synthesis and antioxidant activity of amidomethane sulfonyl-linked bis heterocycles

10
ORIGINAL RESEARCH Synthesis and antioxidant activity of amidomethane sulfonyl-linked bis heterocycles Bhanu Prakash Talapuru Lavanya Gopala Padmaja Adivireddy Padmavathi Venkatapuram Received: 20 September 2013 / Accepted: 22 April 2014 Ó Springer Science+Business Media New York 2014 Abstract A variety of amidomethane sulfonyl-linked pyrrolyl oxazoles/thiazoles/imidazoles were prepared from arylsulfonylethenesulfonyl oxazolyl/thiazolyl/imidazolyl acetamides and tested for antioxidant activity. The E-(2-(p- methylphenyl)lsulfonylethenesulfonyl)-N-(4-(p-methylphenyl) oxazol-2-yl)acetamide (5b) exhibited excellent antioxidant activity greater than the standard Ascorbic acid. Keywords Pyrrolyl oxazole/thiazole/imidazole HATU DIPEA Antioxidant activity Introduction Polyfunctionalized heterocyclic compounds, particularly nitrogen-containing heterocycles, have gained importance in the structural identification of biological macromole- cules and in the discovery of drugs (Mitchison, 1994; Hung et al., 1996; Bemis and Murcko, 1996; Nefzi et al., 1997; Schreiber, 1998; Hinterding et al., 1998; Laet et al., 2000; Ertl et al., 2006). The azole moiety is a fundamental ring system for both synthetic and medicinal chemists because of its presence in a wide range of natural products (Wipf, 1995; Lewis, 2000; Yeh, 2004; Riego et al., 2005; Jin, 2006, 2009) and its pivotal role as synthetic intermediates (Vedejs and Barda, 2000; Atkins and Vedejs, 2005; Zhang and Ciufolini, 2009). Several complex natural products containing oxazole ring such as Diazonamide A, Ulapua- lide A, Hennoxazole A, Telomestatin, Leucamide A, and Virginiamycin M1 display significant biological activities as cytotoxic, antifungal, antibacterial, antitumor, and anti- viral (Wipf, 1995; Bagley et al., 1998; Lewis, 2000; Yeh, 2004; Riego et al., 2005; Jin, 2006, 2009; Misra and Ila, 2010). Thiazole nucleus is also an integral part of all the available penicillins which have revolutionized the therapy of bacterial diseases (Oncu et al., 2004). Imidazole is the main structure of some well-known components of human organisms, viz., histidine, Vit-B12, a component of DNA base structure and purines, histamine and biotin (Lombar- dino and Wiseman, 1974). Some imidazole-based phar- maceuticals are Cimetidine, Etomidate, Ketoconazole, Eprosartan, Losartan, and Metronidazole (Kleeman et al., 2001; Bellina et al., 2007; Sneyd, 2012; Bhattacharyya and Bajpai, 2013). Apart from these, pyrrole core can be found in many natural products such as Lamellarin, Ningalin, Polycitone, Lukianol, Storniamide (Gupton, 2006), etc., as well as in agrochemicals and pharmaceuticals. Thus, the role of azole chemistry has become increasingly important in designing new class of structural entities of pharmaco- logical importance. In continuation of our interest to develop bis heterocycles linked by different pharmaco- phoric units (Muralikrishna et al., 2012; Reddy et al., 2013; Basha et al., 2013), the present work has been taken up. Results and discussion Chemistry The multifunctional synthetic intermediate E-arylsulfo- nylethenesulfonylacetic acid (1) and azole amines, 4-a- ryloxazol-2-amine (2), 4-arylthiazol-2-amine (3), and B. P. Talapuru L. Gopala P. Adivireddy P. Venkatapuram (&) Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh, India e-mail: [email protected] 123 Med Chem Res DOI 10.1007/s00044-014-1022-0 MEDICINAL CHEMISTR Y RESEARCH

Upload: padmavathi

Post on 24-Jan-2017

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Synthesis and antioxidant activity of amidomethane sulfonyl-linked bis heterocycles

ORIGINAL RESEARCH

Synthesis and antioxidant activity of amidomethanesulfonyl-linked bis heterocycles

Bhanu Prakash Talapuru • Lavanya Gopala •

Padmaja Adivireddy • Padmavathi Venkatapuram

Received: 20 September 2013 / Accepted: 22 April 2014

� Springer Science+Business Media New York 2014

Abstract A variety of amidomethane sulfonyl-linked

pyrrolyl oxazoles/thiazoles/imidazoles were prepared from

arylsulfonylethenesulfonyl oxazolyl/thiazolyl/imidazolyl

acetamides and tested for antioxidant activity. The E-(2-(p-

methylphenyl)lsulfonylethenesulfonyl)-N-(4-(p-methylphenyl)

oxazol-2-yl)acetamide (5b) exhibited excellent antioxidant

activity greater than the standard Ascorbic acid.

Keywords Pyrrolyl oxazole/thiazole/imidazole �HATU � DIPEA � Antioxidant activity

Introduction

Polyfunctionalized heterocyclic compounds, particularly

nitrogen-containing heterocycles, have gained importance

in the structural identification of biological macromole-

cules and in the discovery of drugs (Mitchison, 1994; Hung

et al., 1996; Bemis and Murcko, 1996; Nefzi et al., 1997;

Schreiber, 1998; Hinterding et al., 1998; Laet et al., 2000;

Ertl et al., 2006). The azole moiety is a fundamental ring

system for both synthetic and medicinal chemists because

of its presence in a wide range of natural products (Wipf,

1995; Lewis, 2000; Yeh, 2004; Riego et al., 2005; Jin,

2006, 2009) and its pivotal role as synthetic intermediates

(Vedejs and Barda, 2000; Atkins and Vedejs, 2005; Zhang

and Ciufolini, 2009). Several complex natural products

containing oxazole ring such as Diazonamide A, Ulapua-

lide A, Hennoxazole A, Telomestatin, Leucamide A, and

Virginiamycin M1 display significant biological activities

as cytotoxic, antifungal, antibacterial, antitumor, and anti-

viral (Wipf, 1995; Bagley et al., 1998; Lewis, 2000; Yeh,

2004; Riego et al., 2005; Jin, 2006, 2009; Misra and Ila,

2010). Thiazole nucleus is also an integral part of all the

available penicillins which have revolutionized the therapy

of bacterial diseases (Oncu et al., 2004). Imidazole is the

main structure of some well-known components of human

organisms, viz., histidine, Vit-B12, a component of DNA

base structure and purines, histamine and biotin (Lombar-

dino and Wiseman, 1974). Some imidazole-based phar-

maceuticals are Cimetidine, Etomidate, Ketoconazole,

Eprosartan, Losartan, and Metronidazole (Kleeman et al.,

2001; Bellina et al., 2007; Sneyd, 2012; Bhattacharyya and

Bajpai, 2013). Apart from these, pyrrole core can be found

in many natural products such as Lamellarin, Ningalin,

Polycitone, Lukianol, Storniamide (Gupton, 2006), etc., as

well as in agrochemicals and pharmaceuticals. Thus, the

role of azole chemistry has become increasingly important

in designing new class of structural entities of pharmaco-

logical importance. In continuation of our interest to

develop bis heterocycles linked by different pharmaco-

phoric units (Muralikrishna et al., 2012; Reddy et al., 2013;

Basha et al., 2013), the present work has been taken up.

