supplementary materials for - science · 2017. 8. 3. · 3 . diffusion electrode (gde, mg pt...

15
www.sciencemag.org/content/357/6350/479/suppl/DC1 Supplementary Materials for Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst Hoon T. Chung, David A. Cullen, Drew Higgins, Brian T. Sneed, Edward F. Holby, Karren L. More, Piotr Zelenay* *Corresponding author. Email: [email protected] Published 4 August 2017, Science 357, 479 (2017) DOI: 10.1126/science.aan2255 This PDF file includes: Materials and Methods Figs. S1 to S13 References Other Supplementary Materials for this manuscript includes the following: (available at www.sciencemag.org/content/357/6350/479/suppl/DC1) DFT Data File S1 (PDF)

Upload: others

Post on 27-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • www.sciencemag.org/content/357/6350/479/suppl/DC1

    Supplementary Materials for

    Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst

    Hoon T. Chung, David A. Cullen, Drew Higgins, Brian T. Sneed, Edward F. Holby,

    Karren L. More, Piotr Zelenay*

    *Corresponding author. Email: [email protected]

    Published 4 August 2017, Science 357, 479 (2017) DOI: 10.1126/science.aan2255

    This PDF file includes:

    Materials and Methods Figs. S1 to S13 References

    Other Supplementary Materials for this manuscript includes the following: (available at www.sciencemag.org/content/357/6350/479/suppl/DC1)

    DFT Data File S1 (PDF)

  • 2

    Materials and Methods Catalyst synthesis

    Aniline was added to 1.5 M HCl solution stirred by a magnetic bar at room temperature on a hot plate, followed by addding cyanamide and FeCl3 as an iron precursor. Once FeCl3 was dissolved, (NH4)2S2O8 (ammonium persulfate, APS) was added as oxidant to the solution to catalyze aniline polymerization. The solution was stirred at room temperature for 4 hours to allow full polymerization of aniline. Carbon (Cabot, Black Pearls 2000), pretreated with 70% nitric acid at 80°C for 8 hours, was ultrasonically dispersed, then mixed with the dispersion containing cyanamide and polyaniline (PANI). The temperature of the hot plate was then increased to 80 °C and the solution dried while stirring until it became tar-like. The subsequent heat treatment was performed at 900 °C in nitrogen atmosphere for 1 hour. After the initial pyrolysis in nitrogen at 900 °C, the resultant expanded into a foam-like structure. The product was ground in a mortar, pre-leached in 0.5 M H2SO4 at 80-90 °C for 8 hours, and washed with ample amount of de-ionized (DI) water. After drying at 90 °C in vacuum oven overnight, the powder was heat-treated again at 900 °C in N2 atmosphere for 3 hours to obtain the final product. Rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) measurements

    Rotating ring-disk electrode (RRDE) measurements were performed in a standard three-electrode cell using a CHI Electrochemical Station (Model 750b) and a 5.61 mm diameter glassy carbon disk (disk geometric area 0.247 cm2). To avoid any potential contamination of the catalyst by platinum, all experiments with PGM-free catalysts were carried out using a graphite rod as the counter electrode. Potentials were measured vs. the Ag/AgCl electrode in 3.0 M NaCl and then converted to the reversible hydrogen electrode (RHE) scale. The catalyst ink was prepared by ultrasonically blending for 1 hour 5 mg of catalyst and ~ 10 mg of 5% Nafion® suspension in alcohol (Ion Power, Inc.) in 1.0 mL of isopropyl alcohol (IPA). 30 µl of the thus-prepared catalyst ink was deposited onto the disk yielding an approximate catalyst loading of 0.6 mg cm-2. After drying, the catalyst was activated by ca. 20 cyclic voltammetry (CV) scans in oxygen-saturated electrolyte at a scan rate of 100 mV s-1 and in the potential range of 0.0-1.0 V vs. RHE until a reproducible CV was obtained. Oxygen reduction reaction (ORR) measurements were performed at room temperature, 25±1°C, in O2-saturated 0.5 M H2SO4 at a rotation rate of 900 rpm. ORR polarization plots were recorded under steady-state conditions, starting at 1.0 V vs. RHE down to 0.0 V vs. RHE, using a 0.02 V step and a potential hold time of 25 s. Ring collection efficiency was 36 % as determined using an Fe(CN)64-/3- redox couple. The ring potential was set to 1.3 V vs. RHE in RRDE testing. Fuel cell testing

