0.0232(5) Uani 1 1 d . . .

C30 C 1.21036(17) 0.5608(2) 0.60942(9) 0.0216(5) Uani 1 1 d . . .

C31 C 1.29799(18) 0.5344(2) 0.63588(9) 0.0235(5) Uani 1 1 d . . .

C32 C 1.30884(19) 0.4459(2) 0.67424(10) 0.0276(5) Uani 1 1 d . . .

H32 H 1.2552 0.3998 0.6833 0.033 Uiso 1 1 calc R . .

C33 C 1.3958(2) 0.4265(2) 0.69813(11) 0.0335(6) Uani 1 1 d . . .

H33 H 1.4019 0.3667 0.7235 0.040 Uiso 1 1 calc R . .

C34 C 1.4760(2) 0.4939(3) 0.68562(11) 0.0339(6) Uani 1 1 d . . .

H34 H 1.5362 0.4788 0.7022 0.041 Uiso 1 1 calc R . .

C35 C 1.46801(18) 0.5811(2) 0.64974(10) 0.0283(5) Uani 1 1 d . . .

H35 H 1.5225 0.6273 0.6422 0.034 Uiso 1 1 calc R . .

C36 C 1.37957(17) 0.6039(2) 0.62348(9) 0.0238(5) Uani 1 1 d . . .

C37 C 1.37118(17) 0.6940(2) 0.58603(9) 0.0234(5) Uani 1 1 d . . .

H37 H 1.4260 0.7396 0.5786 0.028 Uiso 1 1 calc R . .

C38 C 1.28707(17) 0.7175(2) 0.56029(9) 0.0233(5) Uani 1 1 d . . .

H38 H 1.2825 0.7775 0.5349 0.028 Uiso 1 1 calc R . .

C39 C 1.20741(17) 0.6487(2) 0.57299(9) 0.0217(5) Uani 1 1 d . . .

C40 C 1.06942(19) 0.5356(2) 0.66800(10) 0.0287(5) Uani 1 1 d . . .

H40A H 1.1116 0.5032 0.6953 0.043 Uiso 1 1 calc R . .

H40B H 1.0054 0.5012 0.6707 0.043 Uiso 1 1 calc R . .

H40C H 1.0650 0.6197 0.6725 0.043 Uiso 1 1 calc R . .

C41 C 1.11137(19) 0.3769(2) 0.60188(10) 0.0261(5) Uani 1 1 d . . .

H41A H 1.1322 0.3642 0.5659 0.039 Uiso 1 1 calc R . .

H41B H 1.0466 0.3456 0.6060 0.039 Uiso 1 1 calc R . .

H41C H 1.1556 0.3377 0.6262 0.039 Uiso 1 1 calc R . .

C42 C 1.08424(18) 0.7471(2) 0.51396(10) 0.0274(5) Uani 1 1 d . . .

H42A H 1.0406 0.7135 0.4871 0.033 Uiso 1 1 calc R . .

H42B H 1.1413 0.7778 0.4960 0.033 Uiso 1 1 calc R . .

C43 C 1.0330(2) 0.8467(2) 0.54196(12) 0.0345(6) Uani 1 1 d . . .

H43A H 1.0328 0.8295 0.5799 0.041 Uiso 1 1 calc R . .

H43B H 1.0707 0.9184 0.5371 0.041 Uiso 1 1 calc R . .

C44 C 0.9302(2) 0.8697(2) 0.52395(12) 0.0337(6) Uani 1 1 d . . .

C45 C 0.7811(2) 0.3131(3) 0.67190(13) 0.0403(7) Uani 1 1 d . . .

C46 C 0.8135(3) 0.2152(4) 0.69925(16) 0.0625(10) Uani 1 1 d . . .

H46 H 0.8430 0.1527 0.6814 0.075 Uiso 1 1 calc R . .

C47 C 0.8013(3) 0.2116(3) 0.75387(16) 0.0609(11) Uani 1 1 d . . .

H47 H 0.8242 0.1465 0.7731 0.073 Uiso 1 1 calc R . .

C48 C 0.7579(3) 0.2990(4) 0.77939(15) 0.0563(10) Uani 1 1 d . . .

C49 C 0.7278(3) 0.3951(4) 0.75197(15) 0.0638(11) Uani 1 1 d . . .

H49 H 0.6980 0.4571 0.7700 0.077 Uiso 1 1 calc R . .

C50 C 0.7404(3) 0.4031(3) 0.69804(14) 0.0556(9) Uani 1 1 d . . .

H50 H 0.7206 0.4708 0.6797 0.067 Uiso 1 1 calc R . .

C51 C 0.7419(3) 0.2907(5) 0.83581(16) 0.0744(14) Uani 1 1 d . . .

H51 H 0.7092 0.3527 0.8523 0.089 Uiso 1 1 calc R . .

C1S C 0.5077(3) 0.5988(4) 0.88101(19) 0.1071(13) Uani 1 1 d . . .