Results and discussion

Chemistry

The multifunctional synthetic intermediate E-arylsulfo-

nylethenesulfonylacetic acid (1) and azole amines, 4-a-

ryloxazol-2-amine (2), 4-arylthiazol-2-amine (3), and

B. P. Talapuru � L. Gopala � P. Adivireddy �P. Venkatapuram (&)

Department of Chemistry, Sri Venkateswara University,

Tirupati 517 502, Andhra Pradesh, India

e-mail: [email protected]

123

Med Chem Res

DOI 10.1007/s00044-014-1022-0

MEDICINALCHEMISTRYRESEARCH

Page 2: Synthesis and antioxidant activity of amidomethane sulfonyl-linked bis heterocycles

4-aryl-1H-imidazol-2-amine (4) were prepared as per the

literature precedent (Little and Webber, 1994; Reddy

et al., 1999; Potewar et al., 2008; Padmavathi et al.,

2009). The reaction of 1 with 2 in the presence of O-(7-

azabenzotriazol-1-yl)-N,N,N0,N0-tetramethyluronium hexa-

fluorophosphate (HATU), N,N-diisopropylethylamine

(DIPEA) in dimethylformamide (DMF) resulted in E-(2-

arylsulfonylethenesulfonyl)-N-(4-aryloxazol-2-yl)acetam-

ide (5). Similarly, the compounds E-(2-arylsulfonylethe-

nesulfonyl)-N-(4-arylthiazol-2-yl)acetamide (6) and E-(2-

arylsulfonylethene-sulfonyl)-N-(4-aryl-1H-imidazol-2-yl)acet-

amide (7) were prepared by the reaction of 1 with 3 and 4,

respectively (Scheme 1). The 1H NMR spectra of 5a, 6a,

and 7a displayed a singlet at d 4.31, 4.29, and 4.33 due

to methylene protons and a doublet at d 7.98, 7.96, and

8.01 ppm due to olefin proton HA, while the signal of other

olefin proton HB merged with aromatic protons. The coupling

constant value J = 14.6 Hz indicated that they possess trans

geometry. The olefin moiety present in 5, 6, and 7 was used to

develop pyrrole ring. The treatment of 5, 6, and 7 with to-

sylmethyl isocyanide in the presence of NaH and in a solvent

mixture of Et2O and DMSO (2:1) gave 2-(40-arylsulfonyl-10H-

pyrrol-30-ylsulfonyl)-N-(4-aryloxazol-2-yl)acetamide (8), 2-

(40-arylsulfonyl-10H-pyrrol-30-ylsulfonyl)-N-(4-arylthiazol-2-

yl)acetamide (9), and 2-(40-arylsulfonyl-10H-pyrrol-30-ylsulfo-

nyl)-N-(4-aryl-1H-imidazol-2-yl)acetamide (10) (Scheme 1).

In the 1H NMR spectra of these compounds, the absence of

doublets corresponding to olefin protons and the presence of

two singlets at d 6.76, 6.82 in 8a, at 6.75, 6.83 in 9a and at 6.82,

6.88 ppm in 10a due to C20–H and C50–H of pyrrole ring

confirmed their formation. The structures of all the

compounds were further established by IR, 13C NMR, and

elemental analysis.

Biological evaluation

Antioxidant activity

The compounds 5–10 were tested for antioxidant property by

2,2,-diphenyl-1-picrylhydrazyl (DPPH) (Cuendet et al., 1997;

Burits and Bucar, 2000), nitric oxide (NO) (Green et al., 1982;

Marcocci et al., 1994), and hydrogen peroxide (H2O2) (Ruch

et al., 1989) methods, and the results are shown in Tables 1, 2,

and 3 and Figs. 1, 2, and 3. The data revealed that the

unsaturated compounds E-(2-arylsulfonylethenesulfonyl)-N-

(4-aryloxazol-2-yl)acetamide (5), E-(2-arylsulfonylethene-

sulfonyl)-N-(4-arylthiazol-2-yl)acetamide (6), and E-(2-aryl-

sulfonylethenesulfonyl)-N-(4-aryl-1H-imidazol-2-yl)acetam-

ide (7) displayed higher antioxidant activity than the

corresponding bis heterocycles 2-(40-arylsulfonyl-10H-pyrrol-

30-ylsulfonyl)-N-(4-aryloxazol-2-yl)acetamide (8), 2-(40-aryl-

sulfonyl-10H-pyrrol-30-ylsulfonyl)-N-(4-arylthiazol-2-yl)acet-

amide (9) and 2-(40-aryl-sulfonyl-10H-pyrrol-30-ylsulfonyl)-

N-(4-aryl-1H-imidazol-2-yl)acetamide (10). This may be

due to effective conjugation in unsaturated systems (5–7). In

fact, the compound E-(2-(p-methyl-phenyl)sulfonylethenesulfo-

nyl)-N-(4-(p-methylphenyl)oxazol-2-yl)acetamide (5b)

exhibited excellent radical scavenging activity greater than

the standard Ascorbic acid. Amongst bis heterocycles,

pyrrolyl oxazoles (8) showed greater activity than pyrrolyl

thiazoles (9) and pyrrolyl imidazoles (10). However,

X

N

SOO

SO O

NH

O

R

R

SOO

SO O

O

OH

R

X

N

NH2

R

X

N

SOO

SOO

NH

NH

O

R

R

+

5 / 6 / 7

8 / 9 / 10

i

ii(i) HATU / DIPEA / DMF(ii) TosMIC / NaH / DMSO / Et2O

2 / 5 / 8 X = O3 / 6 / 9 X = S4 / 7 / 10 X = NH

2 / 3 / 41

1'2'3'4'

5'

123 4

5a: R =H,b: R =Me,c: R = Cl,

1''2''3''

4''5''

6''

1'''2'''3'''4'''

5'''6'''

Scheme 1 Synthesis of amidomethane sulfonyl linked heterocycles

Med Chem Res

123

Page 3: Synthesis and antioxidant activity of amidomethane sulfonyl-linked bis heterocycles

Table 1 The in vitro antioxidant activity of 5–10 in DPPH method

Compound Concentration IC50 (lmol/ml)

50 (lg/ml) 100 (lg/ml) 150 (lg/ml) 200 (lg/ml)

5a 69.63 ± 0.14 73.38 ± 0.11 75.15 ± 0.09 77.56 ± 0.05 0.058 ± 1.09

5b 76.75 ± 0.10 79.16 ± 0.08 80.28 ± 0.06 84.83 ± 0.03 0.054 ± 0.87

5c 44.82 ± 0.34 46.78 ± 0.28 49.71 ± 0.25 51.54 ± 0.23 0.049 ± 0.72

6a 50.16 ± 0.25 53.53 ± 0.21 56.26 ± 0.18 58.48 ± 0.16 0.056 ± 0.61

6b 62.26 ± 0.19 65.42 ± 0.16 68.12 ± 0.12 70.45 ± 0.09 0.052 ± 0.92

6c 31.46 ± 0.39 32.56 ± 0.34 35.85 ± 0.31 37.78 ± 0.26 0.051 ± 1.15

7a – – – –

7b 39.63 ± 0.42 41.34 ± 0.38 43.38 ± 0.35 46.94 ± 0.29 0.057 ± 0.96

7c – – – – –

8a 59.13 ± 0.23 63.24 ± 0.19 65.04 ± 0.15 67.57 ± 0.10 0.053 ± 0.85

8b 64.07 ± 0.18 68.73 ± 0.13 69.27 ± 0.11 72.39 ± 0.06 0.050 ± 0.78

8c 32.11 ± 0.38 34.69 ± 0.32 36.04 ± 0.29 38.85 ± 0.25 0.046 ± 0.53

9a 47.40 ± 0.27 49.64 ± 0.23 51.43 ± 0.21 52.96 ± 0.19 0.051 ± 0.87

9b 55.21 ± 0.24 57.60 ± 0.20 61.51 ± 0.16 63.74 ± 0.12 0.048 ± 0.52

9c 27.93 ± 0.41 29.55 ± 0.41 31.52 ± 0.39 33.28 ± 0.32 0.045 ± 1.23

10a – – – – –

10b 26.54 ± 0.45 29.13 ± 0.36 30.61 ± 0.33 32.02 ± 0.28 0.050 ± 0.82

10c – – – – –

Ascorbic acid 63.45 ± 0.17 66.62 ± 0.15 68.89 ± 0.10 71.23 ± 0.07 0.049 ± 1.12

Blank – – – – –

Values were the means of three replicates ±SD

(–) Showed no scavenging activity

Table 2 The in vitro antioxidant activity of 5–10 in nitric oxide method

Compound Concentration

50 (lg/ml) 100 (lg/ml) 150 (lg/ml) 200 (lg/ml)