    Catalyst ink for 35 wt% Nafion® electrodes was made by ultrasonically mixing the catalyst, IPA, DI water, and 5% Nafion® suspension in alcohols at a 1:12:12:11 weight ratio for 3 hours. Catalyst inks for electrodes with 50 and 60 wt% contents of Nafion® were prepared by increasing the ionomer content in the suspension while keeping the IPA and DI water volumes the same. The inks were applied to the membrane by brushing until a cathode catalyst of ~ 4.0 mg cm-2 was reached. A commercial Pt-catalyzed gas

  • 3

    diffusion electrode (GDE, 2.0 mgPt cm-2, Johson Mattthey) was used at the anode. The cathode and anode were hot-pressed onto a Nafion® 211 membrane at 125°C for 3 minutes. The geometric surface area of the MEA was 5.0 cm2. Fuel cell testing was carried out in a cell with single-serpentine flow channels. Pure hydrogen and air/oxygen humidified at 80 °C, were supplied to the anode and cathode at a flow rate of 200 mL min-1. The backpressures at both electrodes were set at values assuring 1.0 bar partial pressure of gases (sum of partial pressures of oxygen and nitrogen in the case of air). Polarization plots were recorded using fuel cell test stations (Fuel Cell Technologies Inc.) in a voltage-control mode. Physical characterization

    Catalyst morphology was characterized by scanning electron microscopy (SEM) on a Hitachi S-5400 instrument. Aberration-corrected scanning transmission electron microscopy (STEM) was performed using a Nion UltraSTEM 100 operated at 60 kV and equipped with a Gatan Enfina electron energy loss spectrometer. Aberration-corrected STEM images were acquired using a high-angle annular dark-field (HAADF) detector with a 54-200 mrad collection semi-angle. Surface area and pore size distribution of the samples was measured by Quantachrome Autosorb-iQ using N2. X-ray diffraction (XRD, Siemens, Diffraktometer D5000, Cu Kα) and Raman spectroscopy (Bruker Senterra, 532 nm laser) were used to study the structure and disorders of the catalysts. X-ray photoelectron spectroscopy (XPS) measurements were performed on a Kratos Axis DLD Ultra X-ray photoelectron spectrometer using an Al Kα line source monochromatic operating at 150 W. Cross-sections of epoxy-embedded catalyst layers for STEM imaging and energy-dispersive x-ray (EDX) spectroscopy elemental mapping were prepared by ultramicrotomy using a Leica UltraCut UC7 at room temperature. DFT Calculations

    Density functional theory calculations were performed using Vienna Ab Initio Simulation Package (VASP).37-40 The generalized gradient approximation (GGA), as parameterized by Perdew, Burke, and Ernzerhof (PBE)41, 42 was used for the exchange and correlation functional. Ions were relaxed using a conjugate gradient algorithm until the Hellmann-Feynman forces on each ion were less than 0.01 eV/Å. The electronic self-consistency loop was converged to within 1×10-5 eV using a residual minimization method direct inversion in the iterative subspace (RMM-DIIS) algorithm. Γ-point centered Monkhorst-Pack k-point meshes of 1×1×1 were utilized for sampling of the Brillouin zone for initial relaxation followed by subsequent relaxation on a 5×5×1 mesh (bulk) or 5×1×1 (zig-zag edge). A plane-wave kinetic energy cutoff of 400 eV was utilized for all simulations. Spin-polarization was included. Vacuum spacing between periodic images of ~10 Å was utilized to reduce self-interactions between these images. Van der Waals interactions were included using the DFT-D2 method of Grimme.43 Computational hydrogen electrode (CHE) and thermodynamic limiting potential formulations were utilized following References 35 and 44. Relative shifts in free energy for intermediate states were taken directly from calculated DFT free energies (in the limit that the smearing of band-structure goes to zero). References 45 and 46 showed relative balancing of additional simulated effects for ORR pathway (including water solvation, zero-point energy, vibrational entropy, and interfacial/potential effects) and discussed the suitability

