supporting information industrial olefins, natural oils ... · gas chromatography analysis was...

50
1 Supporting Information Biomolecule-derived supported cobalt nanoparticles for hydrogenation of industrial olefins, natural oils and more in water Anahit Pews-Davtyan, Florian Korbinian Scharnagl, Maximilian Franz Hertrich, Carsten Kreyenschulte, Stephan Bartling, Henrik Lund, Ralf Jackstell and Matthias Beller* Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, Rostock, Germany. Email: [email protected] *To whom the correspondence should be addressed: [email protected] Content S1. General information, materials and methods 1 S2. Experimental procedure for the catalyst preparation 3 S3. General procedures for hydrogenation reactions 4 S4. Screening of catalysts and conditions 5 S5. Catalyst recycling procedure 7 S6. Kinetic investigation 8 S7. Substrate scope 9 S8. Product characterization: yield, NMR shifts, GC-MS analysis 11 S9. Scans of products 1 H and 13 C NMR spectra 15 S10. Catalyst characterization 42 A) Elemental analysis of the catalysts 42 B) Powder X-ray diffraction (XRD) patterns and data 42 C) XPS spectra and data 43 D) Scanning Transmission Electron Microscopy (TEM) and EDX data 46 E) BET data 49 S1. General Information, materials and methods All catalyst preparation reactions were performed in dried glassware under atmosphere of dry argon unless otherwise noted. All hydrogenation reactions were performed in 8-mL glass vials, which were placed inside the 300mL autoclave series P4560 made of stainless steel by Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019

Upload: others

Post on 30-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

1

Supporting Information

Biomolecule-derived supported cobalt nanoparticles for hydrogenation of industrial olefins, natural oils and more in water

Anahit Pews-Davtyan, Florian Korbinian Scharnagl, Maximilian Franz Hertrich, Carsten Kreyenschulte, Stephan Bartling, Henrik Lund, Ralf Jackstell and Matthias Beller*

Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, Rostock, Germany.

Email: [email protected]

*To whom the correspondence should be addressed: [email protected]

Content

S1. General information, materials and methods 1

S2. Experimental procedure for the catalyst preparation 3

S3. General procedures for hydrogenation reactions 4

S4. Screening of catalysts and conditions 5

S5. Catalyst recycling procedure 7

S6. Kinetic investigation 8

S7. Substrate scope 9

S8. Product characterization: yield, NMR shifts, GC-MS analysis 11

S9. Scans of products 1H and 13C NMR spectra 15

S10. Catalyst characterization 42

A) Elemental analysis of the catalysts 42 B) Powder X-ray diffraction (XRD) patterns and data 42 C) XPS spectra and data 43 D) Scanning Transmission Electron Microscopy (TEM) and EDX data 46 E) BET data 49

S1. General Information, materials and methods

All catalyst preparation reactions were performed in dried glassware under atmosphere of dry argon unless otherwise noted. All hydrogenation reactions were performed in 8-mL glass vials, which were placed inside the 300mL autoclave series P4560 made of stainless steel by

Electronic Supplementary Material (ESI) for Green Chemistry.This journal is © The Royal Society of Chemistry 2019

Page 2: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

2

Parr Instrument Company. All chemicals were purchased from Aldrich, abcr GmbH, Acros, Alfa Asar, TCI Europe or Strem and used as received without further purification unless otherwise noted. Solvents were additionally purified, degased or distilled under argon atmosphere. For hydrogenation reactions deionized water was used as solvent. Diisobutene and octenes were dried and distilled prior to use. Chemicals used for the catalyst preparation: Cobalt (II) acetate tetrahydrate, 98% (Alfa Aesar); Carbon powder, Vulcan XC72R (Cabot Corporation Prod., LOT 4173260); Aluminum oxide (activated acidic), Brockmann Grade, 60 mesh powder (Alfa Aesar), Aluminum oxide (activated, basic), 70-230 mesh (Merck). Apricot kernel oil was purchased from “Vom Fass” AG from Rostock (main components are: palmitic acid (saturated, C15H31) 5.9%; stearic acid (saturated, C17H35) 1.6%; oleic acid (mono unsaturated, C17H33) 66,1%; linoleic acid (doubly unsaturated, C17H31) 25.3%). Organic linseed oil was purchased from REWE GmbH Market (main components are: palmitic acid (saturated, C15H31) 7%; stearic acid (saturated, C17H35) 3.4–4.6%; oleic acid (monounsaturated, C17H33) 18.5–22.6%; linoleic acid (doubly unsaturated, C17H31) 14.2–17%; alpha-linolenic acid (triply unsaturated, C17H29) 51.9–55.2%). Refined castor oil was purchased from pharmacy, product of Henry Lamotte Oils GmbH (main components are: ricinoleic acid (monounsaturated, C17H33O) 85–95%; oleic acid (monounsaturated, C17H33) 2–6%; linoleic acid (doubly unsaturated, C17H31) 1–5%).

All compounds were characterized by 1H NMR, 13C NMR, and GC-MS or HRMS.

1H NMR spectra were recorded on Bruker AV 300, Bruker Fourier 300 and AV 400 spectrometers spectrometers (300 or 400 MHz). 13C NMR spectra were recorded at 75.5 or 101 MHz. Chemical shifts are reported in ppm relative to the centre of solvent resonance. Spectra were referenced to residual CHCl3 (7.27 ppm 1H; 77.00 ppm 13C). Chemical shifts are reported in ppm, multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), h (hextet), hept (heptet), m (multiplet) and br (broad). Coupling constants, J, are reported in Hertz.

Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column (polydimethylsiloxane with 5% phenyl groups, 30 m, 0.32 mm i.d., 0.25 μm film thicknesses) using argon as carrier gas. High resolution mass spectra (HRMS) were recorded on an Agilent 6210 Time-of-Flight LC/MS (Agilent) with electrospray ionization (ESI). The data are given as mass units per charge (m/z).

All yields reported refer to GC yield using hexadecane or NMR yield using mesitylene as internal standard. The reaction conditions were not optimized for every single compound.

The pyrolysis experiments were carried out in Nytech-Qex oven. Crucibles (height – 20 mm, top Ø – 40 mm, Ar. Nr. L219.1) and lids (Ø – 40 mm, Ar. Nr. L236.1) were purchased from Roth Industries GmbH & Co. KG.

Elemental analysis was carried out with a TruSpec micro by Leco. The substances were burned in pure oxygen in a flow of helium.

Page 3: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

3

AAS was measured on contrAA 800D by Analytik Jena, using a flame atomizer and acetylene flame. Solid substances were mineralized with H2SO4-KHSO4. Liquid samples in organic solvents were liberated of the volatiles in vacuum and the residue was mineralized with aqua regia (HCl : HNO3 = 3:1) at 140 °C for 4 h.

XRD powder pattern were recorded either on a Panalytical X'Pert diffractometer equipped with a Xcelerator detector used with automatic divergence slits and Cu kα1/α2 radiation (40 kV, 40 mA; λ= 0.015406 nm, 0.0154443 nm). Cu beta-radiation was excluded by using nickel filter foil. The measurements were performed in 0.0167° steps and 400 s of data collecting time per step. The samples were mounted on silicon zero background holders. The collected data were converted from automatic divergence slits to fixed divergence slits (0.25°) before data analysis to obtain the correct intensities. Peak positions and profile were fitted with Pseudo-Voigt function using the HighScore Plus software package (Panalytical). Phase identification was done by using the PDF-2 database of the International Center of Diffraction Data (ICDD).

The XPS (X-ray Photoelectron Spectroscopy) measurements were performed on an ESCALAB 220iXL (ThermoFisher Scientific) with monochromated AlKα radiation (E = 1486.6 eV) and a spot size of 400 μm. The electron binding energies were obtained with mild charge compensation using a flood electron source. Binding energies are referenced to the C1s peak of graphitic carbon assuming sp2 hybridization as main component at 284.0 eV. For quantitative analysis the peaks were deconvoluted with Gaussian-Lorentzian curves, the peak areas were divided by the transmission function of the spectrometer and a sensitivity factor obtained from the element specific Scofield factor.

The STEM (Scanning Transmission Electron Microscopy) measurements were performed at 200 kV with an aberration-corrected JEM-ARM200F (JEOL, Corrector: CEOS). The microscope is equipped with a JED-2300 (JEOL) energy-dispersive x-ray-spectrometer (EDXS) and an Enfinum ER (GATAN) with Dual EELS for chemical analysis. Dual EELS was done at a camera length of 4 cm, an illumination semi angle of 27.8 mrad and an entrance aperture semi angle of 41.3 mrad. The solid samples were dry deposed without any pretreatment on a holey carbon supported Cu-grid (mesh 300) and transferred to the microscope.

Nitrogen adsorption–desorption isotherms collected at 77 K on BELSORP-mini II (BEL Japan) were used to calculate the specific surface area (SBET) of the pyrolized catalysts Co-Ura/C-600 and Co-Ura/C-1000 applying the Brunauer, Emmet and Teller (BET) equation for N2 relative pressure in the range of 0.05 < P/P0 < 0.30. The pore size distribution was derived from the desorption branch using the BJH method.