5a 75.46 ± 0.11 79.62 ± 0.08 82.25 ± 0.09 85.51 ± 0.04

5b 80.13 ± 0.09 83.06 ± 0.05 86.81 ± 0.03 89.17 ± 0.02

5c 49.32 ± 0.25 52.76 ± 0.22 57.26 ± 0.19 58.34 ± 0.19

6a 54.52 ± 0.23 58.21 ± 0.19 62.85 ± 0.16 67.81 ± 0.14

6b 67.37 ± 0.15 71.45 ± 0.12 75.14 ± 0.10 79.28 ± 0.08

6c 36.15 ± 0.28 39.58 ± 0.28 43.58 ± 0.25 45.16 ± 0.25

7a – – – –

7b 43.37 ± 0.27 47.41 ± 0.25 50.73 ± 0.21 54.42 ± 0.21

7c – – – –

8a 64.04 ± 0.18 69.30 ± 0.14 71.45 ± 0.12 76.63 ± 0.10

8b 72.84 ± 0.13 76.03 ± 0.11 78.79 ± 0.06 81.89 ± 0.06

8c 38.43 ± 0.29 41.37 ± 0.26 46.76 ± 0.23 48.55 ± 0.23

9a 51.91 ± 0.24 55.68 ± 0.20 59.02 ± 0.18 63.72 ± 0.17

9b 59.58 ± 0.20 65.76 ± 0.16 68.38 ± 0.14 72.76 ± 0.13

9c 31.71 ± 0.26 34.42 ± 0.30 38.87 ± 0.26 41.41 ± 0.26

10a – – – –

10b 29.30 ± 0.34 32.67 ± 0.29 35.91 ± 0.28 39.69 ± 0.28

10c – – – –

Ascorbic acid 69.52 ± 0.14 74.75 ± 0.11 76.29 ± 0.08 80.31 ± 0.09

Blank – – – –

Values were the means of three replicates ±SD

(–) Showed no scavenging activity

Med Chem Res

123

Page 4: Synthesis and antioxidant activity of amidomethane sulfonyl-linked bis heterocycles

Table 3 The in vitro antioxidant activity of 5–10 in H2O2 method

Compound Concentration

50 (lg/ml) 100 (lg/ml) 150 (lg/ml) 200 (lg/ml)

5a 71.76 ± 0.10 75.08 ± 0.11 77.26 ± 0.03 83.61 ± 0.05

5b 78.18 ± 0.08 81.54 ± 0.07 83.61 ± 0.05 87.56 ± 0.03

5c 46.83 ± 0.30 48.24 ± 0.23 53.45 ± 0.23 58.67 ± 0.19

6a 52.34 ± 0.23 56.69 ± 0.20 60.92 ± 0.18 65.40 ± 0.15

6b 64.63 ± 0.16 68.38 ± 0.14 71.62 ± 0.12 76.67 ± 0.09

6c 32.43 ± 0.37 35.36 ± 0.31 40.04 ± 0.27 45.62 ± 0.29

7a – – – –

7b 40.80 ± 0.32 43.02 ± 0.28 48.06 ± 0.24 52.96 ± 0.16

7c – – – –

8a 61.71 ± 0.19 65.71 ± 0.15 69.27 ± 0.15 72.02 ± 0.11

8b 69.29 ± 0.12 73.65 ± 0.09 74.38 ± 0.09 79.45 ± 0.07

8c 34.51 ± 0.34 37.21 ± 0.29 44.15 ± 0.26 47.81 ± 0.27

9a 49.85 ± 0.22 52.12 ± 0.21 57.18 ± 0.19 61.52 ± 0.18

9b 57.78 ± 0.21 60.57 ± 0.17 64.51 ± 0.17 68.15 ± 0.12

9c 28.09 ± 0.38 32.19 ± 0.30 36.82 ± 0.28 41.05 ± 0.30

10a – – – –

10b 27.63 ± 0.48 30.13 ± 0.40 33.74 ± 0.36 36.41 ± 0.32

10c – – – –

Ascorbic acid 66.96 ± 0.15 70.25 ± 0.10 72.71 ± 0.12 77.57 ± 0.08

Blank – – – –

Values were the means of three replicates ±SD

(–) Showed no scavenging activity

Fig. 1 The in vitro antioxidant

activity of 5–10 in DPPH

method

Med Chem Res

123

Page 5: Synthesis and antioxidant activity of amidomethane sulfonyl-linked bis heterocycles

compounds 9 showed good activity than the compounds 10.

Among imidazole containing compounds, the compound 7b

displayed higher activity than the compound 10b, which

exemplified that the presence of effective conjugation

increases the activity. The presence of electron-donating

methyl substituent on the aromatic ring enhanced the activity.

Conclusion

A variety of amidomethane sulfonyl-linked pyrrolyl oxa-

zoles/thiazoles/imidazoles were prepared from arylsulfo-

nylethenesulfonyl oxazolyl/thiazolyl/imidazolyl acetamides

and tested for antioxidant activity. The arylsulfonylethene-

sulfonyl heterocycles exhibited higher antioxidant activity

than the respective bis heterocycles. In fact, the E-(2-(p-

methylphenyl)sulfonylethene-sulfonyl)-N-(4-(p-methyl-

phenyl)oxazol-2-yl)acetamide (5b) exhibited excellent anti-

oxidant activity greater than the standard Ascorbic acid.

Experimental protocols

Melting points were determined in open capillaries on a

Mel-Temp apparatus and are uncorrected. The purity of

the compounds was checked by TLC (silica gel H, BDH,

ethyl acetate/hexane, 1:3). The IR spectra were recorded

on a Thermo Nicolet IR 200 FT-IR spectrometer as KBr

pellets, and the wave numbers were given in cm-1. The1H NMR spectra were recorded in DMSO-d6 on a

Bruker-400 spectrometer (400 MHz). The 13C NMR

spectra were recorded in DMSO-d6 on a Bruker spec-

trometer operating at 100 MHz. All chemical shifts are

reported in d (ppm) using TMS as an internal standard.

The mass spectra were recorded on Jeol JMS-D 300 and

Finnigan Mat 1210 B at 70 eV with an emission current

of 100 lA. The microanalyses were performed on a

Perkin-Elmer 240C elemental analyzer. The antioxidant

property was carried out by using Shimadzu UV-2450

spectrophotometer.

Fig. 2 The in vitro antioxidant

activity of 5–10 in nitric oxide

method

Fig. 3 The in vitro antioxidant

activity of 5–10 in H2O2 method

Med Chem Res

123

Page 6: Synthesis and antioxidant activity of amidomethane sulfonyl-linked bis heterocycles

General procedure for the synthesis of E-(2-

arylsulfonylethenesulfonyl)-N-(4-aryloxazol-2-

yl)acetamide (5a–c)/E-(2-arylsulfonylethenesulfonyl)-

N-(4-arylthiazol-2-yl)acetamide (6a–c)/E-(2-

arylsulfonylethenesulfonyl)-N-(4-aryl-1H-imidazol-2-

yl)acetamide (7a–c)

The compound E-arylsulfonylethenesulfonylacetic acid

(1) (10 mmol) was dissolved in 3 ml of DMF. To this

HATU (20 mmol) was added and stirred at room tem-

perature for 15–20 min. Then, DIPEA (20 mmol) fol-

lowed by the compound 2/3/4 (10 mmol) were added and

continued stirring at ambient temperature for 19–22 h.