  • 4

    of such calculations to discern relative activity. This approach does not explicitly include the kinetics between intermediate states, though activity descriptors calculated in this fashion have proven to capture important shifts in electrocatalytic activity with atomic scale structure (see Reference 47 for further discourse on the topic). Due to the assumed isolated nature of PGM-free active site structures, no consideration of elastic surface interactions due to fractional surface coverage were considered. Calculated thermodynamic limiting potentials, Ul, were utilized for relative comparison of the ORR activity of atomic-scale structures. Calculated free energy reaction pathways necessary for calculation of Ul values are shown in Fig. S13 and relaxed atomic structures of the structures with and without reaction intermediates are provided separately in DFT structure files in VASP input/output file format (CONTCAR). It is the hope of the authors that future publications include such structure files in order to improve reproducibility as well as to accelerate future research geared toward studying additional physicochemical effects necessary for accurately producing catalyst turn over frequency values in silico.

    The choice of using an OH ligand as shown in Fig. 4 and described in Fig. S13 is based on the calculated thermochemistry of the ORR pathway considered (Fig. S13). For the bulk-hosted and edge-hosted FeN4 sites considered without ligands, the final protonation step is calculated to be potential determining, i.e., the OH ligand is strongly bound on these sties. The final protonation step is predicted to be endothermic at potentials above 0.04 and 0.08 V vs. CHE respectively, which includes most relevant potentials considered. That is, at all relevant potentials, the OH bound intermediate state is thermodynamically lower energy than the completed ORR state. Thus, it is calculated that the OH-bound structure spontaneously forms in situ under potential and is thermodynamically persistent.

    On an extended metal surface such strong OH binding would be considered OH poisoning as the strongly bound OH would block active sites from facilitating ORR. In the more three-dimensional structures discussed here, however, this strongly bound OH can act instead as a spontaneously formed modifying ligand since the “other side” of the structure that does not have the bound OH ligand/site blocked can act as the now-ligand-modified active site. The possibility of a spontaneously formed and persistent OH ligand is discussed in detail in previous publications (References 35 and 36 in the main text) for Fe2N5 structures at graphene edges. This manuscript extends this reasoning to FeN4 structures. Due to the effects of the OH ligand, it is calculated that the ligated structures have a significantly modified ORR reaction pathways (improved thermodynamic limiting potentials for edge structures but not for bulk structures). These calculations further support the hypothesis that edge-hosted FeN4 active sites can have different (improved) ORR activity than their bulk-hosted counter parts, even if their direct detection remains elusive.

  • 5

    Figures

    Fig. S1. TGA of (CM+PANI)-Fe-C vs. PANI-Fe-C.

    Fig. S2. (a) HAADF-STEM image of a microtomed cross-section of (CM+PANI)-Fe-C catalyst electrode with 35 wt.% Nafion® content. “C” designates catalyst regions containing both macropores and micropores, “P” large pores in the electrode, and “D” dense catalyst regions. (b) Fluorine EDX spectroscopy map from the same area shown in (a). (c) Porous and (d) dense phases in (CM+PANI)-Fe-C catalysts within catalyst layer showing ionomer infiltration into porous regions but not into dense

    h

  • 6

    Fig. S4. iR-corrected (a) H2-air and (b) H2-O2 fuel cell polarization plots. Cathode: ca. 4.0 mg cm-2 (CM+PANI)-Fe-C; gas flow 200 mL min.-1; 100% RH; 1.0 bar partial pressure; anode: 2.0 mgPt cm-2 Pt/C; H2 200 mL min.-1; 100% RH; 1.0 bar partial pressure; membrane: Nafion® 211; cell: 80°C; 5 cm2 electrode area.

    Fig. S3. (CM+PANI)-Fe-C catalyst RDE cycling durability test in nitrogen between 0.2 and 1.0 V in 0.5 M H2SO4 (catalyst loading, 0.6 mg cm-2). (a) Plots of potential vs. mass transport-corrected kinetic current density. (b) Change in potential as a function of cycle number.