O1S O 0.5602(6) 0.5067(6) 0.8531(3) 0.108(2) Uani 1 1 d . . .

216

Page 230: Synthesis and Evaluation of Derivatives and Analogs of

loop_

_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_atom_site_aniso_U_23

_atom_site_aniso_U_13

_atom_site_aniso_U_12

O1 0.0181(9) 0.0391(11) 0.0586(13) -0.0103(10) 0.0131(8) -0.0199(8)

O2 0.118(3) 0.109(3) 0.083(2) 0.048(2) -0.036(2) -0.018(2)

O3 0.0286(10) 0.0245(10) 0.0451(11) 0.0000(8) -0.0036(8) -0.0054(8)

O4 0.0290(10) 0.0289(10) 0.0400(10) 0.0020(8) -0.0010(8) -0.0025(8)

O5 0.0352(12) 0.0590(15) 0.0512(13) -0.0039(11) -0.0034(10) 0.0092(10)

O6 0.0461(14) 0.0670(17) 0.0784(18) -0.0384(15) -0.0337(13) 0.0195(13)

N1 0.0205(10) 0.0211(10) 0.0301(10) -0.0012(8) 0.0009(8) -0.0064(8)

N2 0.0192(10) 0.0210(10) 0.0262(10) 0.0031(8) 0.0013(8) -0.0052(8)

C1 0.0219(12) 0.0230(12) 0.0247(11) -0.0043(9) 0.0056(9) -0.0058(9)

C2 0.0233(12) 0.0268(13) 0.0319(13) -0.0062(10) 0.0046(10) -0.0073(10)

C3 0.0267(13) 0.0296(14) 0.0330(13) -0.0090(11) 0.0104(10) -0.0111(11)

C4 0.0342(14) 0.0239(13) 0.0252(12) -0.0072(10) 0.0107(10) -0.0089(10)

C5 0.0451(16) 0.0262(14) 0.0302(13) -0.0048(11) 0.0166(11) -0.0096(12)

C6 0.0563(19) 0.0251(14) 0.0310(14) -0.0008(11) 0.0141(12) -0.0069(13)

C7 0.0565(19) 0.0266(14) 0.0310(14) -0.0009(11) 0.0044(12) 0.0007(13)

C8 0.0371(15) 0.0254(13) 0.0291(13) -0.0035(10) 0.0041(11) -0.0041(11)

C9 0.0316(13) 0.0221(12) 0.0227(11) -0.0052(9) 0.0071(9) -0.0054(10)

C10 0.0240(12) 0.0226(12) 0.0243(11) -0.0046(9) 0.0053(9) -0.0064(9)

C11 0.0212(12) 0.0225(12) 0.0268(12) -0.0020(9) 0.0018(9) -0.0053(9)

C12 0.0194(11) 0.0228(12) 0.0261(11) -0.0051(10) 0.0021(9) -0.0051(9)

C13 0.0260(13) 0.0288(13) 0.0348(13) 0.0016(11) 0.0075(10) -0.0016(10)

C14 0.0304(14) 0.0290(13) 0.0282(12) -0.0008(11) -0.0012(10) -0.0083(11)

C15 0.0219(12) 0.0234(12) 0.0267(11) -0.0006(10) -0.0010(9) -0.0051(9)

C16 0.0215(12) 0.0246(12) 0.0307(12) 0.0010(10) 0.0021(9) -0.0041(10)

C17 0.0219(12) 0.0207(12) 0.0352(13) 0.0004(10) -0.0025(10) -0.0034(9)

C18 0.0279(13) 0.0232(12) 0.0312(13) 0.0034(10) -0.0029(10) -0.0076(10)

C19 0.0248(13) 0.0269(13) 0.0260(12) -0.0003(10) 0.0041(9) -0.0065(10)

C20 0.0220(12) 0.0237(12) 0.0285(12) -0.0019(10) 0.0037(9) -0.0065(10)

C21 0.0225(12) 0.0245(12) 0.0338(13) 0.0038(10) 0.0019(10) -0.0023(10)

C22 0.0228(12) 0.0242(12) 0.0311(12) -0.0012(10) 0.0047(9) -0.0060(10)

C23 0.0227(12) 0.0260(13) 0.0274(12) -0.0005(10) 0.0042(9) -0.0081(10)

C24 0.0217(12) 0.0249(12) 0.0305(12) 0.0038(10) 0.0002(9) -0.0063(10)

C25 0.0221(12) 0.0254(12) 0.0267(12) 0.0003(10) 0.0019(9) -0.0081(10)

C26 0.0219(12) 0.0262(13) 0.0335(13) 0.0017(10) 0.0025(10) -0.0050(10)

C27 0.0204(12) 0.0260(13) 0.0308(12) 0.0006(10) 0.0017(9) -0.0066(10)

C28 0.0225(12) 0.0215(12) 0.0259(11) -0.0005(9) 0.0039(9) -0.0063(9)