The reaction mixture was poured onto ice-water, filtered

the separated solid and dried. It was recrystallized from

2-propanol.

E-(2-Phenylsulfonylethenesulfonyl)-N-(4-phenyloxazol-2-

yl)acetamide 5a

Mp 145–147 �C; yield 65 %; IR (KBr) tmax: 3329, 1683,

1634, 1579, 1330, 1132 cm-1; 1H NMR (DMSO-d6,

400 MHz): d = 7.98 (1H, d, J = 14.3 Hz, HA), 7.92 (1H,

bs, CO–NH), 7.21–7.78 (12H, m, HB, Ar–H & C5–H), 4.31

(2H, s, SO2–CH2); 13C NMR (DMSO-d6, 100 MHz,):

d = 172.4 (C, C=O), 149.6 (C, C-2), 145.8 (C, C–HA),

139.0 (C, C-4), 135.8 (CH, C-5), 124.8 (C, C–HB), 56.6

(CH, CH2), 135.9 (C, C-100), 135.2 (CH, C-400), 132.6 (C,

C-1000), 131.4 (CH, C-300, C-500), 130.1 (CH, C-3000, C-5000),128.6 (CH, C-4000), 127.3 (CH, C-200, C-600), 126.8 (CH,

C-2000, C-6000); MS m/z: 432.48 [M?�]; Anal. Calcd. for

C19H16N2O6S2: C, 52.76; H, 3.72; N, 6.47. Found: C,

52.65; H, 3.65; N, 6.56.

E-(2-(p-Methylphenyl)sulfonylethenesulfonyl)-N-(4-(p-

methylphenyl)oxazol-2-yl)acetamide 5b

Mp 134–136 �C; yield 66 %; IR (KBr) tmax: 3322, 1675,

1632, 1575, 1325, 1128 cm-1; 1H NMR (DMSO-d6,

400 MHz): d = 7.95 (1H, d, J = 14.2 Hz, HA), 7.94 (1H,

bs, CO–NH), 7.18–7.72 (10H, m, HB, Ar–H & C5–H), 4.28

(2H, s, SO2–CH2), 2.30 & 2.28 (6H, s, Ar–CH3); 13C NMR

(DMSO-d6, 100 MHz): d = 172.0 (C, C=O), 150.3 (C,

C-2), 145.2 (CH, C–HA), 138.5 (C, C-4), 136.5 (CH, C-5),

124.9 (CH, C–HB), 56.3 (CH, CH2), 22.2 & 21.8 (Ar–

CH3), 134.6 (C, C-100), 131.8 (CH, C-400), 130.9 (C, C-1000),130.4 (CH, C-300, C-500), 129.2 (CH, C-3000, C-5000), 127.8

(CH, C-4000), 127.0 (CH, C-200, C-600), 126.4 (CH, C-2000,C-6000); MS m/z: 460.53 [M?�]. Anal. Calcd. for

C21H20N2O6S2: C, 54.76; H, 3.77; N, 6.08. Found: C,

54.63; H, 4.30; N, 6.00.

E-(2-(p-Chlorophenyl)sulfonylethenesulfonyl)-N-(4-(p-

chlorophenyl)oxazol-2-yl)acetamide 5c

Mp 179–181 �C; yield 68 %; IR (KBr) tmax: 3336, 1686,

1638, 1580, 1334, 1137 cm-1; 1H NMR (DMSO-d6,

400 MHz): d = 7.99 (1H, d, J = 14.6 Hz, HA), 7.95 (1H,

bs, CO–NH), 7.25–7.86 (10H, m, HB, Ar–H & C5–H), 4.32

(2H, m, SO2–CH2); 13C NMR (DMSO-d6, 100 MHz):

d = 172.9 (C, C=O), 150.9 (C, C-2), 146.3 (CH, C–HA),

139.4 (C, C-4), 135.2 (CH, C-5), 125.1 (CH, C–HB), 57.8

(CH, CH2), 136.5 (C, C-100), 134.6 (CH, C-400), 132.2 (C,

C-1000), 131.9 (CH, C-300, C-500), 130.6 (CH, C-3000, C-5000),129.0 (CH, C-4000), 127.5 (CH, C-200, C-600), 125.6 (CH,

C-2000, C-6000); MS m/z: 501.37 [M?�]. Anal. Calcd. for

C19H14Cl2N2O6S2: C, 45.51; H, 2.81; N, 5.58. Found: C,

45.58; H, 2.84; N, 5.65.

E-(2-Phenylsulfonylethenesulfonyl)-N-(4-phenylthiazol-2-

yl)acetamide 6a

Mp 155–157 �C; yield 67 %; IR (KBr) tmax: 3326, 1676,

1631, 1574, 1328, 1130 cm-1; 1H (DMSO-d6, 400 MHz):

d = 7.96 (1H, d, HA, J = 14.2 Hz), 7.88 (1H, bs, CO–

NH), 7.15–7.70 (11H, m, HB & Ar–H), 6.40 (1H, s, C5–H),

4.29 (2H, s, SO2–CH2); 13C NMR (DMSO-d6, 100 MHz):

d = 172.2 (C, C=O), 156.2 (C, C-2), 145.5 (CH, C–HA),

138.2 (C, C-4), 124.2 (CH, C–HB), 123.2 (CH, C-5), 56.4

(CH, CH2), 134.9 (C, C-100), 134.2 (CH, C-400), 133.2 (C,

C-1000), 131.4 (CH, C-300, C-500), 130.8 (CH, C-3000, C-5000),129.6 (CH, C-4000), 128.2 (CH, C-200, C-600), 126.2 (CH,

C-2000, C-6000); MS m/z: 448.55 [M?�]. Anal. Calcd. for

C19H16N2O5S3: C, 50.87; H, 3.59; N, 6.24. Found: C,

50.78; H, 3.53; N, 6.12.

E-(2-(p-Methylphenyl)sulfonylethenesulfonyl)-N-(4-(p-

methylphenyl)thiazol-2-yl)acetamide 6b

Mp 142–143 �C; yield 64 %; IR (KBr) tmax: 3318, 1672,

1628, 1572, 1322, 1125 cm-1; 1H NMR (DMSO-d6,

400 MHz): d = 7.93 (1H, d, J = 14.1 Hz, HA), 7.87 (1H,

bs, CO–NH), 7.12–763 (9H, m, HB & Ar–H), 6.35 (1H, s,

C5–H), 4.30 (2H, s, SO2–CH2), 2.28 & 2.24 (6H, s, Ar–

CH3); 13C NMR (DMSO-d6, 100 MHz): d = 171.6 (C,

C=O), 156.0 (C, C-2), 145.2 (CH, C–HA), 137.9 (C, C-4),

124.7 (CH, C–HB), 124.1 (CH, C-5), 55.2 (CH, CH2), 21.8

& 21.6 (Ar–CH3), 134.1 (C, C-100), 133.8 (CH, C-400), 132.6

(C, C-1000), 131.2 (CH, C-300, C-500), 129.2 (CH, C-3000,C-5000), 128.8 (CH, C-4000), 127.4 (CH, C-200, C-600), 125.8

(CH, C-2000, C-6000); MS m/z: 476.60 [M?�]. Anal. Calcd. for

C21H20N2O5S3: C, 52.92; H, 4.22; N, 5.87. Found: C,

53.02; H, 4.27; N, 5.93.