S2. Experimental procedure for the catalyst preparation

S2.1 Preparation of 6 gr Co-Ura/C catalysts: 3 wt.% cobalt-based, uracil ligated and vulcan supported catalyst

Page 4: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

4

In 500 mL two-neck round bottomed flask, equipped with a reflux condenser and a magnetic stir bar, Co(OAc)2·4H2O (762.2 mg, 3.06 mmol, 1.0 equiv.) and ligand uracil (692.9 mg, 6.12 mmol, 2.0 equiv.) were dissolved in ethanol (360 mL). The flask was immersed in an oil bath and heated at 70 °C. After 30 min to the reaction mixture 4.77 g of Vulcan powder was added and the resulting heterogeneous mixture was heated for 4 h at 80 °C. The solvent was removed at the rotary evaporator and the residue was dried overnight at 65 °C under high-vacuum. The dried sample was grinded in an agate mortar to a fine powder (5.9 g), from which a 0.5 g portion was transferred to a ceramic crucible and pyrolyzed at temperatures between 500-1000 °C (the oven was evacuated to ca. 5 mbar and then flushed with argon three times, heating rate was 25 °C per minute and held at pyrolysis temperature for 2 h under argon atmosphere). Pyrolyzed catalysts were grinded again in an agate mortar, stored in glass vials in the air, without special protection. The catalysts were labelled as Co-ligand\support-temperature (e.g. Co-Ura/C-600).

A B

Figure S1. Cobalt-Uracil complex prior heating (A) and after heating at 70 °C for 30 min (B) before adding supporting material.

S2.2. The procedure S2.1 has been applied also for the preparation of catalysts based on ligands Tryptophan (Trp), Guanine (Gua) or Adenine (Ade) or/and supported on Vulcan, acidic or basic aluminum oxides. Also 15% Co-Ura/C-600 (before pyrolysis was 10 wt.% Co) as well as ligand free Co/C and Co/Al2O3(b) containing 3 wt.% cobalt were prepared according procedure S2.1.

S3. General procedures for hydrogenation reactions

A 4 mL screw-cap vial was charged with catalyst (30 mg, ~1 mol%), substrate (1.5 mmol), 1.5 mL of deionized water (or screened solvent) and Teflon-coated stirring bar. The vial was closed by phenolic cap with PTFE/white rubber septum (Wheaton 13 mm septa) and for the connection to the atmosphere septum was punctured with a syringe needle. The vial was fixed in an alloy plate and then transferred into a Parr 4560 series autoclave (300 mL). At room temperature, the autoclave was flushed with hydrogen for three times before it was pressurized at the required hydrogen pressure. The autoclave was placed into an aluminum block on a heating plate and heated up to required temperature. The heating was kept for 18 h under intensive stirring (1000 rpm). Afterwards, the autoclave was cooled in an ice bath to room temperature, the hydrogen was discharged and the vails containing reaction products were removed. In case of GC-analysis, to the crude reaction mixture internal standard n-hexadecane (100 µL) was added, the mixture was diluted with ethyl acetate and a GC sample was analyzed. For 1H and 13C NMR analysis, mesitylene (30 μL) was taken as internal standard. To the reaction mixture 2 mL CDCl3 was added and the organic phase subjected to the NMR as well as GC analysis, after filtration through a 0.2 μm PTFE syringe filter. The

Page 5: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

5

obtained chromatograms and NMR spectra were compared with the reported ones in the literature.

S4. Screening of catalysts and reaction conditions

Catalysts and solvents were screened under standard conditions according to general hydrogenation procedure (S3).

Me

MeMe

Me

Me

MeMe

Me

Me

1 (81%) 2 (19%)Me

MeMe

Me

Me+

H2, waterCo catalyst 1 mol%

3

Scheme S1. Diisobutene 1+2 (mixture of isomers) hydrogenation to isooctane 3.

Table S1. Hydrogenation of diisobutene (Scheme 1) with different catalysts.a

Entry Catalyst Conversion 1+2 [%] a

Yield 3 [%] a

1 Co3O4 0 0

2 CoO4W 2 traces

3 Co-Ura/C-dry 0 0

4 Co/C-600 5 0

5 Co-Ura/C-500 65 65

6 Co-Ura/C-600 100 (100c) >99 (>99 c)

7 15%-Co-Ura/C-600 73 73

8 Co-Ura/C-700 100 >99

9 Co-Ura/C-800 96 94

10 Co-Ura/C-1000 37 35

11 Co-Trp/C-700 3 2

12 Co-Trp/Al2O3(a)-700 33 31

13 Co-Trp/Al2O3(a)-700-Air 10 9

14 Co-Trp/Al2O3(a)-800 12 11

15 Co-Trp/Al2O3(a)-800-Air 0 0

16 Co-Trp/Al2O3(a)-1000 23 22

17 Co-Trp/Al2O3(b)-700 40 38

Page 6: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

6

18 Co-Trp/Al2O3(b)-700-Air 0 0

19 Co-Trp/Al2O3(b)-800 64 62

20 Co-Ade/C-700 18 17

21 Co-Ade/C-800 0 0

22 Co-Ade/Al2O3 (a)-800 34 25

23 Co-Gua/C-700 10 0

24 Co-Gua/C-800 0 0

25 Co-Ura/Al2O3(b)-dry 4 0

26 Co/Al2O3(b)-800 8 0

27 Co-Ura/Al2O3(b)-500 0 0

28 Co-Ura/Al2O3(b)-600 2 0

29 Co-Ura/Al2O3(b)-700 1 traces

30 Co-Ura/Al2O3(b)-800 6 5

a Reaction condition: 1.5 mmol substrate, 1.5 ml water, 1 mol% catalyst, 30 bar H2, 60 °C, 18 h. b Yields were determined via GC, using hexadecane as internal standard.

Table S2. Hydrogenation of diisobutene (Scheme 1) with Co-Ura/C-600 in different solvents.a

Entry Solvent T (°C) Conversion 1+2 [%]b

Yield 3 [%]b

1 Water 40 99 99

2 Methanol 40100

525

00

3 Acetonitrile 40100

012

00

4 Propylene carbonate 40100

823

00

5 Toluene 40100

09

00

6 Hexane 40 0 0

7 Neat 40 20 1

a Reaction condition: 1.5 mmol substrate, 1 mol% catalyst Co-Ura/C-600 , 30 bar H2, 18 h. b Yields were determined via GC, using hexadecane as internal standard.

Page 7: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

7

S5. Catalyst recycling procedure

The reaction was performed according to general procedure using Co-Ura/C-600 or Co-Ura/C-700 catalyst (30 mg, ~1 mol%) and diisobuthene (169 mg, 1.5 mmol) in 1.5 mL of deionized water. After 18 h to the crude reaction mixture internal standard n-hexadecane (100 µL) was added, the reaction mixture was diluted with ethyl acetate and a sample was analyzed by gas chromatography. Reported GC yields are the average of at least three runs. Afterwards, the reaction mixture was filtered off and obtained catalyst was washed with 10-15 ml acetone. The recycled catalyst was then dried at 60 °C under high vacuum for 4 h before using for the next run.

Table S3. Catalyst recycling tests by hydrogenation of diisobutene in water (Scheme S1)

Entry Catalyst Conversion 1+2 [%] a

Yield 3[%] a

1st run Co-Ura/C-600 100 >99

1st run Co-Ura/C-700 100 >99

2nd run Co-Ura/C-600-rec-1 92 91

2nd run Co-Ura/C-700-rec-1 55 54

3rd run Co-Ura/C-600-rec-2 28 27

3rd run Co-Ura/C-700-rec-2 6 5

4th run Co-Ura/C-600-rec-3 1 1

4th run Co-Ura/C-700-rec-3 1 1

4th run Co-Ura/C-600-rec-3-pyrolyzed 1 1

a Reaction condition: 1.5 mmol substrate, 1 mol% catalyst, 30 bar H2, 60 °C, 18 h. b Yields were determined via GC, using hexadecane as internal standard.

Figure S2. Recycling tests of Co-Ura/C-600 and Co-Ura/C-700 catalysts by hydrogenation of diisobutene in water.

Page 8: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

8

S6. Kinetic investigation

The kinetic experiments were performed under standard conditions (S3). The hydrogenation process of diisobutene (1+2) to isooctane 3 was stopped and the reaction mixture was analysed after 1 h, 2 h, 4 h, 7 h and 18 h reaction time.

Table S4. Hydrogenation of diisobutene in water (Scheme S1): kinetic investigation.a

Entry Catalyst t, h Conversion 1+2 [%] b

Yield 3 [%] b

1 Co-Ura/C-600 1 10 10

2 Co-Ura/C-700 1 9 8

3 Co-Ura/C-600 2 48 48

4 Co-Ura/C-700 2 55 54

5 Co-Ura/C-600 4 86 86

6 Co-Ura/C-700 4 88 87

7 Co-Ura/C-600 7 96 96

8 Co-Ura/C-700 7 97 96

9 Co-Ura/C-600 18 100 >99

10 Co-Ura/C-700 18 100 >99

a Reaction condition: 1.5 mmol substrate, 1.5 ml water, 1 mol% catalyst, 30 bar H2, 60 °C. b Yields were determined via GC, using hexadecane as internal standard.