  • 7

    Fig. S5. XPS results of (CM+PANI)-Fe-C for N1s peak; peak fitting indicates presence of pyridinic-, pyrrolic-, and graphitic-nitrogen bonded species.

    Binding energy (eV)396398400402404406408

    Inte

    nsity

    (a.u

    .)

    measuredpyridinic Npyrrolic Ngraphitic NNO(1)NO(2)NO(3)envolope

    Fig. S6. HAADF-STEM images of the primary fibrous carbon phase of (CM+PANI)-Fe-C catalysts. Carbon particles consisted of randomly oriented, intertwined, turbostratic graphitic grains/domains as shown in (a). The bright atoms in (b) are Fe atoms (with some Si), which are associated primarily with exposed edges of the intertwined graphite grain/domain in this phase. Due to their instability under the electron beam during STEM, EELS spectrum imaging of individual Fe atoms was not feasible, but the EEL spectrum in (c) acquired of the closely spaced atoms in the green box shown in (b) confirms the atoms are Fe. N is also detected in this area.

  • 8

    Fig. S7. Raman spectrum of (CM+PANI)-Fe-C catalyst.

    Fig. S8. X-ray diffraction pattern of (CM+PANI)-Fe-C catalyst.

  • 9

    Fig. S9. BF-STEM and corresponding HAADF-STEM images of the phases in (CM+PANI)-Fe-C catalysts. Large, isolated Fe and FeS particles are circled in yellow.

    Fig. S10. HAADF-STEM images of the few-layer graphene phase of the (CM+PANI)-Fe-C catalysts. Individual Fe atoms (spots exhibiting bright contrast) were routinely observed on or within the layers of the graphene sheets.

  • 10

    Fig. S11. HAADF-STEM images with EEL spectrum images of a single Fe atom associated with the few-layer graphene sheet phase. The presence of N around the Fe atom indicates their association within the graphene. This represents the first direct observation of the proposed Fe-N active site in such PGM-free catalyst.

    Fig. S12. HAADF-STEM of a single layer graphene region found within a few-layer graphene sheet. Most of the Fe was observed at the step-sites between single and double (or multi-) layer graphene. A single Fe atom was also observed in a substitutional site within the graphene lattice.

  • 11

    Fig. S13. Reaction pathways/system energy graph at 0.00 V vs. CHE for bulk-hosted and zig-zag-edge-hosted FeN4 structures with and without OH ligand. Reaction coordinates represent: (1) * + O2 + 4 H+ + 4 e-; (2) *OO + 4 H+ + 4 e-; (3) *OOH + 3 H+ + 3 e-; (4) *O + H2O + 2 H+ + 2 e-; (5) *OH + H2O + H+ + e-; (6) * + 2 H2O. * represents either a free site or intermediate bound site. Note that the Bulk + OH structure does not exothermically bind O2 and reaction coordinate (3) has a spontaneously dissociated OOH (*O + OH). Reaction coordinate (5) for bulk and zig-zag edge occur at 0.04 eV and 0.08 eV respectively indicating that a spontaneously formed and persistent OH ligand should occur at potentials greater than 0.04 V and 0.08 V vs. CHE respectively (these are also the limiting potentials for bulk and zig-zag edge structures respectively). This spontaneous OH ligand modifies the zig-zag-edge-hosted FeN4 structure, leading to the calculated limiting potential of 0.80 V vs. CHE. It is interesting to note that if the bulk-hosted FeN4 site with OH ligand did evolve H2O from the bound O (from the spontaneous dissociation of OOH, perhaps in a multi-site reaction), that the protonation of that bound O would likely define the potential determining step with an Ul value of 0.70 V. This further suggests that even with an altered reaction pathway, bulk-hosted FeN4 structures are catalytically inferior to their edge-hosted counterparts.

    0

    1

    2

    3

    4

    5

    6

    1 2 3 4 5 6Rel

    ativ

    e Fr

    ee E

    negy

    vs.