Med Chem Res

123

Page 7: Synthesis and antioxidant activity of amidomethane sulfonyl-linked bis heterocycles

E-(2-(p-Chlorophenyl)sulfonylethenesulfonyl)-N-(4-(p-

chlorophenyl)thiazol-2-yl)acetamide 6c

Mp 195–197 �C; yield 65 %; IR (KBr) tmax: 3330, 1678,

1633, 1577, 1330, 1133 cm-1; 1H NMR (DMSO-d6,

400 MHz): d = 8.00 (1H, d, J = 14.4 Hz, HA), 7.94 (1H,

bs, CO–NH), 7.20–7.82 (9H, m, HB, Ar–H), 6.38 (1H, m,

C5–H), 4.32 (2H, s, SO2–CH2); 13C NMR (DMSO-d6,

100 MHz): d = 172.7 (C=O), 157.4 (C, C-2), 145.9 (CH,

C–HA), 138.6 (C, C-4), 124.8 (C, C–HB), 123.5 (CH, C-5),

56.9 (CH, CH2), 135.9 (C, C-100), 135.2 (CH, C-400), 132.8

(C, C-1000), 131.2 (CH, C-300, C-500), 130.2 (CH, C-3000,C-5000), 128.7 (CH, C-4000), 127.8 (CH, C-200, C-600), 126.8

(CH, C-2000, C-6000); MS m/z: 489.43 [[M?�]. Anal. Calcd.

for C19H14Cl2N2O5S3: C, 46.62; H, 2.88; N, 5.72. Found:

C, 46.55; H, 2.93; N, 5.79.

E-(2-Phenylsulfonylethenesulfonyl)-N-(4-phenyl-1H-

imidazol-2-yl)acetamide 7a

Mp 176–178 �C; yield 68 %; IR (KBr) tmax: 3338, 1688,

1640, 1583, 1335, 1138 cm-1; 1H NMR (DMSO-d6,

400 MHz): d = 12.34 (1H, bs, C5–NH), 8.01 (1H, d,

J = 14.5 Hz, HA), 7.95 (1H, bs, CO–NH), 7.23–7.85 (12H,

m, HB, Ar–H & C5–H), 4.33 (2H, s, SO2–CH2); 13C NMR

(DMSO-d6, 100 MHz): d = 172.6 (C=O), 146.2 (CH, C–

HA), 139.8 (C, C-4), 137.2 (C, C-2), 135.2 (CH, C-5),

124.9 (CH, C–HB), 57.0 (CH, CH2), 134.8 (C, C-100), 133.2

(CH, C-400), 132.2 (C, C-1000), 131.0 (CH, C-300, C-500),130.6 (CH, C-3000, C-5000), 129.2 (CH, C-4000), 128.1 (CH,

C-200, C-600), 127.8 (CH, C-2000, C-6000); MS m/z: 431.49

[M?�]. Anal. Calcd. for C19H17N3O5S2: C, 52.88; H, 3.96;

N, 9.73. Found: C, 52.96; H, 4.02; N, 9.80.

E-(2-(p-Methylphenyl)sulfonylethenesulfonyl)-N-(4-(p-

methylphenyl)-1H-imidazol-2-yl)-acetamide 7b

Mp 170-172 �C; yield 65 %; IR (KBr) tmax: 3327, 1677,

1636, 1578, 1331, 1133 cm-1; 1H NMR (DMSO-d6,

400 MHz): d = 12.28 (1H, bs, C5–NH), 7.97 (1H, d,

J = 14.2 Hz, HA), 7.93 (1H, bs, CO–NH), 7.18–7.78 (10H,

m, HB, Ar–H & C5–H), 4.29 (2H, s, SO2–CH2), 2.29 &

2.26 (6H, s, Ar–CH3); 13C NMR (DMSO-d6, 100 MHz):

d = 172.2 (C, C=O), 147.0 (CH, C–HA), 139.2 (C, C-4),

136.8 (C, C-2), 134.8 (CH, C-5), 123.4 (CH, C–HB), 56.8

(CH, CH2), 22.3 & 22.0 (Ar–CH3), 134.2 (C, C-100), 133.8

(CH, C-400), 132.7 (C, C-1000), 130.9 (CH, C-300, C-500),130.2 (CH, C-3000, C-5000), 129.5 (CH, C-4000), 128.6 (CH,

C-200, C-600), 127.2 (CH, C-2000, C-6000); MS m/z: 459.55

[M?�]. Anal. Calcd. for C21H21N3O5S2: C, 54.88; H, 4.60;

N, 9.14. Found: C, 54.77; H, 4.57; N, 9.19.

E-(2-(p-Chlorophenyl)sulfonylethenesulfonyl)-N-(4-(p-

chlorophenyl)-1H-imidazol-2-yl)-acetamide 7c

Mp 199–201 �C; yield 66 %; IR (KBr) tmax: 3343, 1681,

1644, 1588, 1340, 1142 cm-1; 1H NMR (DMSO-d6,

400 MHz): d = 12.38 (1H, bs, C5–NH), 8.00 (1H, d,

J = 14.7 Hz, HA), 7.98 (1H, bs, CO–NH), 7.26–7.88 (10H,

m, HB, Ar–H & C5–H), 4.34 (2H, s, SO2–CH2); 13C NMR

(DMSO-d6, 100 MHz): d = 173.8 (C, C=O), 146.6 (CH,

C–HA), 140.9 (C, C-4), 137.8 (C, C-2), 135.8 (CH, C-5),

125.4 (CH, C–HB), 57.1 (CH, CH2), 135.2 (C, C-100), 133.3

(CH, C-400), 132.6 (C, C-1000), 132.2 (CH, C-300, C-500),131.5 (CH, C-3000, C-5000), 130.8 (CH, C-4000), 129.9 (CH,

C-200, C-600), 128.2 (CH, C-2000, C-6000); MS m/z: 500.39

[M?�]. Anal. Calcd. for C19H15Cl2N3O5S2: C, 45.60; H,

3.02; N, 8.39.; Found: C, 45.68; H, 3.07; N, 8.30.

General procedure for the synthesis of 2-(40-arylsulfonyl-10H-pyrrol-30-ylsulfonyl)-N-(4-aryloxazol-

2-yl)acetamide (8a–c)/2-(40-arylsulfonyl-10H-pyrrol-30-ylsulfonyl)-N-(4-aryl-thiazol-2-yl)acetamide (9a–c)/2-

(40-arylsulfonyl-10H-pyrrol-30-ylsulfonyl)-N-(4-aryl-

1H-imidazol-2-yl)acetamide (10a–c)

A mixture of tosylmethyl isocyanide (1 mmol) and 5/6/7

(1 mmol) in diethyl ether–DMSO (2:1) was added drop

wise to a stirred slurry of sodium hydride (0.05 g) in dry

diethyl ether (10 ml) at room temperature, and stirring

was continued for 12–14 h. Then, it was diluted with

water and extracted with ether. The ethereal layer was

dried over an Na2SO4, and the solvent was removed under

reduced pressure. The resultant solid was purified by

passing through a column of silica gel (hexane–ethyl

acetate 3:1).

2-(40-Phenylsulfonyl-10H-pyrrol-30-ylsulfonyl)-N-(4-

phenyloxazol-2-yl)acetamide 8a

Mp 155–157 �C; yield 72 %; IR (KBr) tmax: 3335, 1682,

1639, 1584, 1333, 1136 cm-1; 1H NMR (DMSO-d6,

400 MHz): d = 9.78 (1H, bs, C20–NH), 7.96 (1H, bs, CO–

NH), 7.16–7.90 (11H, m, Ar–H & C5–H), 6.82 (1H, s, C50–

H), 6.76 (1H, s, C20–H), 4.35 (2H, s, SO2–CH2); 13C NMR

(DMSO-d6, 100 MHz): d = 172.6 (C, C=O), 149.9 (C,

C-2), 139.0 (C, C-4), 136.8 (CH, C-5), 133.8 (C, C-40),127.2 (CH, C-20), 121.2 (CH, C-50), 116.4 (C, C-30), 57.2

(CH, CH2), 135.8 (C, C-100), 134.8 (CH, C-400), 132.2 (CH,

C-300, C-500), 130.6 (CH, C-3000, C-5000), 129.2 (CH, C-4000),127.9 (CH, C-200, C-600), 127.0 (CH, C-2000, C-6000); MS m/z:

471.51 [M?�]. Anal. Calcd. for C21H17N3O6S2: C, 53.49;

H, 3.63; N, 8.91. Found: C, 53.58; H, 3.60; N, 8.97.