Figure S3. Reaction profile for the hydrogenation of diisobutene over Co-Ura\C-600 at 30 bar H2, 60 °C, 1-18 h

Page 9: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

9

S7. Substrate scope

Table S5. Co-Ura/C-600 catalyzed hydrogenations in water: Substrate scope a

Entry Substrate Product T (°C) Conversion [%] b

Yield [%] b

1CH2

Me

4

60 100 >99

2SOO

MeNH

CH2SOO

MeNH

Me

5

60 100 >99

3Me

MeO

Me

MeO6

60 100 >99

4 OMe

OOMe

O

7

60 99 99

5

HO

O

H2C

HO

O

Me8

60 96 86

6 EtO OEt

CH2H2C

O O

EtO OEt

MeMe

O O9

60 100 98

7 N

O

O

CH2 N

O

O

Me

10

60100

16100

1056

8Ph

Ph

PhPh

Ph

Ph

11

60120

021

021

9

Me

Me

CH2

Me

Me

Me

12

60140

099

081

10Me

H2CO

OCH2

Me

H2CO

OMe

13

6080c

100

525280

43368

11 H2C OHMe

OH14

60 100 >99

12 H2CMe Me

Me

1560 100 92

13 MeMe Me

Me

1560 83 72

141-Octene/2-Octene

4:11:4

MeMe

156060

10094

9682

15 CNCN

1660 50 48

Page 10: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

10

16 H2C NH2Me

NH217

60 98 98

a Reaction condition: 1.5 mmol substrate, 1 mol% catalyst, 30 bar H2, 1.5 ml water, 18 h. b Yields were determined via GC or NMR, using hexadecane or Mesitylene respectively as internal standard. c 50 bar H2.

A B C

Figure S4. Natural apricot kernel (A), linseed (B) and castor oils (C).

Table S6. Co-Ura/C-600 catalyzed hydrogenations in water: Substrate scope – natural oils and fatty acid derivatives.a

Entry Substrate Product T (°C) Conversion [%] b

Yield [%] b

1

O

OMe

7Me 6

Methyl oleate

O

OMe

15Me19

60100

90100

90>99

2O

OMe

7Me

6

Methyl elaidate

1960100

55100

55>99

3OH O

OMe

74Me

Methyl ricinoleate

OH O

OMe

104Me

20

60100

89100

89>99

4O

O

MeO

O

MeO

O

OH

OHOH

H

H H7 7

7

Me 3

3

3

Castor oilO

O

MeO

O

MeO

O

OH

OHOH

H

H H10 10

10

Me 3

3

3

21

60 (b)100 (b)

22100

22>99

5 Me

O

OMe

O

O

O

O7 7

7

6

6Me

3

Apricot kernel oil

Me

O

OMe

O

OMe

O

O15 15

15

22

60 (b)120 (c)140 (d)

07787

07787

6O

OMe

O

O

O

O7 7

76Me

3Me

Linseed oil22 100 (b)

150 (e)91100

9199

Page 11: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

11

7 Me

O

OMe

O

OMe

O

O7 7

7

6

6

6

Glycerine trioleate

22 60 (b)100 (b)

88100

88>99

8O

O

O

O

O

O7 7

73Me

3

MeMe 3

Glycerine trilinoleate

22 140 (d)150 (e)

4073

4073

aReaction condition: (a)1.5 mmol substrate, 1 mol% catalyst (30 mg), 1.5 ml water, 30 bar H2, 60 or 100 °C, 18 h; (b) 300 mg substrate, 30 mg catalyst, 1.5 ml water, 30 bar H2, 60 or 100 °C, 18 h; (c) like (b) at 120 °C; (d) like (b) at 140 °C; (e) like (b) at 150 °C, 50 bar H2.

b Conversions were determined and yields were estimated via NMR, using mesitylene as internal standard.

S8. Product characterization: yield, NMR shifts, GC-MS analysis

Propylbenzene 4

Yield: >99%. 1H NMR (300 MHz, Chloroform-d) δ 7.32 – 7.14 (m, 5H), 2.65 – 2.52 (m, 2H), 1.73 – 1.58 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H). 13C NMR (75 MHz,

CDCl3) δ 142.66, 128.44, 128.18, 125.58, 38.07, 24.59, 13.83. GC–MS (EI, 70 eV): m/z (%) 120 (23) [M].

4-Methyl-N-propylbenzenesulfonamide 5

Yield: >99%. 1H NMR (300 MHz, Chloroform-d) δ 7.82 – 7.71 (m, 2H), 7.33 – 7.28 (m, 2H), 5.01 (t, J = 6.2 Hz, 1H), 2.89 (td, J = 7.1, 6.2 Hz, 2H), 2.43 (s, 3H), 1.48 (h, J = 7.3 Hz, 2H), 0.86 (t, J = 7.4 Hz, 3H). 13C

NMR (75 MHz, CDCl3) δ 143.18, 136.92, 129.58, 127.00, 44.86, 22.77, 21.41, 11.03. GC–MS (EI, 70 eV): m/z (%) 213 [M].

1-Methoxy-4-propylbenzene 6

Yield: >99%. 1H NMR (300 MHz, Chloroform-d) δ 7.21 – 7.12 (m, 2H), 6.95 – 6.86 (m, 2H), 3.85 (s, 3H), 2.67 – 2.54 (m, 2H), 1.76 – 1.62 (m, 2H), 1.01 (t, J = 7.3 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 157.60, 134.73,

129.25, 113.57, 55.13, 37.11, 24.77, 13.74. GC–MS (EI, 70 eV): m/z (%) 150 (26) [M].

Methyl 3-phenylpropanoate 7

Yield: 99%. 1H NMR (300 MHz, Chloroform-d) δ 7.31 – 7.13 (m, 5H), 3.64 (s, 3H), 2.93 (dd, J = 8.6, 7.1 Hz, 2H), 2.69 – 2.55 (m, 2H). 13C NMR (75 MHz, CDCl3) δ 173.18, 140.40, 128.39, 128.16, 126.16, 51.46, 35.57, 30.83.

GC–MS (EI, 70 eV): m/z (%) 164 (29) [M].

4-Propoxybenzaldehyde 8

Me

Me

MeO

OMe

O

SOO

MeNH

Me

Page 12: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

12

Yield: 86%. 1H NMR (300 MHz, Chloroform-d) δ 9.86 (s, 1H), 7.84 – 7.78 (m, 2H), 7.01 – 6.95 (m, 2H), 3.99 (t, J = 6.5 Hz, 2H), 1.84 (dtd, J = 13.9, 7.4, 6.6 Hz, 2H), 1.05 (t, J = 7.4 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 190.79, 164.19, 131.89, 129.56, 114.63, 69.74, 22.28, 10.32. GC–MS (EI, 70 eV): m/z (%) 164 [M].

Diethyl 2,2-dipropylmalonate 9

Yield: 98%. 1H NMR (300 MHz, Chloroform-d) δ 4.15 (q, J = 7.1 Hz, 4H), 1.87 – 1.78 (m, 4H), 1.25 – 1.09 (m, 10H), 0.90 (t, J = 7.2 Hz, 6H). 13C NMR (75 MHz, CDCl3) δ 171.86, 60.78, 57.47, 34.40, 17.28, 14.30, 13.98. GC–MS (EI, 70 eV): m/z (%) 245 [M+H].

2-Ethylisoindoline-1,3-dione 10

Yield: 56%. 1H NMR (300 MHz, Chloroform-d) δ 7.89 – 7.76 (m, 2H), 7.76 – 7.63 (m, 2H), 3.73 (q, J = 7.2 Hz, 2H), 1.27 (t, J = 7.2 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 168.15, 133.74, 132.17, 123.03, 32.81, 13.86. GC–MS (EI, 70 eV): m/z (%) 175 (43) [M].

Ethane-1,1,2-triyltribenzene1, 2 11

Yield: 21%. 1H NMR (400 MHz, Chloroform-d) δ 7.36 – 6.94 (m, 15H), 4.22 (t, J = 7.8 Hz, 1H), 3.34 (d, J = 7.8 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 144.40,

140.19, 129.02, 128.28, 128.00, 126.13, 125.83, 53.05, 42.05. GC–MS (EI, 70 eV): m/z (%) 258 (0.5) [M].

(R)-4-isopropyl-1-methylcyclohex-1-ene3 12

Yield: 81%. 1H NMR (400 MHz, Chloroform-d) δ 5.48 – 5.35 (m, 1H), 2.10 – 1.90 (m, 3H), 1.81 – 1.71 (m, 2H), 1.69 – 1.64 (m, 3H), 1.53 – 1.45 (m, 1H), 1.32 – 1.20 (m, 2H), 0.94 – 0.89 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 133.87, 121.02, 40.02, 32.29, 30.82, 28.96, 26.49, 23.45, 19.98, 19.67. GC–MS

(EI, 70 eV): m/z (%) 138 (31) [M].Analytical data are in agreement with literature data.3-5

Propyl methacrylate 13

Yield: 43%. 1H NMR (300 MHz, Chloroform-d) δ 6.12 – 6.07 (m, 1H), 5.56 – 5.51 (m, 1H), 4.10 (t, J = 6.7 Hz, 2H), 1.94 (t, J = 1.4 Hz, 3H), 1.70 (h, J = 7.3 Hz, 2H), 0.97 (t, J = 7.5 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 167.44,

136.47, 132.19, 125.03, 66.13, 21.92, 10.35. GC–MS (EI, 70 eV): m/z (%) 128 (0.3) [M].

