syllabus(for(guts(lecture(on(amino(acids -...

6
Page | 1 Syllabus for GUTS lecture on Amino Acids I. Introduction. Amino acids serve a variety of functions in cells. They are the building blocks for proteins composed of hundreds of amino acids. In addition amino acids can be metabolized to provide energy for cells, provide building blocks for other biologically important compounds such as glucose, fatty acids and neurotransmitters, and can function on their own as neurotransmitters. This GUTS lecture focuses on the structural and chemical features of amino acids that you need to know before learning in later lectures how amino acids serve these functions. The primary focus of this lecture is on the 20 amino acids commonly found in proteins. II. The 20 amino acids commonly found in proteins have the general structure shown below: a central carbon atom, called the αcarbon, bonded to an amino group, a carboxylate group, a hydrogen atom and a variable side chain designated R that is different for each of the 20 amino acids. At physiological pH (7.4) both the amino group (a basic functional group) and the carboxylate group (acidic functional group) are ionized. At this pH amino acids are dipolar ions (contains oppositely charged groups but the overall charge on the molecule is 0). The degree of ionization of acids and bases changes with pH. The same is true for the acidic and basic functional groups on amino acids. Each acid or base has a characteristic dissociation constant. In biochemist we usually use the dissociation constant K a to for both acids and bases. K a is simply the ratio of the nonprotonated form of a molecule/protonated form in water at equilibrium. In the early 1920s, two scientists studying acidbase regulation in humans derived the following equation known as the HendersonHasselbalch equation: pH = pK a + log [A ]/[HA]. pK a is just the negative log of K a .

Upload: dothu

Post on 09-May-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

Page  |  1    

Syllabus  for  GUTS  lecture  on  Amino  Acids    I.  Introduction.

Amino  acids  serve  a  variety  of  functions  in  cells.    They  are  the  building  blocks  for  proteins  composed  of  hundreds  of  amino  acids.  In  addition  amino  acids  can  be  metabolized  to  provide  energy  for  cells,  provide  building  blocks  for  other  biologically  important  compounds  such  as  glucose,  fatty  acids  and  neurotransmitters,  and  can  function  on  their  own  as  neurotransmitters.    This  GUTS  lecture  focuses  on  the  structural  and  chemical  features  of  amino  acids  that  you  need  to  know  before  learning  in  later  lectures  how  amino  acids  serve  these  functions.    The  primary  focus  of  this  lecture  is  on  the  20  amino  acids  commonly  found  in  proteins.

 

II. The  20  amino  acids  commonly    found  in  proteins  have  the  general  structure  shown  below:    a  central  carbon  atom,  called  the  α-­‐carbon,  bonded  to  an  amino  group,  a  carboxylate  group,  a  hydrogen  atom  and  a  variable  side  chain  designated  R  that  is  different  for  each  of  the  20  amino  acids.  

 

At  physiological  pH  (7.4)  both  the  amino  group  (a  basic  functional  group)  and  the  carboxylate  group  (acidic  functional  group)  are  ionized.    At  this  pH  amino  acids  are  dipolar  ions  (contains  oppositely  charged  groups  but  the  overall  charge  on  the  molecule  is  0).    The  degree  of  ionization  of  acids  and  bases  changes  with  pH.    The  same  is  true  for  the  acidic  and  basic  functional  groups  on  amino  acids.        Each  acid  or  base  has  a  characteristic  dissociation  constant.    In  biochemist  we  usually  use  the  dissociation  constant  Ka  to  for  both  acids  and  bases.    Ka  is  simply  the  ratio  of  the  nonprotonated  form  of  a  molecule/protonated  form  in  water  at  equilibrium.      In  the  early  1920s,  two  scientists  studying  acid-­‐base  regulation  in  humans  derived  the  following  equation  known  as  the  Henderson-­‐Hasselbalch  equation:        pH  =  pKa  +  log  [A-­‐]/[HA].    pKa  is  just  the  negative  log  of  Ka.            

Page  |  2    

Like  Ka,  pKa  is  a  constant.    Looking  at  this  relationship  you  can  see  that  when  the  ratio  [A-­‐

]/[HA]  =  1.0,  log  of  1.0  =  0,  and  pH  =  pKa.  Thus  one  way  to  think  of  pKa  is  that  the  value  is  equal  to  the  pH  at  which  50%  of  an  acid  or  base  will  be  protonated  and  50%  will  not.  