C29 0.0232(12) 0.0216(12) 0.0249(11) 0.0003(9) 0.0035(9) -0.0053(9)

C30 0.0213(12) 0.0192(11) 0.0243(11) -0.0020(9) 0.0036(9) -0.0045(9)

C31 0.0238(12) 0.0211(11) 0.0257(11) -0.0030(9) 0.0024(9) -0.0008(9)

C32 0.0290(13) 0.0245(13) 0.0293(12) 0.0024(10) 0.0008(10) -0.0015(10)

217

Page 231: Synthesis and Evaluation of Derivatives and Analogs of

C33 0.0360(15) 0.0286(14) 0.0357(14) 0.0036(11) -0.0013(11) 0.0018(11)

C34 0.0262(13) 0.0376(15) 0.0379(14) -0.0012(12) -0.0039(11) 0.0031(11)

C35 0.0209(12) 0.0332(14) 0.0310(13) -0.0048(11) 0.0035(9) -0.0014(10)

C36 0.0221(12) 0.0254(12) 0.0239(11) -0.0060(10) 0.0037(9) -0.0012(9)

C37 0.0193(11) 0.0226(12) 0.0283(12) -0.0046(10) 0.0051(9) -0.0051(9)

C38 0.0234(12) 0.0207(11) 0.0260(11) 0.0001(9) 0.0053(9) -0.0046(9)

C39 0.0210(11) 0.0201(11) 0.0239(11) -0.0018(9) 0.0017(9) -0.0026(9)

C40 0.0279(13) 0.0302(13) 0.0281(12) 0.0017(11) 0.0051(10) -0.0068(11)

C41 0.0275(13) 0.0203(12) 0.0305(12) 0.0010(10) 0.0017(10) -0.0076(10)

C42 0.0229(12) 0.0251(13) 0.0342(13) 0.0061(10) -0.0034(10) -0.0048(10)

C43 0.0313(14) 0.0254(13) 0.0465(16) -0.0005(12) -0.0119(12) -0.0026(11)

C44 0.0288(14) 0.0251(13) 0.0469(16) -0.0005(12) -0.0069(12) -0.0034(11)

C45 0.0244(14) 0.0413(17) 0.0549(18) 0.0135(14) -0.0078(12) -0.0063(12)

C46 0.070(3) 0.052(2) 0.066(2) 0.0044(19) -0.0187(19) 0.0149(19)

C47 0.074(3) 0.044(2) 0.064(2) 0.0155(18) -0.026(2) 0.0074(19)

C48 0.049(2) 0.065(3) 0.055(2) 0.0144(18) -0.0134(16) -0.0037(18)

C49 0.076(3) 0.069(3) 0.0464(19) 0.0114(19) -0.0033(18) 0.023(2)

C50 0.067(2) 0.050(2) 0.0491(19) 0.0129(17) -0.0014(17) 0.0129(18)

C51 0.070(3) 0.104(4) 0.048(2) 0.031(2) -0.0196(19) -0.010(3)

C1S 0.087(3) 0.081(3) 0.153(4) 0.024(3) -0.011(2) -0.006(2)

O1S 0.149(6) 0.077(4) 0.097(4) -0.002(3) 0.031(4) -0.012(4)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

;

loop_

_geom_bond_atom_site_label_1

_geom_bond_atom_site_label_2

_geom_bond_distance

_geom_bond_site_symmetry_2

_geom_bond_publ_flag

O1 C45 1.321(4) . ?

O1 C21 1.490(3) . ?

O2 C51 1.200(5) . ?

O3 C19 1.324(3) . ?

O3 H3O 0.8400 . ?

O4 C19 1.213(3) . ?

O5 C44 1.283(4) . ?

O6 C44 1.226(4) . ?

N1 C12 1.355(3) . ?

N1 C1 1.413(3) . ?

N1 C17 1.471(3) . ?

218

Page 232: Synthesis and Evaluation of Derivatives and Analogs of

N2 C28 1.354(3) . ?

N2 C39 1.416(3) . ?

N2 C42 1.465(3) . ?

C1 C10 1.375(4) . ?

C1 C2 1.413(3) . ?

C2 C3 1.367(4) . ?

C2 H2 0.9500 . ?

C3 C4 1.412(4) . ?

C3 H3 0.9500 . ?

C4 C5 1.422(4) . ?

C4 C9 1.445(4) . ?

C5 C6 1.359(4) . ?

C5 H5 0.9500 . ?

C6 C7 1.405(4) . ?

C6 H6 0.9500 . ?

C7 C8 1.375(4) . ?

C7 H7 0.9500 . ?

C8 C9 1.417(4) . ?

C8 H8 0.9500 . ?

C9 C10 1.412(3) . ?

C10 C11 1.528(3) . ?

C11 C12 1.534(4) . ?

C11 C14 1.538(3) . ?

C11 C13 1.546(4) . ?

C12 C15 1.389(3) . ?

C13 H13A 0.9800 . ?

C13 H13B 0.9800 . ?

C13 H13C 0.9800 . ?

