swot-gpm exploring the complementarities in altimetry … · 2017-06-15 · to explore how...

5
SWOT-GPM Exploring the complementarities in altimetry and rainfall measurement from satellite, in tropical basins. PIs : Marielle Gosset (IRD, GET, France) and Daniel Vila (INPE, CPTEC, Brazil) coIs : Adrien Paris, Rodrigo Païva, Stephane Calmant, Sylvain Biancamaria, Romulo Oliveira 1. Introduction & Objectives The project falls into the general objective of combining satellite missions in order to optimize the interest of each mission. The specific objective is to use Rainfall estimation from satellite (GPM constellation / Megha-Tropiques mission) to better understand and predict the river discharge variability as it will observed by SWOT. The topic is important to improve SWOT applications in 2 ways : i) With the combination of Geostationary Meteorological satellites and the GPM constellation, rainfall information is gathered with very high spatial and temporal resolution (hour / few kilometers) compared to the expected sampling of the SWOT mission. This small scale information on rainfall – together with hydrological modeling – would be usefull to document and potentially predict discharge variability between SWOT overpasses and help developing value added , high resolution SWOT discharge products ii) A promising use of SWOT data is through hydrological models ; for instance through data assimilation of SWOT derived water heights or SWOT derived discharge in hydrological models ; Paris et al. have also derived a method to generate a SWOT discharge ‘first guess’ product using model/observation trained height/discharge relationship. For both type of applications, understanding the uncertainties in the model based discharge and quantitative information on the hydrological model error structure is crucial. One important source of error in hydrological simulations is the propagation of the errors from the forcing fields – like rainfall . The first contribution of this proposal -in link with other SWOT proposal -is in assessing satellite rainfall product performances and uncertainties over several Tropical basins, understanding their scale dependence, analyzing the error structure (i.e. space-time correlation) and studying their propagation through hydrological models, for discharge simulation in various hydro-meteorological context. The project will benefit from the experience of CPTEC in the domain of rainfall estimation and validation, and rainfall error propagation in Brazil (Falk et al. 2015 a and b), and of the French Megha-Tropiques team over Africa (Casse et al, 2015, Roca et al, 2015). The data from the CHUVA campaigns (Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolving modeling and to the GPM ) and from the future SOS (Sistema de Observaçao e previsao de tempo Severo) project provide radar based rainfall estimates under many rainfall regimes in Brazil. In Africa, high resolution gauge network and some radar data has been collected through the MTGV effort. This reference data sets are quite unique in the Tropics.

Upload: lyquynh

Post on 21-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

SWOT-GPMExploringthecomplementaritiesinaltimetryandrainfallmeasurementfrom

satellite,intropicalbasins.

PIs:MarielleGosset(IRD,GET,France)andDanielVila(INPE,CPTEC,Brazil)

coIs:AdrienParis,RodrigoPaïva,StephaneCalmant,SylvainBiancamaria,RomuloOliveira

1.Introduction&ObjectivesThe project falls into the general objective of combining satellite missions in order tooptimizetheinterestofeachmission.ThespecificobjectiveistouseRainfallestimationfromsatellite (GPMconstellation/Megha-Tropiquesmission) tobetterunderstandandpredict the river discharge variability as it will observed by SWOT. The topic isimportanttoimproveSWOTapplicationsin2ways:

i) With the combination of Geostationary Meteorological satellites and theGPMconstellation,rainfallinformationisgatheredwithveryhighspatialandtemporal resolution (hour / few kilometers) compared to the expectedsampling of the SWOTmission. This small scale information on rainfall –togetherwith hydrologicalmodeling –would be usefull to document andpotentiallypredictdischargevariabilitybetweenSWOToverpassesandhelpdevelopingvalueadded,highresolutionSWOTdischargeproducts

ii) ApromisinguseofSWOTdataisthroughhydrologicalmodels;forinstancethroughdataassimilationofSWOTderivedwaterheightsorSWOTderiveddischargeinhydrologicalmodels;Parisetal.havealsoderivedamethodtogenerate a SWOT discharge ‘first guess’ product using model/observationtrained height/discharge relationship. For both type of applications,understanding the uncertainties in the model based discharge andquantitativeinformationonthehydrologicalmodelerrorstructureiscrucial.Oneimportantsourceoferrorinhydrologicalsimulationsisthepropagationoftheerrorsfromtheforcingfields–likerainfall.