Pentan-1-ol 14

N

O

O

Me

Ph

Ph

Ph

Me

H2CO

OMe

EtO OEt

MeMe

O O

Me

Me

Me

HO

O

Me

Page 13: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

13

Yield: 100%. 1H NMR (300 MHz, Chloroform-d) δ 3.62 (t, J = 6.7 Hz, 2H), 1.92 (s, 1H), 1.63 – 1.49 (m, 2H), 1.41 – 1.25 (m, 4H), 0.96 – 0.83 (m, 3H). 13C

NMR (75 MHz, CDCl3) δ 62.87, 32.39, 27.86, 22.43, 13.97. GC–MS (EI, 70 eV): m/z (%) 87 (1) [M+].

Norbornane-2-carbonitrile 16 (mixture of isomers)

GC-yield: 48%. 1H NMR – many signals of substrate and product isomers are overlaid for correct assignment. 13C NMR (75 MHz, CDCl3) δ 123.47, 122.68,

41.63, 39.68, 38.56, 37.00, 36.34, 35.91, 35.85, 35.19, 30.87, 29.91, 28.88, 28.31, 28.19, 24.76. GC–MS (EI, 70 eV): m/z (%) 120 (5) [M-H].

1-Aminopropane 17

GC-yield: 98%. 1H NMR (300 MHz, Chloroform-d) δ 2.62 (t, 2H), 1.46 (br. s, 2H), 1.42 (hept, 2H), 0.88 (t, J = 7.4 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ

43.99, 26.71, 11.17. GC–MS (EI, 70 eV): m/z (%) 59 (21.6) [M].

2-Methyl-6-methyleneoct-2-ene 18a

Yield: ~ 20%. 1H NMR (300 MHz, Chloroform-d) δ 5.30 – 5.20 (m, 1H), 4.75 (m, 2H), 2.21 – 1.91 (m, 6H), 1.72 (s, 3H), 1.64 (s, 3H), 1.07 (t, J = 7.4 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 151.39, 131.43, 124.39, 107.50, 36.27, 28.87, 26.77, 25.66, 17.63, 12.35. GC–MS (EI, 70 eV): m/z (%) 138 [M].

Analytical data were in agreement with literature data.6, 7

2,6-Dimethyloct-2-ene 18c

Yield: 49-61%. 1H NMR (300 MHz, Chloroform-d) δ 5.15 (tdq, J = 7.1, 2.9, 1.4 Hz, 1H), 2.14 – 1.93 (m, 2H), 1.73 (s, 3H), 1.64 (s, 3H), 1.46 – 1.28 (m, 3H), 1.24 – 1.09 (m, 2H), 0.93 – 0.84 (m, 6H). 13C NMR (75 MHz, CDCl3) δ 130.89, 125.13, 36.77, 34.08, 29.45, 25.70, 25.63, 19.09, 17.58, 11.35. GC–MS (EI, 70 eV): m/z (%) 140

(27) [M].Analytical data were in agreement with literature data.6, 7

2,6-Dimethyloctane 18d

Yield: 98%. 1H NMR (300 MHz, Chloroform-d) δ 1.64 – 1.50 (m, 1H), 1.46 – 1.03 (m, 9H), 0.92, 0.90, 0.88 (3s, 12H). 13C NMR (75 MHz, CDCl3) δ 39.43, 36.94, 34.48, 29.57, 28.04, 24.89, 22.73, 22.64, 19.24, 11.43. GC–MS (EI, 70 eV): m/z (%) 142 [M].

Analytical data were in agreement with literature data.5-7

Methyl stearate 19 obtained from methyl oleate and methyl elaidate

MeOH

Me

Me

Me Me

Me

Me

Me Me

Me

CH2

Me Me

CN

MeNH2

Page 14: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

14

Yield: 100%. 1H NMR (300 MHz, Chloroform-d) δ 3.65 (s, 3H), 2.30 (d, J = 7.5 Hz, 2H), 1.68 – 1.55 (m, 2H), 1.31 (d, J = 10.0 Hz, 28H), 0.93 – 0.82 (m,

3H). 13C NMR (75 MHz, CDCl3) δ 174.14, 51.26, 34.02, 31.90, 29.67, 29.64, 29.57, 29.43, 29.34, 29.23, 29.12, 24.91, 22.65, 14.03. GC–MS (EI, 70 eV): m/z (%) 298 (22) [M].

Methyl (R)-12-hydroxyoctadecanoate 20

Yield: 100%. 1H NMR (300 MHz, Chloroform-d) δ 3.64 (s, 3H), 3.60 – 3.46 (m, 1H), 2.32 – 2.26 (m, 2H), 1.91 (s, 1H), 1.66 – 1.54 (m, 2H), 1.47 – 1.19

(m, 26H), 0.92 – 0.81 (m, 3H). 13C NMR (75 MHz, CDCl3) δ 174.23, 71.81, 51.31, 37.40, 37.38, 33.98, 31.77, 29.61, 29.50, 29.42, 29.31, 29.14, 29.03, 25.56, 25.54, 24.84, 22.53, 13.97. GC–MS (EI, 70 eV): m/z (%) 313 [M-H].

Hydrogenated castor oil: 2-(((S)-12-hydroxyoctadecanoyl)oxy)propane-1,3-diyl (12R,12'R)-bis(12-hydroxyoctadecanoate) 21

Conversion: 100%. 1H NMR (300 MHz, Chloroform-d) δ 5.27 (m, 1H), 4.30 (dd, J = 11.9, 4.3 Hz, 2H), 4.15 (dd, J = 11.9, 5.9 Hz, 2H), 3.57 (m, 4.2 Hz, 3H), 2.32 (m, 6H), 1.70 – 1.20 (m,

87H), 0.93 – 0.83 (m, 9H). 13C NMR (75 MHz, CDCl3) δ 173.25, 172.83, 71.90, 68.81, 62.04, 37.45, 34.15, 33.99, 31.88, 31.81, 29.67, 29.62, 29.56, 29.49, 29.42, 29.39, 29.35, 29.32, 29.22, 29.20, 29.04, 29.01, 25.62, 25.59, 24.84, 24.79, 22.64, 22.58, 14.07, 14.04

Propane-1,2,3-triyl tristearate 22 from glycerine trioleate and trilinoleate

Yield: 100%. 1H NMR (300 MHz, Chloroform-d) δ 4.39 – 4.24 (m, 2H), 4.22 – 4.08 (m, 2H), 2.33 (td, J = 7.5, 1.8 Hz, 6H), 1.63 (qd, J = 9.9, 9.3, 6.7 Hz, 6H), 1.27 (s, 84H), 0.94 – 0.85 (m, 9H). 13C NMR (75 MHz, CDCl3) δ 173.22, 172.81, 68.84, 62.06, 34.19,

34.02, 31.92, 29.70, 29.66, 29.62, 29.50, 29.48, 29.36, 29.29, 29.27, 29.10, 29.07, 24.89, 24.84, 22.68, 14.09.

Glycerin trilinoleate hydrogenation to propane-1,2,3-triyl tristearate 22 as a main product

Glycerin trilinoleate was hydrogenated similar to standard conditions (S3) at 150 °C, 50 bar hydrogen with 73% conversion.

Linseed oil hydrogenation to propane-1,2,3-triyl tristearate 22 as a main product

Linseed oil was hydrogenated similar to standard conditions (S3) at 100 °C, 30 bar hydrogen or 150 °C, 50 bar hydrogen with 91% or 99% conversion respectively.

Apricot kernel oil hydrogenation to propane-1,2,3-triyl tristearate 22 as a main product

Apricot kernel oil was hydrogenated similar to standard conditions (S3) at 120 °C, 30 bar hydrogen or 140 °C, 30 bar hydrogen with 77% or 87% conversion respectively.

O

OMe

15Me

OH O

OMe

104Me

O

O

MeO

O

MeO

O

OH

OHOH

H

H H10 10

10

Me 3

3

3

Me

O

OMe

O

OMe

O

O15 15

15

Page 15: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

15

S9. Scans of products 1H and 13C NMR spectra with internal standard mesitylene

Propylbenzene 4

1H-NMR in CDCl3

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

-4.0E+07

-2.0E+07

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.4E+08

1.6E+08

1.8E+08

2.0E+08

2.2E+08

2.4E+08

2.6E+08

2.8E+08

3.0E+08

3.2E+08

3.4E+08

3.6E+08190131.314.10.1.1rPews-Davtyan PDA-981a-2+MesityleneAu1H CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 14

3.00

2.00

1.24

2.00

0.41

5.01

13C-NMR in CDCl3

0102030405060708090100110120130140150160170180190200f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08

6.5E+08

7.0E+08

190131.314.11.1.1rPews-Davtyan PDA-981a-2+MesityleneAu13C CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 14

13.8

3

21.1

8

24.5

9

38.0

7

125.