C14 H14A 0.9800 . ?

C14 H14B 0.9800 . ?

C14 H14C 0.9800 . ?

C15 C16 1.391(3) . ?

C15 H15 0.9500 . ?

C16 C20 1.399(3) . ?

C16 H16 0.9500 . ?

C17 C18 1.532(4) . ?

C17 H17A 0.9900 . ?

C17 H17B 0.9900 . ?

C18 C19 1.522(4) . ?

C18 H18A 0.9900 . ?

C18 H18B 0.9900 . ?

C20 C21 1.403(3) . ?

C20 C25 1.505(4) . ?

C21 C22 1.409(3) . ?

C22 C26 1.392(4) . ?

C22 C23 1.507(4) . ?

C23 C24 1.523(3) . ?

C23 H23A 0.9900 . ?

C23 H23B 0.9900 . ?

219

Page 233: Synthesis and Evaluation of Derivatives and Analogs of

C24 C25 1.534(3) . ?

C24 H24A 0.9900 . ?

C24 H24B 0.9900 . ?

C25 H25A 0.9900 . ?

C25 H25B 0.9900 . ?

C26 C27 1.397(3) . ?

C26 H26 0.9500 . ?

C27 C28 1.394(3) . ?

C27 H27 0.9500 . ?

C28 C29 1.536(4) . ?

C29 C30 1.520(3) . ?

C29 C40 1.544(3) . ?

C29 C41 1.545(3) . ?

C30 C39 1.377(3) . ?

C30 C31 1.421(3) . ?

C31 C32 1.423(4) . ?

C31 C36 1.431(3) . ?

C32 C33 1.368(4) . ?

C32 H32 0.9500 . ?

C33 C34 1.404(4) . ?

C33 H33 0.9500 . ?

C34 C35 1.366(4) . ?

C34 H34 0.9500 . ?

C35 C36 1.420(4) . ?

C35 H35 0.9500 . ?

C36 C37 1.417(4) . ?

C37 C38 1.364(3) . ?

C37 H37 0.9500 . ?

C38 C39 1.407(3) . ?

C38 H38 0.9500 . ?

C40 H40A 0.9800 . ?

C40 H40B 0.9800 . ?

C40 H40C 0.9800 . ?

C41 H41A 0.9800 . ?

C41 H41B 0.9800 . ?

C41 H41C 0.9800 . ?

C42 C43 1.536(4) . ?

C42 H42A 0.9900 . ?

C42 H42B 0.9900 . ?

C43 C44 1.522(4) . ?

C43 H43A 0.9900 . ?

C43 H43B 0.9900 . ?

C45 C50 1.364(5) . ?

C45 C46 1.400(5) . ?

C46 C47 1.410(6) . ?

C46 H46 0.9500 . ?

C47 C48 1.349(6) . ?

C47 H47 0.9500 . ?

C48 C49 1.375(5) . ?

220

Page 234: Synthesis and Evaluation of Derivatives and Analogs of

C48 C51 1.466(5) . ?

C49 C50 1.396(5) . ?

C49 H49 0.9500 . ?

C50 H50 0.9500 . ?

C51 H51 0.9500 . ?

O1S C1S 1.481(8) . ?

loop_

_geom_angle_atom_site_label_1

_geom_angle_atom_site_label_2

_geom_angle_atom_site_label_3

_geom_angle

_geom_angle_site_symmetry_1

_geom_angle_site_symmetry_3

_geom_angle_publ_flag

C45 O1 C21 115.0(2) . . ?

C19 O3 H3O 109.5 . . ?

C12 N1 C1 111.1(2) . . ?

C12 N1 C17 124.7(2) . . ?

C1 N1 C17 123.3(2) . . ?

C28 N2 C39 111.2(2) . . ?

C28 N2 C42 124.9(2) . . ?

C39 N2 C42 123.55(19) . . ?

C10 C1 N1 109.9(2) . . ?

C10 C1 C2 123.8(2) . . ?

N1 C1 C2 126.2(2) . . ?

C3 C2 C1 116.6(3) . . ?

C3 C2 H2 121.7 . . ?

C1 C2 H2 121.7 . . ?

C2 C3 C4 122.3(2) . . ?

C2 C3 H3 118.8 . . ?

C4 C3 H3 118.8 . . ?

C3 C4 C5 121.4(2) . . ?

C3 C4 C9 120.3(2) . . ?

C5 C4 C9 118.2(3) . . ?

C6 C5 C4 121.7(3) . . ?

C6 C5 H5 119.1 . . ?

C4 C5 H5 119.1 . . ?

C5 C6 C7 120.0(3) . . ?

C5 C6 H6 120.0 . . ?

C7 C6 H6 120.0 . . ?

C8 C7 C6 120.9(3) . . ?

C8 C7 H7 119.6 . . ?

C6 C7 H7 119.6 . . ?

C7 C8 C9 120.9(3) . . ?

C7 C8 H8 119.6 . . ?