Med Chem Res

123

Page 8: Synthesis and antioxidant activity of amidomethane sulfonyl-linked bis heterocycles

2-(40-(p-Methylphenyl)sulfonyl-10H-pyrrol-30-ylsulfonyl)-

N-(4-(p-methylphenyl)oxazol-2-yl)-acetamide 8b

Mp 159–161 �C; yield 70 %; IR (KBr) tmax: 3328, 1685,

1635, 1579, 1329, 1131 cm-1; 1H NMR (DMSO-d6,

400 MHz): d = 9.72 (1H, bs, C20–NH), 7.92 (1H, bs, CO–

NH), 7.12–7.82 (9H, m, Ar–H & C5–H), 6.84 (1H, s, C50–H),

6.74 (1H, s, C20–H), 4.38 (2H, s, SO2–CH2), 2.28 & 2.26 (6H,

s, Ar–CH3); 13C NMR (DMSO-d6, 100 MHz): d = 172.2

(C, C=O), 149.8 (C, C-2), 138.6 (C, C-4), 136.2 (CH, C-5),

133.4 (C, C-40), 126.8 (CH, C-20), 120.8 (CH, C-50), 116.0

(C, C-30), 57.8 (CH, CH2), 22.3 & 21.9 (Ar–CH3), 134.9 (C,

C-100), 134.5 (CH, C-400), 132.7 (C, C-1000), 131.3 (CH, C-300,C-500), 130.2 (CH, C-3000, C-5000), 129.9 (CH, C-4000), 128.4

(CH, C-200, C-600), 127.0 (CH, C-2000, C-6000); MS m/z: 499.57

[M?�]. Anal. Calcd. for C23H21N3O6S2: C, 55.29; H, 4.23; N,

8.41. Found: C, 55.37; H, 4.28; N, 8.49.

2-(40-(p-Chlorophenyl)sulfonyl-10H-pyrrol-30-ylsulfonyl)-

N-(4-(p-chlorophenyl)oxazol-2-yl)-acetamide 8c

Mp 185–187 �C; yield 75 %; IR (KBr) tmax: 3339, 1675,

1642, 1587, 1338, 1140 cm-1; 1H NMR (DMSO-d6,

400 MHz): d = 9.83 (1H, bs, C20–NH), 7.98 (1H, bs, CO–

NH), 7.24–7.92 (9H, m, Ar–H & C5–H), 6.85 (1H, s, C50–

H), 6.80 (1H, s, C20–H), 4.40 (2H, s, SO2–CH2); 13C NMR

(DMSO-d6, 100 MHz): d = 173.8 (C, C=O), 150.3 (C,

C-2), 139.3 (C, C-4), 137.2 (CH, C-5), 133.0 (C, C-40),127.4 (CH, C-20), 121.8 (CH, C-50), 116.9 (C, C-30), 57.6

(CH, CH2), 136.3 (C, C-100), 135.2 (CH, C-400), 134.8 (C,

C-1000), 133.2 (CH, C-300, C-500), 132.9 (CH, C-3000, C-5000),131.6 (CH, C-4000), 129.8 (CH, C-200, C-600), 128.2 (CH,

C-2000, C-6000); MS m/z: 540.41 [M?�]. Anal. Calcd. for

C21H15Cl2N3O6S2: C, 46.67; H, 2.79; N, 7.75. Found: C,

46.55; H, 2.73; N, 7.82.

2-(40-Phenylsulfonyl-10H-pyrrol-30-ylsulfonyl)-N-(4-

phenylthiazol-2-yl)acetamide 9a

Mp 156–158 �C; yield 69 %; IR (KBr) tmax: 3332, 1674,

1637, 1577, 1332, 1135 cm-1; 1H NMR (DMSO-d6,

400 MHz): d = 9.75 (1H, bs, C20–NH), 7.94 (1H, bs, CO–

NH), 7.18–7.80 (11H, m, Ar–H & C5–H), 6.83 (1H, s, C50–

H), 6.75 (1H, s, C20–H), 4.36 (2H, s, SO2–CH2); 13C NMR

(DMSO-d6, 100 MHz): d = 172.1 (C, C=O), 157.8 (C,

C-2), 144.2 (C, C-4), 133.2 (C, C-40), 127.0 (CH, C-20),122.6 (CH, C-5), 120.6 (CH, C-50), 116.3 (C, C-30), 56.7

(CH, CH2), 134.3 (C, C-100), 133.7 (CH, C-400), 132.4 (C,

C-1000), 131.9 (CH, C-300, C-500), 129.5 (CH, C-3000, C-5000),128.7 (CH, C-4000), 127.4 (CH, C-200, C-600), 126.6 (CH,

C-2000, C-6000); MS m/z: 487.58 [M?�]. Anal. Calcd. for

C21H17N3O5S3: C, 51.73; H, 3.51; N, 8.61. Found: C,

51.83; H, 3.56; N, 8.69.

2-(40-(p-Methylphenyl)sulfonyl-10H-pyrrol-30-ylsulfonyl)-

N-(4-(p-methylphenyl)thiazol-2-yl)-acetamide 9b

Mp 153–155 �C; yield 72 %; IR (KBr) tmax: 3324, 1682,

1634, 1575, 1327, 1127 cm-1; 1H NMR (DMSO-d6,

400 MHz): d = 9.76 (1H, bs, C20–NH), 7.93 (1H, bs, CO–

NH), 7.12–7.78 (9H, m, Ar–H & C5–H), 6.85 (1H, s, C50–

H), 6.73 (1H, s, C20–H), 4.37 (2H, s, SO2–CH2), 2.27 &

2.24 (6H, s, Ar–CH3); 13C NMR (DMSO-d6, 100 MHz):

d = 171.8 (C, C=O), 157.2 (C, C-2), 144.0 (C, C-4), 132.8

(C, C-40), 126.4 (CH, C-20), 121.8 (CH, C-5), 120.8 (CH,

C-50), 56.3 (CH, CH2), 22.1 & 21.8 (Ar–CH3), 115.4 (C,

C-30), 134.2 (C, C-100), 131.5 (CH, C-400), 130.3 (C, C-1000),129.1 (CH, C-300, C-500), 128.3 (CH, C-3000, C-5000), 127.9

(CH, C-4000), 126.3 (CH, C-200, C-600), 125.8 (CH, C-2000,C-6000); MS m/z: 515.64 [M?�]. Anal. Calcd. for

C23H21N3O5S3: C, 53.57; H, 4.10; N, 8.14. Found: C,

53.48; H, 4.05; N, 8.07.

2-(40-(p-Chlorophenyl)sulfonyl-10H-pyrrol-30-ylsulfonyl)-

N-(4-(p-chlorophenyl)thiazol-2-yl)-acetamide 9c

Mp 207–209 �C; yield 73 %; IR (KBr) tmax: 3337, 1680,

1585, 1643, 1337, 1139 cm-1; 1H NMR (DMSO-d6,

400 MHz): d = 9.80 (1H, bs, C20–NH), 7.97 (1H, bs, CO–

NH), 7.22–7.84 (9H, m, Ar–H & C5–H), 6.84 (1H, s, C50–

H), 6.78 (1H, s, C20–H), 4.40 (2H, s, SO2–CH2); 13C NMR

(DMSO-d6, 100 MHz): d = 172.6 (C, C=O), 158.2 (C,

C-2), 144.8 (C, C-4), 132.6 (C, C-40), 127.3 (CH, C-20),122.9 (CH, C-5), 121.5 (CH, C-50), 116.6 (C, C-30), 57.9

(CH, CH2), 135.8 (C, C-100), 134.2 (CH, C-400), 133.6 (C,

C-1000), 131.8 (CH, C-300, C-500), 130.5 (CH, C-3000, C-5000),129.1 (CH, C-4000), 128.0 (CH, C-200, C-600), 127.2 (CH,

C-2000, C-6000); MS m/z: 556.48 [M?�]. Anal. Calcd. for

C21H15Cl2N3O5S3: C, 45.32; H, 2.71; N, 7.55. Found: C,

45.46; H, 2.77; N, 7.62.