5812

6.90

128.

1812

8.44

137.

69

142.

66

Me

Mesitylene

Mesitylene

Me

Mesitylene

Mesitylene

Mesitylene

Page 16: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

16

4-Methyl-N-propylbenzenesulfonamide 5

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08190131.313.10.1.1rPews-Davtyan PDA-988a-2+MesityleneAu1H CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 13

3.00

2.00

2.30

3.00

2.00

0.94

0.75

2.01

2.00

13C-NMR in CDCl3

0102030405060708090100110120130140150160170f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

190131.313.11.1.1rPews-Davtyan PDA-988a-2+MesityleneAu13C CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 13

11.0

3

21.1

021

.41

22.7

7

44.8

6

126.

8012

7.00

129.

58

136.

9213

7.61

143.

18

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Mesitylene

SOO

MeNH

Me

SOO

MeNH

Me

Page 17: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

17

1-Methoxy-4-propylbenzene 6

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0f1 (ppm)

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08190131.312.10.1.1rPews-Davtyan PDA-991a-2+MesityleneAu1H CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 12

3.00

2.03

1.26

2.00

3.00

2.40

2.00

13C-NMR in CDCl3

0102030405060708090100110120130140150160170180190f1 (ppm)

-2.0E+07

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.4E+08

1.6E+08

1.8E+08

2.0E+08

2.2E+08

2.4E+08

2.6E+08

2.8E+08

3.0E+08

3.2E+08

3.4E+08

3.6E+08

3.8E+08

4.0E+08190131.312.11.1.1rPews-Davtyan PDA-991a-2+MesityleneAu13C CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 12

13.7

4

21.1

4

24.7

7

37.1

1

55.1

3

113.

57

126.

8612

9.25

134.

7313

7.66

157.

60

Me

MeO

Me

MeO

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Page 18: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

18

Methyl 3-phenylpropanoate 7

1H-NMR in CDCl3

1.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

-2.0E+07

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.4E+08

1.6E+08

1.8E+08

2.0E+08

2.2E+08

2.4E+08

2.6E+08

2.8E+08

3.0E+08

3.2E+08

3.4E+08181127.347.10.1.1rPeews-Davtyan PDA-997a-1Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 47

1.20

2.00

2.00

3.00

0.40

5.00

13C-NMR in CDCl3

0102030405060708090100110120130140150160170180f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08

6.5E+08

7.0E+08

7.5E+08

8.0E+08

8.5E+08181127.347.11.1.1rPeews-Davtyan PDA-997a-1Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 47

21.0

8

30.8

3

35.5

7

51.4

6

126.

1612

6.79

128.

1612

8.39

137.

5714

0.40

173.

18

OMe

O

OMe

O

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Page 19: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

19

4-Propoxybenzaldehyde 8

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08

6.5E+08

7.0E+08

7.5E+08

8.0E+08

8.5E+08181130.356.10.1.1rPews-Davtyan PDA-999a-1Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 56

3.01

2.03

1.57

2.00

0.54

2.05

2.05

1.00

13C-NMR in CDCl3

0102030405060708090100110120130140150160170180190200f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08

6.5E+08

7.0E+08

7.5E+08

8.0E+08

8.5E+08

9.0E+08181130.356.11.1.1rPews-Davtyan PDA-999a-1Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 56

10.3

2

21.0

622

.28

69.7

4

114.

63

126.

7712

9.56

131.

89

137.

55

164.

19

190.

79

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Mesitylene

HO

O

Me

HO

O

Me

Page 20: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

20

Diethyl 2,2-dipropylmalonate 9

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1 (ppm)

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08181127.342.10.1.1rPews-Davtyan PDA-996a-1Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 42

6.00

10.0

3

4.01

1.74

4.04

0.57

13C-NMR in CDCl3

0102030405060708090100110120130140150160170180f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08

6.5E+08

7.0E+08

7.5E+08

8.0E+08181127.342.11.1.1rPews-Davtyan PDA-996a-1Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 42

13.9

814

.30

17.2

821

.06

34.4

0

57.4

7

60.7

8

126.

78

137.

57

171.

86

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Mesitylene

EtO OEt

MeMe

O O

EtO OEt

MeMe

O O

Page 21: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

21

2-Ethylisoindoline-1,3-dione 10

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08190131.318.10.1.1rPews-Davtyan PDA-1012c-1+MesityleneAu1H CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 18

3.01

2.35

2.02

0.76

2.01

2.00

13C-NMR in CDCl3

0102030405060708090100110120130140150160170180f1 (ppm)

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

190131.318.11.1.1rPews-Davtyan PDA-1012c-1+MesityleneAu13C CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 18

13.8

6

21.1

0

32.8

1

123.

03

126.

80

132.

1713

3.74

137.

60

168.

15

N

O

O

Me

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Mesitylene

N

O

O

Me

Page 22: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

22

Ethane-1,1,2-triyltribenzene 11

1H-NMR in CDCl3

2.02.22.42.62.83.03.23.43.63.84.04.24.44.64.85.05.25.45.65.86.06.26.46.66.87.07.27.47.6f1 (ppm)

-2.0E+07

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.4E+08

1.6E+08

1.8E+08

2.0E+08

2.2E+08

2.4E+08

2.6E+08

2.8E+08

3.0E+08

3.2E+08

3.4E+08

3.6E+08

3.8E+08190125.403.10.1.1rPews-Davtyan PDA-1016b-1+MesityleneAu1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1901 3

6.29

2.00

1.00

2.06

80.5

1

1.61.82.02.22.42.62.83.03.23.43.63.84.04.24.44.64.85.05.25.45.65.86.06.26.46.66.87.07.27.47.67.88.0f1 (ppm)

1

2

190123.f332.10.1.1rPews-Davtyan PDA-TPhEPROTON CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 32 2

190125.403.10.1.1rPews-Davtyan PDA-1016b-1+MesityleneAu1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1901 3 1

Ph

Ph

Ph Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph Ph

Ph

Ph

Hydrogenation at 120 °C, 30 bar H2

Ethene-1,1,2-triyltribenzene

~79% ~21%

Mesitylene

Mesitylene

Mesitylene

Mesitylene

~79% ~21%

Page 23: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

23

13C-NMR in CDCl3

1520253035404550556065707580859095100105110115120125130135140145150f1 (ppm)

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

190125.403.11.1.1rPews-Davtyan PDA-1016b-1+MesityleneAu13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1901 3

21.1

8

42.0

5

53.0

5

125.

8312

6.13

126.

7012

6.88

127.

3612

7.45

127.

5712

7.91

128.

0012

8.13

128.

1612

8.28

128.

5812

9.02

129.

5113

0.35

137.

3213

7.62

140.

1914

0.32

142.

5414

3.38

144.

40

1520253035404550556065707580859095100105110115120125130135140145f1 (ppm)

1

2

190123.f332.11.1.1rPews-Davtyan PDA-TPhEC13CPD CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 32 2

190125.403.11.1.1rPews-Davtyan PDA-1016b-1+MesityleneAu13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1901 3 1

Ph

Ph

Ph Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph Ph

Ph

Ph

Hydrogenation at 120 °C, 30 bar H2

Ethene-1,1,2-triyltribenzene

~79% ~21%

Mesitylene

Mesitylene

Mesitylene

Mesitylene

~79% ~21%

Mesitylene

Mesitylene

Page 24: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

24

(R)-4-Isopropyl-1-methylcyclohex-1-ene 12

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08

6.5E+08

7.0E+08

181206.422.10.1.1rPews-Davtyan PDA-984b-1-MesAu1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1812 22

6.17

2.04

1.11

3.00

2.04

3.00

1.54

0.98

0.51

13C-NMR in CDCl3

0102030405060708090100110120130140150160f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08

6.5E+08

7.0E+08

7.5E+08

8.0E+08

8.5E+08181206.422.11.1.1rPews-Davtyan PDA-984b-1-MesAu13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1812 22

19.6

719

.98

21.1

723

.45

26.4

928

.96

30.8

232

.29

40.0

2

121.

02

126.

89

133.

87

137.

68

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Me

Me

Me

Me

Me

Me

Page 25: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

25

Propyl methacrylate 13

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08

6.5E+08

7.0E+08

7.5E+08

8.0E+08

181130.355.10.1.1rPews-Davtyan PDA-1000a-1Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 55

3.09

2.26

3.15

3.28

3.01

1.98

2.28

2.35

1.00

1.14

1.16

1.00

1.15

1.00

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1 (ppm)

1

2

181129.439.10.1.1rPews-Davtyan, PDA-Allyl-MAAu1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 39 2

181130.355.10.1.1rPews-Davtyan PDA-1000a-1Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 55 1

Mesitylene

Mesitylene

Substrate rest signals with main product

Me

H2CO

OCH2

Me

H2CO

OMe

~48% ~43%

Allyl methacrylate

Hydrogenation at 60 °C, 30 bar H2

Mesitylene

MesityleneSubstrate rest signals with main product

Me

H2CO

OCH2

Me

H2CO

OCH2

Me

H2CO

OMe

~48% ~43%

Page 26: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

26

13C-NMR in CDCl3

0102030405060708090100110120130140150160170180f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08

6.5E+08

7.0E+08

7.5E+08

181130.355.11.1.1rPews-Davtyan PDA-1000a-1Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 55

10.3

5

18.2

121

.08

21.9

2

65.1

766

.13

117.