 A  pH  of  approximately  2.2  is  the  average  pKa  for  the  α-­‐carboxylic  acid  group  on  an  amino  acid.    pH  7.4  is  5  orders  of  above  the  pKa  for  this  group  and  so  >  99.9999%  of  the  COOH  groups  on  the  amino  acid  will  have  lost  their  protons  at  this  pH  and  will  be  negatively  charged.    If  acid  is  added,  the  carboxylate  group  will  take  up  the  protons  and  buffer  the  pH  change.    Now  consider  the  α-­‐amino  group,  for  which  the  pKa  (for  NH3

+  losing  a  proton)  is  9.4.      At  pH  =  7.4,  about  99.9%  of  α-­‐amino  groups  will  be  in  the  NH3

+  form.    At  pH  =  9.4,  50%  of  α-­‐amino  groups  will  have  lost  a  proton  to  become  NH2  and  will  no  longer  carry  a  charge.  If  base  is  added  to  the  system,  some  of  the  NH3

+  will  lose  a  proton  and  thus  will  buffer  the  pH  change.    From  the  above  you  should  see  that  amino  acids  are  effective  buffers.    They  are  also  important  buffers  in  cells  because  their  concentration  is  very  high  there.    

 III.  In  proteins,  amino  acids  are  linked  together  by  peptide  bonds,  formed  in  a  

dehydration  reaction  (water  is  removed)  between  the  α-­‐carboxylate  group  on  one  amino  acid  and  the  α-­‐amino  group  on  another  amino  acid.    In  cells,  the  amino  acid  chain  always  grows  left  to  right  as  drawn  in  the  figure  below.    Since  this  always  leaves  a  nonbonded  amino  group  on  the  left  end  and  a  nonbonded  carboxylate  group  on  the  right  end,  these  ends  are  called  the  amino-­‐terminal  end  and  the  carboxy-­‐terminal  end  respectively.    The  direction  of  chain  growth  is  from  the  amino-­‐terminal  end  toward  the  carboxy-­‐terminal  end.    In  cells,  the  specific  amino  acid  added  during  chain  growth  is  dictated  by  the  genetic  code  in  DNA.

 

   

=  peptide  bond  

Page  |  3    

Due  to  its  proximity  to  a  carbon  with  a  double  bond,  the  peptide  bond  has  partial  double  bond  character  –  specifically  it  is  shorter  than  a  single  bond  and  is  rigid  and  planar.    This  prevents  rotation  around  the  peptide  bond.    The  rest  of  the  bonds  in  the  backbone  of  the  chain,  as  well  as  the  bond  linking  the  R  groups  to  the  backbone,  can  rotate  freely,  allowing  the  chain  to  assume  a  variety  of  conformations  (shapes)  in  space.    

IV. Amino  acids  are  generally  classified  on  the  basis  of  the  properties  of  their  side  chains.    

In  biochemistry,  the  most  useful  classification  relates  to  the  presence  or  absence  of  charged  or  polar  groups  on  the  side  chain.    This  distinction  is  important  because  polarity  or  its  absence  determines  whether  a  side  chain  is  hydrophilic  or  hydrophobic  and  whether  it  can  form  hydrogen  bonds  or  ionic  bonds  with  other  side  chains.    The  3  categories  of  amino  acids  are  amino  acids  with  basic  or  acidic  side  chains,  amino  acids  with  uncharged  polar  side  chains,  and  amino  acids  with  nonpolar  side  chains.    You  are  not  expected  be  able  to  draw  or  recognize  the  individual  amino  acids  described  below,  BUT  YOU  WILL  NEED  TO  BE  ABLE  TO  DIFFERENTIATE  BETWEEN  AN  ACIDIC,  BASIC,  UNCHARGED  POLAR  AND  HYDROPHOBIC  AMINO  ACID  ON  THE  BASIS  OF  ITS  STRUCTURE.    YOU  ARE  ALSO  EXPECTED  TO  KNOW  WHICH  AMINO  ACID  FALLS  INTO  EACH  CATEGORY  AND  THE  3  LETTER  ABBREVIATIONS  FOR  EACH  AMINO  ACID.  

V.                Amino  acids  with  acidic  or  basic  side  chains  –  contain  functional  groups  that  are  charged  at  or  near  physiological  pH.    These  side  chains  are  hydrophilic  due  to  their  charge.   Histidine  is  the  only  one  of  the  charged  polar  amino  acids  with  a  pKa  somewhat  near  physiological  range.  This  is  because  the  imidazole  side  chain  on  histidine  is  weakly  basic  

Page  |  4    

and  releases  its  proton  at  relatively  low  pH  compared  to  the  amine  group  found  on  other  basic  amino  acid  side  chains.  In  solution  at  pH  =  7.4,  the  side  chain  is  almost  99%  uncharged.    If  acid  is  added,  histidine  will  take  up  some  of  the  protons,  thereby  buffering  the  pH  change  in  the  cell  or  surrounding  aqueous  environment.    This  feature  is  very  important  in  understanding  how  proteins  in  serum  and  especially  in  hemoglobin  help  to  buffer  the  increased  acidity  found  in  metabolically  active  tissues  and  in  some  disease  states.