    CHE

    at U

    = O

    .0 V

    Reaction Coordinate

    Ideal Bulk Bulk+OH Zig-Zag Edge Zig-Zag Edge+OH

  • References and Notes 1. T. Yoshida, K. Kojima, Toyota MIRAI fuel cell vehicle and progress toward a future

    hydrogen society. Electrochem. Soc. Interface 24, 45–49 (2015). doi:10.1149/2.F03152if 2. B. D. James, J. M. Moton, W. G. Colella, “Fuel Cell Transportation Cost Analysis,” U.S.

    Department of Energy’s 2014 Annual Merit Review and Peer Evaluation Meeting, Washington, DC, 19 June 2014.

    3. M. K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012). doi:10.1038/nature11115 Medline

    4. J. Masa, W. Xia, M. Muhler, W. Schuhmann, On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction. Angew. Chem. Int. Ed. 54, 10102–10120 (2015). doi:10.1002/anie.201500569 Medline

    5. K. Mamtani, U. S. Ozkan, Heteroatom-doped carbon nanostructures as oxygen reduction reaction catalysts in acidic media: An overview. Catal. Lett. 145, 436–450 (2015). doi:10.1007/s10562-014-1434-y

    6. G. Wu, P. Zelenay, Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 46, 1878–1889 (2013). doi:10.1021/ar400011z Medline

    7. U. I. Kramm, M. Lefèvre, N. Larouche, D. Schmeisser, J.-P. Dodelet, Correlations between mass activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via 57Fe Mössbauer spectroscopy and other techniques. J. Am. Chem. Soc. 136, 978–985 (2014). doi:10.1021/ja410076f Medline

    8. E. F. Holby, G. Wu, P. Zelenay, C. D. Taylor, Structure of Fe-Nx-C defects in oxygen reduction reaction catalysts from first-principles modeling. J. Phys. Chem. C 118, 14388–14393 (2014). doi:10.1021/jp503266h

    9. A. Zitolo, V. Goellner, V. Armel, M.-T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 14, 937–942 (2015). doi:10.1038/nmat4367 Medline

    10. N. R. Sahraie, U. I. Kramm, J. Steinberg, Y. Zhang, A. Thomas, T. Reier, J.-P. Paraknowitsch, P. Strasser, Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nat. Commun. 6, 8618 (2015). doi:10.1038/ncomms9618 Medline

    11. J. K. Li, S. Ghoshal, W. Liang, M.-T. Sougrati, F. Jaouen, B. Halevi, S. McKinney, G. McCool, C. Ma, X. Yuan, Z.-F. Ma, S. Mukerjee, Q. Jia, Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction. Energy Environ. Sci. 9, 2418–2432 (2016). doi:10.1039/C6EE01160H

    12. E. Proietti, F. Jaouen, M. Lefèvre, N. Larouche, J. Tian, J. Herranz, J.-P. Dodelet, Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2, 416 (2011). doi:10.1038/ncomms1427 Medline

    13. A. Serov, K. Artyushkova, P. Atanassov, Fe-N-C oxygen reduction fuel cell catalyst derived from carbendazim: Synthesis, structure, and reactivity. Adv. Energy Mater. 4, 1301735 (2014). doi:10.1002/aenm.201301735

    12

    http://dx.doi.org/10.1149/2.F03152ifhttp://dx.doi.org/10.1038/nature11115http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22678278&dopt=Abstracthttp://dx.doi.org/10.1002/anie.201500569http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26136398&dopt=Abstracthttp://dx.doi.org/10.1007/s10562-014-1434-yhttp://dx.doi.org/10.1021/ar400011zhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23815084&dopt=Abstracthttp://dx.doi.org/10.1021/ja410076fhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24345296&dopt=Abstracthttp://dx.doi.org/10.1021/jp503266hhttp://dx.doi.org/10.1038/nmat4367http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26259106&dopt=Abstracthttp://dx.doi.org/10.1038/ncomms9618http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26486465&dopt=Abstracthttp://dx.doi.org/10.1039/C6EE01160Hhttp://dx.doi.org/10.1038/ncomms1427http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21811245&dopt=Abstracthttp://dx.doi.org/10.1002/aenm.201301735

  • 14. S. Ma, G. A. Goenaga, A. V. Call, D.-J. Liu, Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chemistry 17, 2063–2067 (2011). doi:10.1002/chem.201003080 Medline