2-(40-Phenylsulfonyl-10H-pyrrol-30-ylsulfonyl)-N-(4-

phenyl-1H-imidazol-2-yl)acetamide 10a

Mp 184–186 �C, yield 68 %; IR (KBr) tmax: 3341, 1687,

1589, 1646, 1339, 1144 cm-1; 1H NMR (DMSO-d6,

400 MHz): d = 12.48 (1H, bs, C5–NH), 9.80 (1H, bs, C20–

NH), 7.98 (1H, bs, CO–NH), 7.20–7.94 (11H, m, Ar–H &

C5–H), 6.88 (1H, s, C50–H), 6.82 (1H, s, C20–H), 4.42 (2H,

s, SO2–CH2); 13C NMR (DMSO-d6, 100 MHz): d = 172.8

(C, C=O), 143.8 (C, C-4), 138.2 (C, C-2), 135.2 (CH, C-5),

133.9 (C, C-40), 127.5 (CH, C-20), 121.6 (CH, C-50), 116.6

(C, C-30), 57.5 (CH, CH2), 134.9 (C, C-100), 134.6 (CH,

C-400), 133.2 (C, C-1000), 132.6 (CH, C-300, C-500), 131.7

(CH, C-3000, C-5000), 130.1 (CH, C-4000), 128.8 (CH, C-200,C-600), 128.1 (CH, C-2000, C-6000); MS m/z: 470.53 [M?�].

Med Chem Res

123

Page 9: Synthesis and antioxidant activity of amidomethane sulfonyl-linked bis heterocycles

Anal. Calcd. for C21H18N4O5S2: C, 53.60; H, 3.85; N,

11.90. Found: C, 53.69; H, 3.90; N, 11.99.

2-(40-(p-Methylphenyl)sulfonyl-10H-pyrrol-30-ylsulfonyl)-

N-(4-(p-methylphenyl)-1H-imidazol-2-yl)acetamide 10b

Mp 197–199 �C; yield 70 %; IR (KBr) tmax: 3331, 1675,

1641, 1583, 1336, 1137 cm-1; 1H NMR (DMSO-d6,

400 MHz): d = 12.42 (1H, bs, C5–NH), 9.76 (1H, bs, C20–

NH), 7.94 (1H, bs, CO–NH), 7.13–7.88 (9H, m, Ar–H &

C5–H), 6.86 (1H, m, C50–H), 6.79 (1H, s, C20–H), 4.41 (2H,

s, SO2–CH2), 2.30 & 2.28 (6H, s, Ar–CH3); 13C NMR

(DMSO-d6, 100 MHz): d = 173.4 (C, C=O), 137.8 (C,

C-2), 143.4 (C, C-4), 136.0 (CH, C-5), 133.2 (C, C-40),127.0 (CH, C-20), 121.3 (CH, C-50), 115.1 (C, C-30), 57.2

(CH, CH2), 22.1 & 22.4 (Ar–CH3), 133.7 (C, C-100), 132.9

(CH, C-400), 132.0 (C, C-1000), 131.2 (CH, C-300, C-500),130.6 (CH, C-3000, C-5000), 129.3 (CH, C-4000), 128.6 (CH,

C-200, C-600), 127.4 (CH, C-2000, C-6000); MS m/z: 498.58

[M?�]. Anal. Calcd. for C23H22N4O5S2: C, 55.40; H, 4.44;

N, 11.23. Found: C, 55.47; H, 4.40; N, 11.15.

2-(40-(p-Chlorophenyl)sulfonyl-10H-pyrrol-30-ylsulfonyl)-

N-(4-(p-chlorophenyl)-1H-imidazol-2-yl)acetamide 10c

Mp 218–220 �C; yield 74 %; IR (KBr) tmax: 3347, 1678,

1652, 1596, 1346, 1147 cm-1; 1H NMR (DMSO-d6,

400 MHz): d = 12.49 (1H, bs, C5–NH), 9.82 (1H, bs, C20–

NH), 7.80 (1H, bs, CO–NH), 7.24–7.96 (9H, m, Ar–H &

C5–H), 6.92 (1H, s, C50–H), 6.84 (1H, s, C20–H), 4.45 (2H,

s, SO2–CH2); 13C NMR (DMSO-d6, 100 MHz): d = 173.2

(C, C=O), 144.4 (C, C-4), 138.8 (C, C-2), 136.8 (CH, C-5),

134.0 (C, C-40), 127.9 (CH, C-20), 122.4 (CH, C-50), 116.9

(C, C-30), 57.9 (CH, CH2), 135.2 (C, C-100), 134.8 (CH,

C-400), 134.0 (C, C-1000), 133.1 (CH, C-300, C-500), 132.5

(CH, C-3000, C-5000), 130.3 (CH, C-4000), 129.1 (CH, C-200,C-600), 128.6 (CH, C-2000, C-6000); MS m/z: 539.43 [M?�].

Anal. Calcd. for C21H16Cl2N4O5S2: C, 46.75; H, 2.99; N,

10.38. Found: C, 46.81; H, 3.05; N, 10.46.

Antioxidant activity

The compounds 5–10 were tested for antioxidant property

by DPPH, NO, and H2O2 methods.

DPPH radical scavenging activity

The hydrogen atom or electron donation ability of the

compounds was measured from the bleaching of the purple

colored methanol solution of 2,2,-diphenyl-1-picrylhy-

drazyl radical (DPPH). This property makes it suitable for

spectrophotometric studies. 1 ml of various concentrations

of the test compounds (50, 100, 150 and 200 lg/ml) in

methanol were added to 4 ml of 0.004 % (w/v) methanol

solution of DPPH. After a 30 min incubation period at

room temperature, the absorbance was read against blank at

517 nm. Ascorbic acid was used as the standard. The

percent of inhibition (I %) of free radical production from

DPPH was calculated by the following equation

I % ¼ Acontrol�Asample

� �=Ablank

� �� 100;

where Acontrol was the absorbance of the control reaction

(containing methanolic DPPH and Ascorbic acid), Asample

was the absorbance of the test compound (containing

methanolic DPPH and test compound), and Ablank was the

absorbance of the blank (containing only methanolic

DPPH). Tests were carried out in triplicate. The IC50 values

of all the tested compounds can be calculated in DPPH

method.

Nitric oxide (NO) scavenging activity

Nitric oxide scavenging activity was measured by slightly

modified methods of Green et al. 1982 and Marcocci et al.

1994. Nitric oxide radicals (NO) were generated from

sodium nitroprusside. 1 ml of sodium nitroprusside

(10 mm) and 1.5 ml of phosphate buffer saline (0.2 M, pH

7.4) were added to different concentrations (50, 100, 150,

and 200 lg/ml) of the test compounds and incubated for

150 min at 25 �C. After incubation 1 ml of the reaction

mixture was treated with 1 ml of Griess reagent (1 %

sulfanilamide, 2 % H3PO4 and 0.1 % naphthylethylene-

diamine dihydrochloride). The absorbance of the chro-

matophore was measured at 546 nm. Ascorbic acid was

used as standard. Nitric oxide scavenging activity was

calculated by the following equation

% of scavenging ¼ Acontrol�Asample

� �=Ablank

� �� 100;

where Acontrol was the absorbance of the control reaction

(containing all reagents and Ascorbic acid), Asample was the

absorbance of the test compound (containing all reagents

and test compound), and Ablank was the absorbance of the

blank (containing only reagents). Tests were carried out in

triplicate.