VI. Amino  acids  with  uncharged  polar  side  chains  –  contain  functional  groups  that  have  a  net  zero  charge  at  physiological  pH  and  that  can  form  hydrogen  bonds.    These  side  chains  are  hydrophilic  because  their  polar  groups  form  hydrogen  bonds  with  water. Most  members  of  this  group  have  a  hydroxyl  group  (OH)  or  an  amide  group  (H2N-­‐C=O)  on  the  side  chain.    With  the  exception  of  tyrosine,  these  groups  do  not  gain  or  lose  protons.    Tyrosine  is  considered  a  group  member  because  the  pKa  for  loss  of  a  proton  from  the  hydroxyl  group  is  far  above  physiological  pH;  the  tyrosine  side  chain  is  uncharged  in  solution  at  physiological  pH.      

Cysteine  is  important  in  protein  structure  for  a  second  reason.    The  thiol  group  on  the  cysteine  side  chain  can  form  a  covalent  bond  with  other  nearby  cysteines;  this  type  of  bond  is  called  a  disulfide  bond.    

   

Page  |  5    

Disulfide  bonds  stabilize  the  three-­‐dimensional  structures  of  proteins,  and  in  some  cases  the  quaternary  structures  (see  GUTS  lecture  on  Protein  Structure  if  you  are  not  familiar  with  these  terms).    In  eukaryotes,  disulfide  bonds  are  found  only  in  secretory  proteins,  lysosomal  proteins,  and  the  exoplasmic  domains  of  membrane-­‐bound  proteins.  This  is  because  the  environment  in  the  cytoplasm  and  nucleus  favors  reduction  of  the  disulfide  bond.  

VII. Amino  acids  with  nonpolar  side  chains  –  contain  only  functional  groups  that  have  a  net  zero  charge  at  physiological  pH  and  that  do  not  participate  in  hydrogen  or  ionic  bonds.    Typically  these  side  chains  are  hydrocarbon-­‐rich,  are  therefore  hydrophobic,  and  in  most  proteins  are  more  often  found  in  the  interior  where  they  are  protected  from  water.      In  membrane-­‐bound  proteins,  the  opposite  is  true  since  the  exterior  of  the  protein  interacts  with  the  hydrophobic  lipid  bilayer.    Interaction  between  hydrophobic  amino  acids  is  a  major  force  in  stabilizing  protein  structure.  Hydrophobic  patches  may  also  be  found  on  the  surfaces  of  some  cytoplasmic  proteins  where  they  often  form  sites  that  interact  with  other  proteins.  

 

One  specific  amino  acid  from  this  group  is  particularly  important  to  remember  when  thinking  about  protein  structure.    This  is  proline.    Note  that  the  side  chain  forms  bonds  at  2  sites  along  the  proline  backbone.    This  confers  unusually  large  rigidity  on  the  backbone  since  rotation  around  the  N-­‐C  bond  is  severely  constrained;  the  angle  of  the  backbone  is  also  unusual  here.    Together  these  properties  mean  that  there  is  a  “kink”  in  the  protein  backbone  where  proline  is  incorporated.

Page  |  6    

VIII.  The  chirality  of  amino  acids  affects  their  functions.      If  you  look  back  at  the  structures  of  the  amino  acids  you  will  see  that,  with  the  exception  of  glycine,  all  amino  acids  have  4  different  functional  groups  bound  to  the  central  α-­‐carbon.    The  α-­‐carbon  is  thus  said  to  be  chiral.        

   Amino  acids  that  have  a  chiral  α-­‐carbon  exist  in  two  forms,  called  D  and  L,  which  are  mirror  images  of  each  other.    The  D  and  L  forms  are  stereoisomers,  meaning  that  although  they  have  the  same  functional  groups  attached  to  the  central  carbon  they  present  their  functional  groups  in  different  directions  in  space;  in  addition,  the  molecules  cannot  be  superimposed  in  space  simply  by  rotating  the  molecules.    All  amino  acids  found  in  human  proteins  have  the  L  configuration.    However  both  configurations  occur  in  some  plants  and  bacteria,  so  D-­‐amino  acids  are  part  of  our  diets.    Our  bodies  contain  enzymes  that  can  break  down  D-­‐amino  acids  and  then  utilize  the  carbon  skeletons  for  fuel.    In  addition,  some  D-­‐amino  acids  are  synthesized  in  neuronal  cells  and  act  as  neurotransmitters.  

 

To  check  your  learning,  go  online  and  take  the  Post-­‐Test  for  the  GUTS  lecture  on  Amino  Acids.    This  is  found  at  the  end  of  the  recorded  lecture.