    15. J. Shui, C. Chen, L. Grabstanowicz, D. Zhao, D. J. Liu, Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network. Proc. Natl. Acad. Sci. U.S.A. 112, 10629–10634 (2015). doi:10.1073/pnas.1507159112 Medline

    16. G. Wu, C. M. Johnston, N. H. Mack, K. Artyushkova, M. Ferrandon, M. Nelson, J. S. Lezama-Pacheco, S. D. Conradson, K. L. More, D. J. Myers, P. Zelenay, Synthesis-structure-performance correlation for polyaniline-Me-C non-precious metal cathode catalysts for oxygen reduction in fuel cells. J. Mater. Chem. 21, 11392 (2011). doi:10.1039/c0jm03613g

    17. G. Wu, K. L. More, C. M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011). doi:10.1126/science.1200832 Medline

    18. M. Ferrandon, A. J. Kropf, D. J. Myers, K. Artyushkova, U. Kramm, P. Bogdanoff, G. Wu, C. M. Johnston, P. Zelenay, Multitechnique characterization of a polyaniline–iron–carbon oxygen reduction catalyst. J. Phys. Chem. C 116, 16001–16013 (2012). doi:10.1021/jp302396g

    19. H. T. Chung, C. M. Johnston, K. Artyushkova, M. Ferrandon, D. J. Myers, P. Zelenay, Cyanamide-derived non-precious metal catalyst for oxygen reduction. Electrochem. Commun. 12, 1792–1795 (2010). doi:10.1016/j.elecom.2010.10.027

    20. H. T. Chung, J. H. Won, P. Zelenay, Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 4, 1922 (2013). doi:10.1038/ncomms2944 Medline

    21. A. S. Varela, N. Ranjbar Sahraie, J. Steinberg, W. Ju, H.-S. Oh, P. Strasser, Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem. Int. Ed. 54, 10758–10762 (2015). doi:10.1002/anie.201502099 Medline

    22. See supplementary materials.

    23. F. Jaouen, J. Herranz, M. Lefèvre, J.-P. Dodelet, U. I. Kramm, I. Herrmann, P. Bogdanoff, J. Maruyama, T. Nagaoka, A. Garsuch, J. R. Dahn, T. Olson, S. Pylypenko, P. Atanassov, E. A. Ustinov, Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 1, 1623–1639 (2009). doi:10.1021/am900219g Medline

    24. D. A. Cullen, R. Koestner, R. S. Kukreja, Z. Y. Liu, S. Minko, O. Trotsenko, A. Tokarev, L. Guetaz, H. M. Meyer, C. M. Parish, K. L. More, Imaging and microanalysis of thin ionomer layers by scanning transmission electron microscopy. J. Electrochem. Soc. 161, F1111–F1117 (2014). doi:10.1149/2.1091410jes

    25. D. Zhao, J.-L. Shui, L. R. Grabstanowicz, C. Chen, S. M. Commet, T. Xu, J. Lu, D.-J. Liu, Highly efficient non-precious metal electrocatalysts prepared from one-pot synthesized

    13

    http://dx.doi.org/10.1002/chem.201003080http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21294177&dopt=Abstracthttp://dx.doi.org/10.1073/pnas.1507159112http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26261338&dopt=Abstracthttp://dx.doi.org/10.1039/c0jm03613ghttp://dx.doi.org/10.1126/science.1200832http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21512028&dopt=Abstracthttp://dx.doi.org/10.1021/jp302396ghttp://dx.doi.org/10.1016/j.elecom.2010.10.027http://dx.doi.org/10.1038/ncomms2944http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23715281&dopt=Abstracthttp://dx.doi.org/10.1002/anie.201502099http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26227677&dopt=Abstracthttp://dx.doi.org/10.1021/am900219ghttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20355776&dopt=Abstracthttp://dx.doi.org/10.1149/2.1091410jes

  • zeolitic imidazolate frameworks. Adv. Mater. 26, 1093–1097 (2014). doi:10.1002/adma.201304238 Medline