Hydrogen peroxide (H2O2) scavenging activity

The H2O2 scavenging ability of the test compound was

determined according to the method of Ruch et al. 1989. A

solution of H2O2 (40 mm) was prepared in phosphate

buffer (pH 7.4). 50, 100, 150, and 200 lg/ml concentra-

tions of the test compounds in 3.4 ml phosphate buffer

were added to H2O2 solution (0.6 ml, 40 mm). The

absorbance value of the reaction mixture was recorded at

230 nm. The percent of scavenging of H2O2 was calculated

by the following equation

Med Chem Res

123

Page 10: Synthesis and antioxidant activity of amidomethane sulfonyl-linked bis heterocycles

% of scavenging ¼ Acontrol�Asample

� �=Ablank

� �� 100;

where Acontrol was the absorbance of the control reaction

(containing all reagents and Ascorbic acid), Asample was the

absorbance of the test compound (containing all reagents

and test compound), and Ablank was the absorbance of the

blank (containing only reagents). Tests were carried out in

triplicate.

Acknowledgments The authors, B. P. Talapuru and L. Gopala, are

thankful to University Grants Commission (UGC), New Delhi for the

sanction of UGC-BSR fellowship. The authors are grateful to Council

of Scientific and Industrial Research (CSIR), New Delhi for financial

assistance under major research project.

References

Atkins JM, Vedejs E (2005) A two-stage iterative process for the

synthesis of poly-oxazoles. Org Lett 7:3351–3354

Bagley MC, Buck RT, Hind SL, Moody CJ (1998) Synthesis of

functionalised oxazoles and bis-oxazoles. J Chem Soc Perkin

Trans 1:591–600

Basha NM, Lavanya G, Padmaja A, Padmavathi V (2013) Synthesis

and antioxidant activities of acetamidomethylsulfonyl bis

heterocycles-oxazolyl/thiazolyl/imidazolyl-1,3,4-oxadiazoles.

Arch Pharm Chem Life Sci 346:511–520

Bellina F, Cauteruccio S, Rossi R (2007) Synthesis and biological

activity of vicinal diaryl-substituted 1H-imidazoles. Tetrahedron

63:4571–4624

Bemis GW, Murcko MA (1996) The properties of known drugs. 1.

Molecular frameworks. J Med Chem 39:2887–2893

Bhattacharyya A, Bajpai M (2013) Development and oral bioavail-

ability of self emulsifying formulation of ketoconazole. Int J

Pharm Sci Nanotechnol 5:1858–1865

Burits M, Bucar F (2000) Antioxidant activity of nigella sativa

essential oil. Phytother Res 14:323–328

Cuendet M, Hostettmann K, Potterat O, Dyatmiko W (1997) Iridoid

glucosides with free radical scavenging properties from Fagraea

blumei. Helv Chim Acta 80:1144–1152

Ertl P, Jelfs S, Muhlbacher J, Schuffenhauer A, Selzer P (2006) Quest

for the rings. In silico exploration of ring universe to identify

novel bioactive heteroaromatic scaffolds. J Med Chem

49:4568–4573

Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS,

Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15N]

nitrate in biological fluids. Anal Biochem 126:131–138

Gupton JT (2006) Pyrrole natural products with antitumor properties.

Top Heterocycl Chem 2:53–92

Hinterding K, Alons-Diaz D, Waldmann H (1998) Organic synthesis

and biological signal transduction. Angew Chem Int Ed

37:688–749

Hung DT, Jamison TF, Schreiber SL (1996) Understanding and

controlling the cell cycle with natural products. Chem Biol

3:623–639

Jin Z (2006) Imidazole, oxazole and thiazole alkaloids. Nat Prod Rep

23:464–496

Jin Z (2009) Muscarine, imidazole, oxazole and thiazole alkaloids.

Nat Prod Rep 26:382–445

Kleeman A, Enge J, Kutscher B, Reichert D (2001) Pharmaceutical

substances (syntheses, patents, applications), 4th edn. Georg

Thieme verlag, Stuttgart, New York, pp. 241–242, 488–489, 553,

825–826, 1154, 1598–1599

Laet ADe, Hehenkamp JJJ, Wife RL (2000) Finding drug candidates

in virtual and lost/emerging chemistry. J Heterocycl Chem

37:669–674

Lewis JR (2000) Amaryllidaceae, muscarine, imidazole, oxazole,

thiazole and peptide alkaloids, and other miscellaneous alka-

loids. Nat Prod Rep 17:57–84

Little TL, Webber SE (1994) A simple and practical synthesis of

2-aminoimidazoles. J Org Chem 59:7299–7305

Lombardino JG, Wiseman EH (1974) Preparation and antiinflamma-

tory activity of some nonacidic trisubstituted imidazoles. J Med

Chem 17:1182–1188

Marcocci L, Maguire JJ, Droylefaix MT, Packer L (1994) The nitric

oxide-scavenging properties of ginkgo biloba extract EGb 761.

Biochem Biophys Res Commun 201:748–755

Misra NC, Ila H (2010) 4-Bis(methylthio)methylene-2-phenyloxazol-

5-one: versatile template for synthesis of 2-phenyl-4,5-function-

alized oxazoles. J Org Chem 75:5195–5202

Mitchison TJ (1994) Towards a pharmacological genetics. Chem Biol

1:3–6

Muralikrishna A, Venkatesh BC, Padmavathi V, Padmaja A, Konda-

iah P, Krishna NS (2012) Synthesis, antimicrobial and cytotoxic

activities of sulfone linked bis heterocycles. Eur J Med Chem

54:605–614

Nefzi A, Ostresh JM, Houghten RA (1997) The current status of

heterocyclic combinatorial libraries. Chem Rev 97:449–472

Oncu S, Punar M, Erakosy H (2004) Comparative activities of b-

lactam antibiotics and quinolones for invasive streptococcus

pneumoniae isolates. Chemotherapy 50:98–100

Padmavathi V, Mohan AVN, Triveni P, Shazia A (2009) Synthesis

and bioassay of a new class of heterocycles pyrrolyl oxadiazoles/

thiadiazoles/triazoles. Eur J Med Chem 44:2313–2321

Potewar TM, Ingale SA, Srinivasan KV (2008) Catalyst-free efficient

synthesis of 2-aminothiazoles in water at ambient temperature.

Tetrahedron 64:5019–5022

Reddy DB, Babu NC, Padmavathi V, Sumathi RP (1999) A novel

route for the synthesis of unsaturated oxo sulfones and bissulf-

ones. Synthesis 3:491–494

Reddy GM, Reddy PR, Padmavathi V, Padmaja A (2013) Synthesis

and antioxidant activity of a new class of mono- and bis-

heterocycles. Arch Pharm Chem Life Sci 346:154–162

Riego E, Hernandez D, Albericio F, Alvarez M (2005) Directly linked

polyazoles: important moieties in natural products. Synthesis

12:1907–1922

Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and

inhibition of intercellular communication by antioxidant cate-

chins isolated from Chinese green tea. Carcinogensis

10:1003–1008

Schreiber SL (1998) Chemical genetics resulting from a passion for

synthetic organic chemistry. Bioorg Med Chem 6:1127–1152

Sneyd JR (2012) Novel etomidate derivatives. Curr Pharm Des

18:6253–6256

Vedejs E, Barda DA (2000) Progress toward synthesis of diazonamide

a. preparation of a 3-(oxazol-5-yl)-4-trifluoromethylsulfonylox-

yindole and its use in biaryl coupling reactions. Org Lett

2:1033–1035

Wipf P (1995) Synthetic studies of biologically active marine

cyclopeptides. Chem Rev 95:2115–2134

Yeh VSC (2004) Recent advances in the total syntheses of oxazole-

containing natural products. Tetrahedron 60:11995–12042

Zhang J, Ciufolini MA (2009) Total synthesis of siphonazoles by the

use of a conjunctive oxazole building block. Org Lett

11:2389–2392

Med Chem Res

123