C9 C8 H8 119.6 . . ?

C10 C9 C8 125.1(2) . . ?

C10 C9 C4 116.6(2) . . ?

221

Page 235: Synthesis and Evaluation of Derivatives and Analogs of

C8 C9 C4 118.3(2) . . ?

C1 C10 C9 120.3(2) . . ?

C1 C10 C11 108.7(2) . . ?

C9 C10 C11 130.9(2) . . ?

C10 C11 C12 101.41(19) . . ?

C10 C11 C14 112.0(2) . . ?

C12 C11 C14 111.3(2) . . ?

C10 C11 C13 110.1(2) . . ?

C12 C11 C13 109.0(2) . . ?

C14 C11 C13 112.4(2) . . ?

N1 C12 C15 121.6(2) . . ?

N1 C12 C11 108.7(2) . . ?

C15 C12 C11 129.7(2) . . ?

C11 C13 H13A 109.5 . . ?

C11 C13 H13B 109.5 . . ?

H13A C13 H13B 109.5 . . ?

C11 C13 H13C 109.5 . . ?

H13A C13 H13C 109.5 . . ?

H13B C13 H13C 109.5 . . ?

C11 C14 H14A 109.5 . . ?

C11 C14 H14B 109.5 . . ?

H14A C14 H14B 109.5 . . ?

C11 C14 H14C 109.5 . . ?

H14A C14 H14C 109.5 . . ?

H14B C14 H14C 109.5 . . ?

C12 C15 C16 126.2(2) . . ?

C12 C15 H15 116.9 . . ?

C16 C15 H15 116.9 . . ?

C15 C16 C20 124.2(2) . . ?

C15 C16 H16 117.9 . . ?

C20 C16 H16 117.9 . . ?

N1 C17 C18 111.8(2) . . ?

N1 C17 H17A 109.2 . . ?

C18 C17 H17A 109.2 . . ?

N1 C17 H17B 109.2 . . ?

C18 C17 H17B 109.2 . . ?

H17A C17 H17B 107.9 . . ?

C19 C18 C17 111.3(2) . . ?

C19 C18 H18A 109.4 . . ?

C17 C18 H18A 109.4 . . ?

C19 C18 H18B 109.4 . . ?

C17 C18 H18B 109.4 . . ?

H18A C18 H18B 108.0 . . ?

O4 C19 O3 120.6(2) . . ?

O4 C19 C18 121.7(2) . . ?

O3 C19 C18 117.6(2) . . ?

C16 C20 C21 120.3(2) . . ?

C16 C20 C25 121.4(2) . . ?

C21 C20 C25 118.3(2) . . ?

222

Page 236: Synthesis and Evaluation of Derivatives and Analogs of

C20 C21 C22 125.0(2) . . ?

C20 C21 O1 117.8(2) . . ?

C22 C21 O1 117.0(2) . . ?

C26 C22 C21 119.2(2) . . ?

C26 C22 C23 123.1(2) . . ?

C21 C22 C23 117.7(2) . . ?

C22 C23 C24 111.4(2) . . ?

C22 C23 H23A 109.4 . . ?

C24 C23 H23A 109.4 . . ?

C22 C23 H23B 109.4 . . ?

C24 C23 H23B 109.4 . . ?

H23A C23 H23B 108.0 . . ?

C23 C24 C25 111.4(2) . . ?

C23 C24 H24A 109.3 . . ?

C25 C24 H24A 109.3 . . ?

C23 C24 H24B 109.3 . . ?

C25 C24 H24B 109.3 . . ?

H24A C24 H24B 108.0 . . ?

C20 C25 C24 112.5(2) . . ?

C20 C25 H25A 109.1 . . ?

C24 C25 H25A 109.1 . . ?

C20 C25 H25B 109.1 . . ?

C24 C25 H25B 109.1 . . ?

H25A C25 H25B 107.8 . . ?

C22 C26 C27 125.9(2) . . ?

C22 C26 H26 117.1 . . ?

C27 C26 H26 117.1 . . ?

C28 C27 C26 124.0(2) . . ?

C28 C27 H27 118.0 . . ?

C26 C27 H27 118.0 . . ?

N2 C28 C27 122.2(2) . . ?

N2 C28 C29 108.6(2) . . ?

C27 C28 C29 129.1(2) . . ?

C30 C29 C28 101.57(19) . . ?

C30 C29 C40 109.7(2) . . ?

C28 C29 C40 108.7(2) . . ?

C30 C29 C41 111.8(2) . . ?

C28 C29 C41 112.2(2) . . ?

C40 C29 C41 112.3(2) . . ?

C39 C30 C31 119.8(2) . . ?

C39 C30 C29 109.0(2) . . ?

C31 C30 C29 131.2(2) . . ?

C30 C31 C32 124.4(2) . . ?

C30 C31 C36 117.0(2) . . ?

C32 C31 C36 118.6(2) . . ?

C33 C32 C31 120.7(2) . . ?