    26. K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy, W. Liang, M.-T. Sougrati, F. Jaouen, S. Mukerjee, Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat. Commun. 6, 7343 (2015). doi:10.1038/ncomms8343 Medline

    27. S. Komini Babu, H. T. Chung, P. Zelenay, S. Litster, Resolving electrode morphology’s impact on platinum group metal-free cathode performance using nano-CT of 3D hierarchical pore and ionomer distribution. ACS Appl. Mater. Interfaces 8, 32764–32777 (2016). doi:10.1021/acsami.6b08844 Medline

    28. A. Kongkanand, N. P. Subramanian, Y. Yu, Z. Liu, H. Igarashi, D. A. Muller, Achieving high-power PEM fuel cell performance with an ultralow-Pt-content core-shell catalyst. ACS Catal. 6, 1578–1583 (2016). doi:10.1021/acscatal.5b02819

    29. A. Serov, M. J. Workman, K. Artyushkova, P. Atanassov, G. McCool, S. McKinney, H. Romero, B. Halevi, T. Stephenson, Highly stable precious metal-free cathode catalyst for fuel cell application. J. Power Sources 327, 557–564 (2016). doi:10.1016/j.jpowsour.2016.07.087

    30. J. Tian, A. Morozan, M. T. Sougrati, M. Lefèvre, R. Chenitz, J.-P. Dodelet, D. Jones, F. Jaouen, Optimized synthesis of Fe/N/C cathode catalysts for PEM fuel cells: A matter of iron-ligand coordination strength. Angew. Chem. Int. Ed. 52, 6867–6870 (2013). doi:10.1002/anie.201303025 Medline

    31. H2-O2 fuel cell performance in this work was measured at a relatively low O2 flow rate of 40 ml min–1 cm–2. The maximum power density reported to date is ~0.9 W cm–2. It was obtained at

    2Op of 1.0 bar and a high O2 flow rate of 260 ml min–1 cm–2 (12) and,

    independently, at a high2O

    p of 2.0 bar and high O2 flow rate of 80 ml min–1 cm–2 (15).

    32. H. T. Chung, P. Zelenay, A simple synthesis of nitrogen-doped carbon micro- and nanotubes. Chem. Commun. (Camb.) 51, 13546–13549 (2015). doi:10.1039/C5CC04621A Medline

    33. R. Zan, Q. M. Ramasse, R. Jalil, T. Georgiou, U. Bangert, K. S. Novoselov, Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 7, 10167–10174 (2013). doi:10.1021/nn4044035 Medline

    34. H. Fei, J. Dong, M. J. Arellano-Jiménez, G. Ye, N. Dong Kim, E. L. G. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, M. J. Yacaman, P. M. Ajayan, D. Chen, J. M. Tour, Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015). doi:10.1038/ncomms9668 Medline

    35. E. F. Z. Holby, P. Zelenay, Linking structure to function: The search for active sites in non-platinum group metal oxygen reduction reaction catalysts. Nano Energy 29, 54–64 (2016). doi:10.1016/j.nanoen.2016.05.025

    36. E. F. Holby, C. D. Taylor, Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands. Sci. Rep. 5, 9286 (2015). doi:10.1038/srep09286 Medline

    14

    http://dx.doi.org/10.1002/adma.201304238http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24357431&dopt=Abstracthttp://dx.doi.org/10.1038/ncomms8343http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26059552&dopt=Abstracthttp://dx.doi.org/10.1021/acsami.6b08844http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27805365&dopt=Abstracthttp://dx.doi.org/10.1021/acscatal.5b02819http://dx.doi.org/10.1016/j.jpowsour.2016.07.087http://dx.doi.org/10.1002/anie.201303025http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23720422&dopt=Abstracthttp://dx.doi.org/10.1039/C5CC04621Ahttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26221634&dopt=Abstracthttp://dx.doi.org/10.1021/nn4044035http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24116975&dopt=Abstracthttp://dx.doi.org/10.1038/ncomms9668http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26487368&dopt=Abstracthttp://dx.doi.org/10.1016/j.nanoen.2016.05.025http://dx.doi.org/10.1038/srep09286http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25788358&dopt=Abstract