83

125.

0312

5.53

126.

81

132.

1913

6.17

136.

4713

7.60

166.

9616

7.44

102030405060708090100110120130140150160170f1 (ppm)

1

2

181129.439.11.1.1rPews-Davtyan, PDA-Allyl-MAAu13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 39 2

181130.355.11.1.1rPews-Davtyan PDA-1000a-1Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 55 1

Substrate rest signals with main product

Me

H2CO

OCH2

Me

H2CO

OMe

~48% ~43%

Allyl methacrylate

Hydrogenation at 60 °C, 30 bar H2

Mesitylene

Mesitylene

Substrate rest signals with main product

Me

H2CO

OCH2

Me

H2CO

OCH2

Me

H2CO

OMe

~48% ~43%Mesitylene

Mesitylene

Mesitylene

Mesitylene

Page 27: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

27

Pentan-1-ol 14

1H-NMR in CDCl3

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

190131.315.10.1.1rPews-Davtyan PDA-979a-2+MesityleneAu1H CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 15

3.05

4.08

2.05

1.00

1.32

2.00

0.43

13C-NMR in CDCl3

102030405060708090100110120130140150160170180190200f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08

190131.315.11.1.1rPews-Davtyan PDA-979a-2+MesityleneAu13C CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 15

13.9

7

21.1

122

.43

27.8

6

32.3

9

62.8

7

126.

83

137.

66

MeOH

MeOH

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Page 28: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

28

Norbornane-2-carbonitrile 16

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

190123.f331.10.1.1rPews-Davtyan PDA-1017a-1+MesitylenePROTON CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 31

13.3

0

2.56

1.56

0.52

0.54

0.53

0.79

0.99

1.00

2.00

0.84

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

1

2

190123.f333.10.1.1rPews-Davtyan PDA-Norb-carbonitrilePROTON CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 33 2

190123.f331.10.1.1rPews-Davtyan PDA-1017a-1+MesitylenePROTON CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 31 1

CN

CNCN

Substrate rest signals with main product (mixture of isomers)

Hydrogenation at 60 °C, 30 bar H2

~50% ~48%

Norbornane-2-carbonitrile,mixture of isomers

Mesitylene

Mesitylene

Substrate rest signals with main product (mixture of isomers)

~50% ~48%

CNCN

Mesitylene

Mesitylene

Page 29: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

29

13C-NMR in CDCl3

101520253035404550556065707580859095100105110115120125130135140145150f1 (ppm)

-1.00E+08

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

8.00E+08

9.00E+08

1.00E+09

1.10E+09

1.20E+09

190123.f331.11.1.1rPews-Davtyan PDA-1017a-1+MesityleneC13CPD CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 31

21.0

324

.76

27.0

628

.19

28.3

128

.88

29.9

130

.87

32.0

732

.34

35.1

935

.85

35.9

136

.34

37.0

038

.56

39.6

841

.63

41.6

942

.24

45.6

247

.03

47.3

248

.38

122.

6812

2.95

123.

3812

3.47

126.

72

132.

6013

3.91

137.

5013

7.99

138.

70

13C-NMR in CDCl3

1520253035404550556065707580859095100105110115120125130135140145150f1 (ppm)

1

2

190123.f333.11.1.1rPews-Davtyan PDA-Norb-carbonitrileC13CPD CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 33 2

190123.f331.11.1.1rPews-Davtyan PDA-1017a-1+MesityleneC13CPD CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 31 1

Mesitylene

Mesitylene

Mesitylene

CNCN

Substrate rest signals with main product (mixture of isomers)

Hydrogenation at 60 °C, 30 bar H2

~50% ~48%

Norbornane-2-carbonitrile,mixture of isomers

CN

CNCN

Substrate rest signals with main product (mixture of isomers)

~50% ~48%Mesitylene

Mesitylene

Mesitylene

Page 30: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

30

1-Aminopropane 17

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08190619.354.10.1.1rPews-Davtyan PDA-1030a-2+MesityleneAu1H CDCl3 {C:\Bruker\TopSpin3.6.0} 1906 54

3.11

2.03

2.28

2.02

2.00

0.66

13C-NMR in CDCl3

0102030405060708090100110120130140150160170180f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

190619.354.11.1.1rPews-Davtyan PDA-1030a-2+MesityleneAu13C CDCl3 {C:\Bruker\TopSpin3.6.0} 1906 54

11.1

7

21.0

6

26.7

1

43.9

9

126.

77

137.

58

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Mesitylene

MeNH2

MeNH2

Page 31: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

31

Myrcene hydrogenation at 40 °C, 30 bar H22-Methyl-6-methyleneoct-2-ene 18c as main product

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1 (ppm)

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

190214.f338.10.1.1rPews-Davtyan PDA-986c-1+MesitylenePROTON CDCl3 {C:\Bruker\TopSpin3.6.0} 1902 38

13.8

73.

024.

15

7.24

3.87

11.4

213

.68

13.3

9

5.23

2.00

3.55

1.01

1.72

13C-NMR in CDCl3

102030405060708090100110120130140150160f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08

6.5E+08

7.0E+08

7.5E+08

190214.f338.11.1.1rPews-Davtyan PDA-986c-1+MesityleneC13CPD CDCl3 {C:\Bruker\TopSpin3.6.0} 1902 38

11.3

412

.35

13.1

813

.31

17.5

717

.63

19.0

821

.16

22.6

123

.37

25.6

325

.66

25.6

926

.40

26.5

426

.77

28.8

729

.44

31.5

934

.08

36.2

736

.76

39.7

5

107.

50

118.

2311

9.02

124.

2812

4.39

125.

1212

6.90

130.

8813

1.43

135.

9313

7.69

151.

39

Me

Me

Me Me

Me

Me

Me Me

Me

Me

Me Me

Main side products

Me

CH2

Me Me

Me

Me

Me Me

Me

Me

Me Me

18a ~20%

Me

Me

Me Me

18b ~18%

Main side products

18c ~49%

Me

CH2

Me Me

18d ~3%

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Mesitylene

18c ~49%

18a ~20%

18b ~18%

18d ~3%

Page 32: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

32

Myrcene hydrogenation at 60 °C, 30 bar H22-Methyl-6-methyleneoct-2-ene 18c as main product

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08181127.343.10.1.1rPews-Davtyan PDA-986a-2Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 43

6.33

2.11

3.07

3.10

3.00

2.04

1.40

0.76

0.46

13C-NMR in CDCl3

0102030405060708090100110120130140150160170f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08

6.5E+08

7.0E+08

7.5E+08

8.0E+08181127.343.11.1.1rPews-Davtyan PDA-986a-2Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 43

11.3

5

17.5

819

.09

21.1

8

25.6

325

.70

29.4

5

34.0

836

.77

125.

1312

6.91

130.

89

137.

70

Me

Me

Me Me

Me

Me

Me Me18d

~17%

Me

Me

Me Me18b

~10%

Me

Me

Me Me

Me

Me

Me Me

Me

Me

Me Me

Main side products

18d ~17%

18b ~10%

Main side products

18c ~61%

18c ~61%

Mesitylene

Mesitylene

Mesitylene

Mesitylene M

esitylene

Page 33: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

33

Myrcene hydrogenation at 100 °C, 30 bar H22,6-Dimethyloctane 18d

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08181130.350.10.1.1rPews-Davtyan PDA-986b-2Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 50

12.0

0

9.00

1.08

1.29

0.43

13C-NMR in CDCl3

0102030405060708090100110120130140150160f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08

6.5E+08

7.0E+08181130.350.11.1.1rPews-Davtyan PDA-986b-2Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 50

11.4

3

19.2

421

.20

22.6

422

.73

24.8

928

.04

29.5

7

34.4

836

.94

39.4

3

126.

93

137.

72

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Me

Me

Me Me

Me

Me

Me Me

Page 34: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

34

Methyl stearate 19 obtained from methyl oleate and methyl elaidate

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08

6.5E+08

7.0E+08

7.5E+08

8.0E+08

8.5E+08190117.f323.10.1.1rPews-Davtyan PDA-1004b-1+MesitylenePROTON CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 23

3.00

28.0

0

2.02

1.07

2.03

3.00

0.41

13C-NMR in CDCl3

0102030405060708090100110120130140150160170180190f1 (ppm)

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08190117.f323.11.1.1rPews-Davtyan PDA-1004b-1+MesityleneC13CPD CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 23

14.0

321

.09

22.6

524

.91

29.1

229

.23

29.3

429

.43

29.5

729

.64

29.6

731

.90

34.0

2

51.2

6

126.