C33 C32 H32 119.7 . . ?

C31 C32 H32 119.7 . . ?

C32 C33 C34 120.8(3) . . ?

223

Page 237: Synthesis and Evaluation of Derivatives and Analogs of

C32 C33 H33 119.6 . . ?

C34 C33 H33 119.6 . . ?

C35 C34 C33 120.2(3) . . ?

C35 C34 H34 119.9 . . ?

C33 C34 H34 119.9 . . ?

C34 C35 C36 121.1(2) . . ?

C34 C35 H35 119.5 . . ?

C36 C35 H35 119.5 . . ?

C37 C36 C35 121.2(2) . . ?

C37 C36 C31 120.2(2) . . ?

C35 C36 C31 118.6(2) . . ?

C38 C37 C36 122.3(2) . . ?

C38 C37 H37 118.9 . . ?

C36 C37 H37 118.9 . . ?

C37 C38 C39 116.9(2) . . ?

C37 C38 H38 121.5 . . ?

C39 C38 H38 121.5 . . ?

C30 C39 C38 123.8(2) . . ?

C30 C39 N2 109.6(2) . . ?

C38 C39 N2 126.7(2) . . ?

C29 C40 H40A 109.5 . . ?

C29 C40 H40B 109.5 . . ?

H40A C40 H40B 109.5 . . ?

C29 C40 H40C 109.5 . . ?

H40A C40 H40C 109.5 . . ?

H40B C40 H40C 109.5 . . ?

C29 C41 H41A 109.5 . . ?

C29 C41 H41B 109.5 . . ?

H41A C41 H41B 109.5 . . ?

C29 C41 H41C 109.5 . . ?

H41A C41 H41C 109.5 . . ?

H41B C41 H41C 109.5 . . ?

N2 C42 C43 111.3(2) . . ?

N2 C42 H42A 109.4 . . ?

C43 C42 H42A 109.4 . . ?

N2 C42 H42B 109.4 . . ?

C43 C42 H42B 109.4 . . ?

H42A C42 H42B 108.0 . . ?

C44 C43 C42 115.6(2) . . ?

C44 C43 H43A 108.4 . . ?

C42 C43 H43A 108.4 . . ?

C44 C43 H43B 108.4 . . ?

C42 C43 H43B 108.4 . . ?

H43A C43 H43B 107.4 . . ?

O6 C44 O5 124.6(3) . . ?

O6 C44 C43 119.2(3) . . ?

O5 C44 C43 116.1(3) . . ?

O1 C45 C50 128.6(3) . . ?

O1 C45 C46 111.2(3) . . ?

224

Page 238: Synthesis and Evaluation of Derivatives and Analogs of

C50 C45 C46 120.2(3) . . ?

C45 C46 C47 118.4(4) . . ?

C45 C46 H46 120.8 . . ?

C47 C46 H46 120.8 . . ?

C48 C47 C46 121.3(3) . . ?

C48 C47 H47 119.4 . . ?

C46 C47 H47 119.4 . . ?

C47 C48 C49 119.5(4) . . ?

C47 C48 C51 120.2(4) . . ?

C49 C48 C51 120.3(4) . . ?

C48 C49 C50 121.1(4) . . ?

C48 C49 H49 119.5 . . ?

C50 C49 H49 119.5 . . ?

C45 C50 C49 119.5(3) . . ?

C45 C50 H50 120.2 . . ?

C49 C50 H50 120.2 . . ?

O2 C51 C48 124.1(5) . . ?

O2 C51 H51 118.0 . . ?

C48 C51 H51 118.0 . . ?

loop_

_geom_torsion_atom_site_label_1

_geom_torsion_atom_site_label_2

_geom_torsion_atom_site_label_3

_geom_torsion_atom_site_label_4

_geom_torsion

_geom_torsion_site_symmetry_1

_geom_torsion_site_symmetry_2

_geom_torsion_site_symmetry_3

_geom_torsion_site_symmetry_4

_geom_torsion_publ_flag

C12 N1 C1 C10 -1.0(3) . . . . ?

C17 N1 C1 C10 169.0(2) . . . . ?

C12 N1 C1 C2 178.2(2) . . . . ?

C17 N1 C1 C2 -11.8(4) . . . . ?

C10 C1 C2 C3 -0.5(4) . . . . ?

N1 C1 C2 C3 -179.6(2) . . . . ?

C1 C2 C3 C4 -0.6(4) . . . . ?

C2 C3 C4 C5 -178.3(2) . . . . ?

C2 C3 C4 C9 0.4(4) . . . . ?

C3 C4 C5 C6 179.6(2) . . . . ?

C9 C4 C5 C6 0.8(4) . . . . ?

C4 C5 C6 C7 -0.8(4) . . . . ?

C5 C6 C7 C8 -0.1(4) . . . . ?

C6 C7 C8 C9 0.9(4) . . . . ?

C7 C8 C9 C10 179.6(2) . . . . ?

C7 C8 C9 C4 -0.9(4) . . . . ?