Thefirstcontributionofthisproposal-inlinkwithotherSWOTproposal-isinassessingsatellite rainfall product performances and uncertainties over several Tropical basins,understanding their scale dependence, analyzing the error structure (i.e. space-timecorrelation)and studyingtheirpropagationthroughhydrologicalmodels, fordischargesimulationinvarioushydro-meteorologicalcontext.TheprojectwillbenefitfromtheexperienceofCPTECinthedomainofrainfallestimationandvalidation,andrainfallerrorpropagationinBrazil(Falketal.2015aandb),andoftheFrenchMegha-Tropiques teamoverAfrica(Casseetal,2015,Rocaetal,2015).ThedatafromtheCHUVAcampaigns(CloudprocessesoftHemainprecipitationsystemsinBrazil:AcontribUtiontocloudresolvingmodelingandtotheGPM)andfromthefutureSOS (SistemadeObservaçaoeprevisaode tempoSevero) projectprovide radarbasedrainfallestimatesundermanyrainfallregimesinBrazil.InAfrica,highresolutiongaugenetworkandsomeradardatahasbeencollectedthroughtheMTGVeffort.ThisreferencedatasetsarequiteuniqueintheTropics.

2.ApproachTheworkwillbebasedon:-satelliterainfallproducts(andtheirassociatederrormodelwhenavailable)-highqualitygroundbasedobservationsindedicatedGVsites(AfricaandBrazil)-aHydrologicalmodel(MGB)setupinseveralbasinsofinterest.-Dischargedatafrominsituobservations(scarceandwhenavailable).-Altimetrydata fromobservations (current satellites)or simulations (toemulateSWOTdata,usingSWOTsimulatorinpre-launchperiod).Ensemblerainfieldsaccountingforuncertainties,developedinthepresentproposal,willfeed into the MGB model which has been already set up in several Brazilian basins,including the Amazon ( Paiva et al. 2013) and in 2major rivers in Africa : Congo andNiger.Modeloutputandthediscrepancieswithobservationwillbeanalyzed.Sensitivitystudieswillbecarriedouttoassesstheimpactofvarioustypeofuncertainties(fromtheforcing ; from the model ; from the altimetry data and specially its sampling ) in thepredicteddischarge.3.AnalysisandanticipatedresultsThe work will be focusing on a selection of Tropical basins that will be used asdemonstratorsof the interestof combiningsatellitealtimetry, satellite rainfallproductsandmodeltounderstand–andpredict-thedischarge.Wewillintendtounderstandandqualifybetterthespace-timescalesofprocesseswhichcanberesolvedgiventhevarioussourcesofuncertainties.3.1)Combiningaltimetryandrainfallestimationforfloodprediction.TheFigure1and2belowillustratessomeoftheexpectedoutputswiththeexampleoftheNigerRiver, inNiamey, anareaprone toheavy floodingdue to the combinationof twoeffects : slowrise theriver (detectablewithaltimetry)and fast responsedue tonearbyheavyrainfallevents(detectablewithsatelliterainfallanalysis).

Figure1 :TheNiger rivernearNiamey (red star) showing themainriverand the3 rightbanktributaries,upstreamofNiamey,thatareresponsibleforheavyfloodingearlyduringtherainyseason(July-september)beforethemainfloodpeakarrival(nov-december).Theseearly season floods –also called red floods- have been increasing drastically in the lastdecade(Casseetal.,2015,aandb).

Left : superimpositionof currentoperationalaltimetry tracks.Right : the future samplingwithSWOTII – detecting predicting the slow rise of the Niger river ahead of Niamey thanks tospatialaltimetry

Thebluelineillustratesaprediction(5daysahead)ofthedischargeinNiameyduetothepropagationofthemainpeakupstreamNiamey.II- Fast response of the Niger in Niamey to the heavy rainfall system propagatingthroughthearea.a)Daily rainfallmaps (fromTAPEERproduct) that triggered2peaksof the so called‘redflood’inNiameythatreachedafirsthistoricalrecordinAugust2012.

b) Zoom on the discharge simulated observed (black) or simulated (red) inNiameyduringthefloodperiod.ThefloodlevelinNiameyisdefinedbylocalauthoritiesatthe1700m3/slevel.