82

137.

56

174.

14

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Mesitylene

O

OMe

15Me

O

OMe

15Me

Page 35: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

35

Methyl (R)-12-hydroxyoctadecanoate 20

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

190117.f325.10.1.1rPews-Davtyan PDA-1006a-1+MesitylenePROTON CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 25

3.00

26.0

0

2.05

1.00

1.83

2.00

1.00

2.95

0.66

13C-NMR in CDCl3

102030405060708090100110120130140150160170180190f1 (ppm)

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08

6.5E+08

7.0E+08

7.5E+08

8.0E+08

8.5E+08

9.0E+08190117.f325.11.1.1rPews-Davtyan PDA-1006a-1+MesityleneC13CPD CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 25

13.9

722

.53

24.8

425

.54

25.5

629

.03

29.1

429

.31

29.4

229

.50

29.6

131

.77

33.9

837

.38

37.4

0

51.3

1

71.8

1

126.

78

137.

55

174.

23

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Mesitylene

OH O

OMe

104Me

OH O

OMe

104Me

Page 36: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

36

Hydrogenated castor oil: 2-(((S)-12-hydroxyoctadecanoyl)oxy)propane-1,3-diyl (12R,12'R)-bis(12-hydroxyoctadecanoate) 21

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1 (ppm)

-2.0E+07

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.4E+08

1.6E+08

1.8E+08

2.0E+08

2.2E+08

2.4E+08

2.6E+08

2.8E+08

3.0E+08

3.2E+08

3.4E+08

3.6E+08

190131.319.10.1.1rPews-Davtyan PDA-1011b-1+MesityleneAu1H CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 19

9.10

87.1

5

9.10

6.15

2.66

4.00

1.06

3.20

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

1

2

190121.f334.10.1.1rPews-Davtyan PDA-CastorOPROTON CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 34 2

190131.319.10.1.1rPews-Davtyan PDA-1011b-1+MesityleneAu1H CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 19 1

Castor oil

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Hydrogenation at 100 °C, 30 bar H2

Main component in oil

O

O

MeO

O

MeO

O

OH

OHOH

H

H H10 10

10

Me 3

3

3

O

O

MeO

O

MeO

O

OH

OHOH

H

H H10 10

10

Me 3

3

3

O

O

MeO

O

MeO

O

OH

OHOH

H

H H7 7

7

Me 3

3

3

Page 37: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

37

13C-NMR in CDCl3

102030405060708090100110120130140150160170180f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08

6.5E+08

7.0E+08

7.5E+08190131.319.11.1.1rPews-Davtyan PDA-1011b-1+MesityleneAu13C CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 19

14.0

414

.07

21.1

422

.58

24.7

924

.84

25.5

925

.62

29.0

129

.04

29.2

029

.22

29.3

529

.39

29.4

229

.49

29.5

629

.62

29.6

731

.81

33.9

937

.45

62.0

4

68.8

1

71.9

0

126.

84

137.

63

172.

8317

3.25

0102030405060708090100110120130140150160170180f1 (ppm)

1

2

190121.f334.11.1.1rPews-Davtyan PDA-CastorOC13CPD CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 34 2

190131.319.11.1.1rPews-Davtyan PDA-1011b-1+MesityleneAu13C CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 19 1

Castor oil

Hydrogenation at 100 °C, 30 bar H2

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Main component in oil

O

O

MeO

O

MeO

O

OH

OHOH

H

H H10 10

10

Me 3

3

3

O

O

MeO

O

MeO

O

OH

OHOH

H

H H10 10

10

Me 3

3

3

O

O

MeO

O

MeO

O

OH

OHOH

H

H H7 7

7

Me 3

3

3

Page 38: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

38

Propane-1,2,3-triyl tristearate 22 from glycerine trioleate

1H-NMR in CDCl3

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

190131.321.10.1.1rPews-Davtyan PDA-1002b-1+MesityleneAu1H CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 21

9.02

84.0

9

6.14

5.96

6.02

2.01

2.00

1.00

2.00

13C-NMR in CDCl3

0102030405060708090100110120130140150160170180f1 (ppm)

-5.0E+07

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

5.5E+08

6.0E+08190131.321.11.1.1rPews-Davtyan PDA-1002b-1+MesityleneAu13C CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 21

14.0

921

.15

22.6

824

.84

24.8

929

.07

29.1

029

.27

29.2

929

.36

29.4

829

.50

29.6

229

.66

29.7

031

.92

34.0

234

.19

62.0

6

68.8

4

126.

86

137.

64

172.

8117

3.22

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Me

O

OMe

O

OMe

O

O15 15

15

Me

O

OMe

O

OMe

O

O15 15

15

Page 39: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

39

Glycerine trilinoleate hydrogenation to propane-1,2,3-triyl tristearate 22 as a main product

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1 (ppm)

1

2

181205.344.10.1.1rPews-Davtyan PDA-Glycerin-TLAu1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1812 44 2

190122.f323.10.1.1rPews-Davtyan PDA-1003b-1+MesitylenePROTON CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 23 1

13C-NMR in CDCl3

0102030405060708090100110120130140150160170180f1 (ppm)

1

2

181205.344.11.1.1rPews-Davtyan PDA-Glycerin-TLAu13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1812 44 2

190122.f323.11.1.1rPews-Davtyan PDA-1003b-1+MesityleneC13CPD CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 23 1

Glycerine trilinoleate

Hydrogenation at 150 °C, 50 bar H2

Mesitylene

Mesitylene

Substrate rest signals with main product

Glycerin trilinoleate

Hydrogenation at 150 °C, 50 bar H2

Mesitylene

Mesitylene

Mesitylene

Substrate rest signals with main product

Me

O

OMe

O

OMe

O

O15 15

15

Me

O

OMe

O

OMe

O

O15 15

15

O

O

O

O

O

O7 7

73Me

3

MeMe 3

O

O

O

O

O

O7 7

73Me

3

MeMe 3

Page 40: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

40

Linseed oil hydrogenation to propane-1,2,3-triyl tristearate 22 as a main product

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

1

2

3

190121.f336.10.1.1rPews-Davtyan PDA-FlaxO_rewePROTON CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 36 3

190122.f327.10.1.1rPews-Davtyan PDA-1010a-1+MesitylenePROTON CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 27 2

190131.320.10.1.1rPews-Davtyan PDA-1010b-1+MesityleneAu1H CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 20 1

13C-NMR in CDCl3

102030405060708090100110120130140150160170180f1 (ppm)

1

2

3

190121.f336.11.1.1rPews-Davtyan PDA-FlaxO_reweC13CPD CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 36 3

190122.f327.11.1.1rPews-Davtyan PDA-1010a-1+MesityleneC13CPD CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 27 2

190131.320.11.1.1rPews-Davtyan PDA-1010b-1+MesityleneAu13C CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 20 1

Linseed oil

Hydrogenation at 150 °C, 50 bar H2

Mesitylene

Mesitylene

Substrate rest signals with main product

Hydrogenation at 100 °C, 30 bar H2

Mesitylene

Mesitylene

Linseed oil

Hydrogenation at 150 °C, 50 bar H2

Mesitylene

Mesitylene

Substrate rest signals with main product

Hydrogenation at 100 °C, 30 bar H2

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Main fatty acid rests in substrate

Me

O

OMe

O

OMe

O

O15 15

15

Me

O

OMe

O

OMe

O

O15 15

15

O

OMe

O

O

O

O7 7

76Me

3Me

O

OMe

O

O

O

O7 7

76Me

3Me

Page 41: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

41

Apricot kernel oil hydrogenation to propane-1,2,3-triyl tristearate 22 as a main product

1H-NMR in CDCl3

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1 (ppm)

1

2

3

181116.333.10.1.1rPews-Davtyan PDA-AprioelAu1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 33 3

181130.349.10.1.1rPews-Davtyan PDA-985b-2Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 49 2

181206.423.10.1.1rPews-Davtyan PDA-985c-1-MesAu1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 1812 23 1

13C-NMR in CDCl3

0102030405060708090100110120130140150160170180190f1 (ppm)

1

2

3

181116.333.11.1.1rPews-Davtyan PDA-AprioelAu13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 33 3

181130.349.11.1.1rPews-Davtyan PDA-985b-2Au13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1811 49 2

181206.423.11.1.1rPews-Davtyan PDA-985c-1-MesAu13C CDCl3 {C:\Bruker\TopSpin3.5pl6} 1812 23 1

Apricot kernel oil

Hydrogenation at 120 °C, 30 bar H2

Mesitylene

Mesitylene

Substrate rest signals with main product

Hydrogenation at 140 °C, 30 bar H2

Mesitylene

Mesitylene

Apricot kernel oil

Mesitylene

Mesitylene

Hydrogenation at 140 °C, 30 bar H2

Mesitylene

Mesitylene

Mesitylene

Mesitylene

Main fatty acid rests in substrate

Me

O

OMe

O

OMe

O

O15 15

15

Me

O

OMe

O

OMe

O

O15 15

15

Me

O

OMe

O

O

O

O7 7

7

6

6Me

3

Me

O

OMe

O

O

O

O7 7

7

6

6Me

3

Substrate rest signals with main productHydrogenation at 120 °C, 30 bar H2

Page 42: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

42

S10. Catalyst characterization

A) Elemental analysis

Table S6. Elemental analysis of the selected catalysts

Catalyst Co, % C, % N, % H, %

Co-Ura/C, 3% Co, dry 3.03 80.38 2.89 0.62

Co-Ura/C-500 3.05 89.09 1.59 0.34

Co-Ura/C-600 3.31 86.64 1.05 0.24

Co-Ura/C-700 2.80 90.71 0.94 0.75

Co-Ura/C-1000 2.79 91.53 0.50 0.29

Co-Ura/C, 10% Co, dry 10.31 51.10 9.78 0.92

Co-Ura/C-600-10% 15.74 68.57 1.91 0.45

B) Powder X-ray diffraction (PXRD) patterns and data

B-1) Powder X-ray pattern of as-prepared Co-Ura/C catalysts. Phases are labelled as squares (Co) and circles (Co3O4).