C3 C4 C9 C10 0.8(3) . . . . ?

C5 C4 C9 C10 179.6(2) . . . . ?

225

Page 239: Synthesis and Evaluation of Derivatives and Analogs of

C3 C4 C9 C8 -178.8(2) . . . . ?

C5 C4 C9 C8 0.0(3) . . . . ?

N1 C1 C10 C9 -179.0(2) . . . . ?

C2 C1 C10 C9 1.7(4) . . . . ?

N1 C1 C10 C11 -1.0(3) . . . . ?

C2 C1 C10 C11 179.8(2) . . . . ?

C8 C9 C10 C1 177.7(2) . . . . ?

C4 C9 C10 C1 -1.8(3) . . . . ?

C8 C9 C10 C11 0.2(4) . . . . ?

C4 C9 C10 C11 -179.3(2) . . . . ?

C1 C10 C11 C12 2.4(2) . . . . ?

C9 C10 C11 C12 -179.9(2) . . . . ?

C1 C10 C11 C14 121.1(2) . . . . ?

C9 C10 C11 C14 -61.1(3) . . . . ?

C1 C10 C11 C13 -113.0(2) . . . . ?

C9 C10 C11 C13 64.8(3) . . . . ?

C1 N1 C12 C15 -176.6(2) . . . . ?

C17 N1 C12 C15 13.5(4) . . . . ?

C1 N1 C12 C11 2.6(3) . . . . ?

C17 N1 C12 C11 -167.3(2) . . . . ?

C10 C11 C12 N1 -3.0(2) . . . . ?

C14 C11 C12 N1 -122.2(2) . . . . ?

C13 C11 C12 N1 113.2(2) . . . . ?

C10 C11 C12 C15 176.2(2) . . . . ?

C14 C11 C12 C15 56.9(3) . . . . ?

C13 C11 C12 C15 -67.7(3) . . . . ?

N1 C12 C15 C16 -177.8(2) . . . . ?

C11 C12 C15 C16 3.1(4) . . . . ?

C12 C15 C16 C20 -175.1(2) . . . . ?

C12 N1 C17 C18 70.1(3) . . . . ?

C1 N1 C17 C18 -98.6(3) . . . . ?

N1 C17 C18 C19 56.6(3) . . . . ?

C17 C18 C19 O4 -85.3(3) . . . . ?

C17 C18 C19 O3 92.3(3) . . . . ?

C15 C16 C20 C21 -179.9(2) . . . . ?

C15 C16 C20 C25 -0.2(4) . . . . ?

C16 C20 C21 C22 174.7(2) . . . . ?

C25 C20 C21 C22 -4.9(4) . . . . ?

C16 C20 C21 O1 -1.0(4) . . . . ?

C25 C20 C21 O1 179.3(2) . . . . ?

C45 O1 C21 C20 -77.5(3) . . . . ?

C45 O1 C21 C22 106.4(3) . . . . ?

C20 C21 C22 C26 -179.2(2) . . . . ?

O1 C21 C22 C26 -3.4(4) . . . . ?

C20 C21 C22 C23 0.3(4) . . . . ?

O1 C21 C22 C23 176.1(2) . . . . ?

C26 C22 C23 C24 -150.9(2) . . . . ?

C21 C22 C23 C24 29.6(3) . . . . ?

C22 C23 C24 C25 -54.3(3) . . . . ?

226

Page 240: Synthesis and Evaluation of Derivatives and Analogs of

C16 C20 C25 C24 159.5(2) . . . . ?

C21 C20 C25 C24 -20.8(3) . . . . ?

C23 C24 C25 C20 50.1(3) . . . . ?

C21 C22 C26 C27 176.1(3) . . . . ?

C23 C22 C26 C27 -3.4(4) . . . . ?

C22 C26 C27 C28 -179.6(3) . . . . ?

C39 N2 C28 C27 177.8(2) . . . . ?

C42 N2 C28 C27 4.2(4) . . . . ?

C39 N2 C28 C29 0.7(3) . . . . ?

C42 N2 C28 C29 -172.9(2) . . . . ?

C26 C27 C28 N2 179.2(2) . . . . ?

C26 C27 C28 C29 -4.4(4) . . . . ?

N2 C28 C29 C30 -1.9(2) . . . . ?

C27 C28 C29 C30 -178.7(2) . . . . ?

N2 C28 C29 C40 113.7(2) . . . . ?

C27 C28 C29 C40 -63.1(3) . . . . ?

N2 C28 C29 C41 -121.4(2) . . . . ?

C27 C28 C29 C41 61.7(3) . . . . ?

C28 C29 C30 C39 2.5(3) . . . . ?

C40 C29 C30 C39 -112.4(2) . . . . ?

C41 C29 C30 C39 122.3(2) . . . . ?

C28 C29 C30 C31 -178.0(2) . . . . ?

C40 C29 C30 C31 67.1(3) . . . . ?

C41 C29 C30 C31 -58.2(3) . . . . ?