Figure 2 : Towards a prediction of Niger river flood in Niamey by combiningmonitoringof theupstreamdischargeby satellitealtimetryandsimulating thelocalrunoffduetoheavystormsnearNiamey.

3.2)Combiningaltimetryandrainfallestimation–consistencystudies.Checkingtheconsistencybetweenindependentsatellitemeasurementsofthewatercyclecanbeusedasanindirectvalidationmethod.Acorollaryoutcomeofthepresentworkistoexplorehowaltimetrymeasurementcanhelpassessingthebiasesinrainfallproductsandtheirstabilityintime,inregionswherenoraingaugesareavailable.ApreliminaryillustrationispresentedbelowovertheCongoriverregion.Parisetal.havedevelopedamethodtoderiveafirstguessdischargefromaltimetrydataanywherealonga river : themethod isbasedonderivingheight-discharge relationshipfrommeasured height and simulated discharge. The robustness of the derived height-discharge relationship is impacted by the quality of the rainfield used for forcing.Preliminarycomparisonsareshownabovewhen2differentforcingareusedtoderivetherelationship in the Congo river area. The left panel shows the results obtained usingTMPA3B32(v7–gaugeadjustedversion)andtherightpanelisfortheMegha-TropiquesmissionTAPEERproduct(Rocaetal.,2016)AltimetryHeight–DischargerelationshipsderivedfromMGBinCongo(Ubangui)for2differentsatelliterainfallproductsasforcinga/TMPA3B42b/TAPEER

Figure 3 : checking inter-annual consistency between the satelliteobservedheight(x)and thesatelliterainfallbasedsimulateddischarge(y) over theUbangui sub-basinoftheCongo.2a)forcingoftheMGBmodelbasedonTMPA3B42v7(gaugeadjusted)2b)forcingbasedonTAPEERproduct.Citedreferences:

FalckA.,MaggioniV.,TomasellaJ.,VilaD.andDinizF.,2015a:PropagationofSatellitePrecipitationUncertaintiesthroughaDistributedHydrologicModel:ACase

StudyintheTocantins-AraguaiaBasininBrazil.JournalofHydrology.10.1016/j.jhydrol.2015.05.042

FalckA.,Vila.D.TomassellaJ.andMaggioniV.,2015b,AvaliaçãodeumModelo

EstocásticodeErroMultidimensionalAplicadoaEstimativasdePrecipitaçãoporSatélite,RevistaBrasileiradeMeteorologia,RBMET-2014-0042

RocaR,BrogniezH,ChambonP,ChometteO,ClochéS,GossetME,MahfoufJ-F,RaberantoPandViltardN(2015)TheMegha-Tropiquesmission:areviewafterthreeyearsinorbit.Front.EarthSci.3:17.doi:10.3389/feart.2015.00017

Casse,C.,M.Gosset,C.Peugeot,V.Pedinotti,A.Boone,B.A.Tanimoun,B.Decharme,2015;PotentialofsatelliterainfallproductstopredictNigerRiverfloodeventsinNiamey;AtmosphericResearch,doi:10.1016/j.atmosres.2015.01.010.

Casse,C.andM.Gosset,2015:AnalysisofhydrologicalchangesandfloodincreaseinNiameybasedonthePERSIANN-CDRsatelliterainfallestimateandhydrologicalsimulationsoverthe1983–2013period.Proc.IAHS,92,1–7,2015proc-iahs.net/92/1/2015/OpenAccessdoi:10.5194/piahs-92-1-2015

Paiva,R.C.D.,W.Collischonn,M.-P.Bonnet,L.G.G.deGoncalves,S.Calmant,A.Getirana,andJ.SantosdaSilva(2013b),Assimilatinginsituandradaraltimetrydataintoalarge-scalehydrologic-hydrodynamicmodelforstreamflowforecastintheAmazon,Hydrol.EarthSyst.Sci.,17,2929–2946,doi:10.5194/hess-17-2929-2013.