B-2) Powder X-ray diffraction pattern of as-prepared and recycled catalyst Co-Ura/C-600.

Page 43: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

43

C) XPS spectra and data

C-1) Quantitative surface analysis of selected catalysts (as table and diagram).

Catalyst C, at.% O, at.% Co, at.% N, at.% S, at.% Si, at.%Co-Ura/C-500 96.77 1.83 0.16 0.59 0.20 0.45Co-Ura/C-600 95.09 3.87 0.16 0.47 0.13 0.29Co-Ura/C-700 94.98 4.33 0.12 0.17 0.11 0.26Co-Ura/C-1000 89.82 9.65 0.02 0 0.11 0.39Co-Ura/C-600-rec1 92.08 7.04 0.22 0.26 0.08 0.32Co-Ura/C-700-rec1 96.62 2.03 0.44 0.29 0.13 0.49Co-Ura/C-600-rec4 97.37 1.56 0.26 0.51 0.16 0.16Vulcan XC72R 98.31 0.99 0 0 0.24 0.46

The detected silicon and sulfur can be found in similar concentration already on the pure Vulcan XC72R as purchased.

Page 44: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

44

C-2) C1s spectra of fresh Co-Ura/C-500, Co-Ura/C-600, Co-Ura/C-700, and Co-Ura/C-1000 (left) and fresh and recycled Co-Ura/C-600, Co-Ura/C-600rec1, and Co-Ura/C-600rec4 (right) catalyst. The dashed lines mark characteristic binding energies of carbon sp2 (284.0 eV), carbon sp3 (284.8 eV), C–OH and C–O–C (~286.5 eV), and O–C=O (288.8 eV). Especially at high pyrolysis temperatures oxygen species at higher binding energies become more pronounced. This is in agreement with increasing oxygen concentration on the surface, compare table C-1. For the recycled catalyst only minor changes in the C1s spectra can be observed.

C-3) Co2p spectra of fresh Co-Ura/C-500, Co-Ura/C-600, Co-Ura/C-700, and Co-Ura/C-1000 catalyst. The dashed lines at 779.8 eV and 803 eV mark characteristic binding energies of Co3O4 and a satellite feature of CoO or Co(OH)2.

8 Spectra for pyrolysis temperatures up to 700 °C are quite similar and indicate mainly Co3O4. For the highest temperature 1000 °C almost no cobalt can be detected at the surface.

Page 45: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

45

C-4) N1s spectra of fresh Co-Ura/C-500, Co-Ura/C-600, Co-Ura/C-700, and Co-Ura/C-1000 (left) and fresh and recycled Co-Ura/C-600, Co-Ura/C-600rec1, and Co-Ura/C-600rec4 (right) catalyst. The dashed lines at 398.2 eV and 400 eV indicate the binding energies for pyridinic and pyrrolic nitrogen9 which can be found in all spectra. Only for 1000 °C pyrolysis temperature no nitrogen can be detected. During the recycling of the catalyst the pyridinic nitrogen peak becomes more pronounced.

Page 46: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

46

D) Scanning Transmission Electron Microscopy (STEM) and EDX data

D-1) High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images of fresh Co-Ura/C-600 catalyst showing a pure Co oxide particle a) and a metal Co particle b). The corresponding annular bright field (ABF) image c) shows the carbon covering the surface of the metal Co particle. The HAADF image d) marked with the areas used for acquisition of energy dispersive x-ray (EDX) spectra e) confirms the metal core and oxide shell description of this type of particle by way of the difference in oxygen signal. Further confirmation of the metal/oxide interpretation of the image contrast can be deduced from annular dark field (ADF) image f) marked with two areas for electron energy loss spectroscopy (EELS). The spectra shown in g) show the typical difference in fine structure for Co oxide in area 1 and Co metal in area 2.10 The EEL spectra have been background subtracted and deconvolved.

a) b)

d)

c)

e)

f) g)

Page 47: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

47

D-2) HAADF images of one time used Co-Ura/C-600rec1 showing an additional overview a) with mostly oxygen containing Co particles and some veil-like structures. A higher resolution image b) of this Co phase reveals its layered structure especially visible in the corresponding ABF image c). The ADF image d) is marked with the areas used for EELS analysis e) where both areas show the typical fine structure of the Co-L edge for Co oxide, but the fine structure of the O-Kedge is slightly different indicating differences in electronic structure. The EEL spectra have been background subtracted, deconvolved and scaled to matching Co-L edge intensities.

a) b)

d)

c)

e)

Page 48: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

48

D-3) The higher magnified HAADF image a) of a veil type structure in four times recovered Co-Ura/C-600rec4 shows its adherence to the Vulcan spport particle. An additional HAADF overview image b) shows mostly veil type structure in different orientation (plan-view and edge view) but also a few remaining particles of oxide and metal type. Notably, the metal type particles are still tightly surrounded by graphitic carbon as shown in the high resolution HAADF c) and ABF d) image pair indicating a possible isolation from any catalytic reaction.

a) b)

c) d)

Page 49: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

49

E) BET data

E-1) Summary Report for Co-Ura/C-600

Surface AreaSingle point surface area at P/Po = 0.010188154: 161.5743 m²/gBET Surface Area: 166.3158 m²/gt-Plot Micropore Area: 82.3238 m²/gt-Plot External Surface Area: 83.9920 m²/gPore Volumet-Plot micropore volume: 0.045884 cm³/gBJH Desorption cumulative volume of pores between 2.0000 nm and 100.0000 nm width: 0.559683 cm³/g

E-2) Isotherm linear plot for catalyst Co-Ura/C-600: + - Adsorption, o - Desorption

E-3) Summary Report for Co-Ura/C-1000

Summary ReportSurface AreaSingle point surface area at P/Po = 0.011533393: 209.4023 m²/gBET Surface Area: 214.4480 m²/gt-Plot Micropore Area: 149.5431 m²/gt-Plot External Surface Area: 64.9049 m²/gPore Volume

Page 50: Supporting Information industrial olefins, natural oils ... · Gas chromatography analysis was performed on an Agilent HP-7890A chromatograph with a FID instrument and HP-5 column

50

t-Plot micropore volume: 0.067155 cm³/gBJH Desorption cumulative volume of poresbetween 2.0000 nm and 100.0000 nm width: 0.438310 cm³/g

E-4) Isotherm linear plots: + – Adsorption, o – Desorption for catalysts Co-Ura/C-600 (red) and Co-Ura/C-1000 (green)

1. F. D. King and S. Caddick, Organic & Biomolecular Chemistry, 2011, 9, 4361-4366.2. T. C. Fessard, H. Motoyoshi and E. M. Carreira, Angew. Chem. Int. Ed., 2007, 46, 2078-2081.3. G. Rubulotta, K. L. Luska, C. A. Urbina-Blanco, T. Eifert, R. Palkovits, E. A. Quadrelli, C.

Thieuleux and W. Leitner, ACS Sustain. Chem. Eng., 2017, 5, 3762-3767.4. G. Villa, G. Povie and P. Renaud, J. Am. Chem. Soc., 2011, 133, 5913-5920.5. P. Büschelberger, E. Reyes-Rodriguez, C. Schöttle, J. Treptow, C. Feldmann, A. Jacobi von

Wangelin and R. Wolf, Catal. Sci. Technol., 2018, 8, 2648-2653.6. P. A. Robles-Dutenhefner, M. G. Speziali, E. M. B. Sousa, E. N. dos Santos and E. V.

Gusevskaya, Appl. Catal., A, 2005, 295, 52-58.7. M. G. Speziali, F. C. C. Moura, P. A. Robles-Dutenhefner, M. H. Araujo, E. V. Gusevskaya and

E. N. dos Santos, J. Mol. Catal. A: Chem., 2005, 239, 10-14.8. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson and R. S. C. Smart,

Appl. Surf. Sci., 2011, 257, 2717.9. B. J. Matsoso, K. Ranganathan, B. K. Mutuma, T. Lerotholi, G. Jones and N. J. Coville, RSC

Adv., 2016, 6, 106914-106920.10. Z. Zhang, Ultramicroscopy, 2007, 107, 598-603.