C39 C30 C31 C32 179.8(2) . . . . ?

C29 C30 C31 C32 0.3(4) . . . . ?

C39 C30 C31 C36 1.2(3) . . . . ?

C29 C30 C31 C36 -178.3(2) . . . . ?

C30 C31 C32 C33 -179.6(2) . . . . ?

C36 C31 C32 C33 -1.0(4) . . . . ?

C31 C32 C33 C34 0.4(4) . . . . ?

C32 C33 C34 C35 0.8(4) . . . . ?

C33 C34 C35 C36 -1.5(4) . . . . ?

C34 C35 C36 C37 -179.7(2) . . . . ?

C34 C35 C36 C31 0.9(4) . . . . ?

C30 C31 C36 C37 -0.4(3) . . . . ?

C32 C31 C36 C37 -179.1(2) . . . . ?

C30 C31 C36 C35 179.0(2) . . . . ?

C32 C31 C36 C35 0.4(3) . . . . ?

C35 C36 C37 C38 180.0(2) . . . . ?

C31 C36 C37 C38 -0.6(4) . . . . ?

C36 C37 C38 C39 0.8(3) . . . . ?

C31 C30 C39 C38 -1.1(4) . . . . ?

C29 C30 C39 C38 178.6(2) . . . . ?

C31 C30 C39 N2 178.2(2) . . . . ?

C29 C30 C39 N2 -2.2(3) . . . . ?

C37 C38 C39 C30 0.0(4) . . . . ?

C37 C38 C39 N2 -179.0(2) . . . . ?

C28 N2 C39 C30 1.0(3) . . . . ?

227

Page 241: Synthesis and Evaluation of Derivatives and Analogs of

C42 N2 C39 C30 174.7(2) . . . . ?

C28 N2 C39 C38 -179.8(2) . . . . ?

C42 N2 C39 C38 -6.1(4) . . . . ?

C28 N2 C42 C43 76.1(3) . . . . ?

C39 N2 C42 C43 -96.8(3) . . . . ?

N2 C42 C43 C44 -119.9(3) . . . . ?

C42 C43 C44 O6 -20.8(4) . . . . ?

C42 C43 C44 O5 161.7(3) . . . . ?

C21 O1 C45 C50 -15.6(4) . . . . ?

C21 O1 C45 C46 165.1(3) . . . . ?

O1 C45 C46 C47 -179.6(3) . . . . ?

C50 C45 C46 C47 1.1(6) . . . . ?

C45 C46 C47 C48 1.3(6) . . . . ?

C46 C47 C48 C49 -2.3(6) . . . . ?

C46 C47 C48 C51 177.1(4) . . . . ?

C47 C48 C49 C50 0.9(7) . . . . ?

C51 C48 C49 C50 -178.5(4) . . . . ?

O1 C45 C50 C49 178.4(3) . . . . ?

C46 C45 C50 C49 -2.5(6) . . . . ?

C48 C49 C50 C45 1.5(7) . . . . ?

C47 C48 C51 O2 2.0(7) . . . . ?

C49 C48 C51 O2 -178.6(5) . . . . ?

loop_

_geom_hbond_atom_site_label_D

_geom_hbond_atom_site_label_H

_geom_hbond_atom_site_label_A

_geom_hbond_distance_DH

_geom_hbond_distance_HA

_geom_hbond_distance_DA

_geom_hbond_angle_DHA

_geom_hbond_site_symmetry_A

O3 H3O O5 0.84 1.72 2.524(3) 158.9 3_666

_diffrn_measured_fraction_theta_max 0.996

_diffrn_reflns_theta_full 25.0

_diffrn_measured_fraction_theta_full 0.998

_refine_diff_density_max 1.00

_refine_diff_density_min -0.63

_refine_diff_density_rms 0.078

# END OF CIF

228

Page 242: Synthesis and Evaluation of Derivatives and Analogs of

APPENDIX DD: LETTERS OF PERMISSION

229

Page 243: Synthesis and Evaluation of Derivatives and Analogs of

230

Page 244: Synthesis and Evaluation of Derivatives and Analogs of

VITA

The author, Xiangyang Xu, was born in Qianshan, Anhui, China, on July 1, 1973.

He grew up and spent most of the time at his southern hometown until he joined the

Central South University in Changsha, China, where he received his bachelor of

engineering degree in ore separation engineering in 1996. After graduation, he worked as

an assistant engineer at Hefei Steel & Iron Co. Ltd.

In August, 1999, he returned to school again and joined the graduate program in

the Department of Materials Science and Engineering at the University of Science and

Technology of China and earned a master of engineering degree in 2002.

That same year he traveled to the United States and joined Professor Robert M.

Strongin’s group at Louisiana State University to pursue his doctoral degree in organic

chemistry. While at LSU, he designed and synthesized dioxins and chromophoric

reagents for the detection of biological molecules as well as evaluating the potential

applications of these compounds under the direction of Professor Strongin.

231