  • 37. G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). doi:10.1016/0927-0256(96)00008-0

    38. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). doi:10.1103/PhysRevB.54.11169 Medline

    39. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). doi:10.1103/PhysRevB.47.558 Medline

    40. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994). doi:10.1103/PhysRevB.49.14251 Medline

    41. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). doi:10.1103/PhysRevLett.77.3865 Medline

    42. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396–1396 (1997). doi:10.1103/PhysRevLett.78.1396 Medline

    43. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). doi:10.1002/jcc.20495 Medline

    44. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004). doi:10.1021/jp047349j

    45. A. B. Anderson, Insights into electrocatalysis. Phys. Chem. Chem. Phys. 14, 1330–1338 (2012). doi:10.1039/C2CP23616H Medline

    46. A. Lyalin, A. Nakayama, K. Uosaki, T. Taketsugu, Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 15, 2809–2820 (2013). doi:10.1039/c2cp42907a Medline

    47. T. Bligaard, J. K. Nørskov, S. Dahl, J. Matthiesen, C. H. Christensen, J. Sehested, The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004). doi:10.1016/j.jcat.2004.02.034

    15

    http://dx.doi.org/10.1016/0927-0256(96)00008-0http://dx.doi.org/10.1103/PhysRevB.54.11169http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9984901&dopt=Abstracthttp://dx.doi.org/10.1103/PhysRevB.47.558http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10004490&dopt=Abstracthttp://dx.doi.org/10.1103/PhysRevB.49.14251http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10010505&dopt=Abstracthttp://dx.doi.org/10.1103/PhysRevLett.77.3865http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10062328&dopt=Abstracthttp://dx.doi.org/10.1103/PhysRevLett.78.1396http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10062328&dopt=Abstracthttp://dx.doi.org/10.1002/jcc.20495http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16955487&dopt=Abstracthttp://dx.doi.org/10.1021/jp047349jhttp://dx.doi.org/10.1039/C2CP23616Hhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22159903&dopt=Abstracthttp://dx.doi.org/10.1039/c2cp42907ahttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23338859&dopt=Abstracthttp://dx.doi.org/10.1016/j.jcat.2004.02.034

    Materials and MethodsFig. S1. TGA of (CM+PANI)-Fe-C vs. PANI-Fe-C.Fig. S3. (CM+PANI)-Fe-C catalyst RDE cycling durability test in nitrogen between 0.2 and 1.0 V in 0.5 M H2SO4 (catalyst loading, 0.6 mg cm-2). (a) Plots of potential vs. mass transport-corrected kinetic current density. (b) Change in potential as a fu...Fig. S4. iR-corrected (a) H2-air and (b) H2-O2 fuel cell polarization plots. Cathode: ca. 4.0 mg cm-2 (CM+PANI)-Fe-C; gas flow 200 mL min.-1; 100% RH; 1.0 bar partial pressure; anode: 2.0 mgPt cm-2 Pt/C; H2 200 mL min.-1; 100% RH; 1.0 bar partial pres...Fig. S5. XPS results of (CM+PANI)-Fe-C for N1s peak; peak fitting indicates presence of pyridinic-, pyrrolic-, and graphitic-nitrogen bonded species.Fig. S11. HAADF-STEM images with EEL spectrum images of a single Fe atom associated with the few-layer graphene sheet phase. The presence of N around the Fe atom indicates their association within the graphene. This represents the first direct observ...aan2255_Chung_SM.ref.pdfReferences and Notes1. T. Yoshida, K. Kojima, Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. Electrochem. Soc. Interface 24, 45–49 (2015). doi:10.1149/2.F03152if2. B. D. James, J. M. Moton, W. G. Colella, “Fuel Cell Transportation Cost Analysis,” U.S. Department of Energy’s 2014 Annual Merit Review and Peer Evaluation Meeting, Washington, DC, 19 June 2014.3. M. K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012). doi:10.1038/nature11115 Medline4. J. Masa, W. Xia, M. Muhler, W. Schuhmann, On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction. Angew. Chem. Int. Ed. 54, 10102–10120 (2015). doi:10.1002/anie.201500569 Medline5. K. Mamtani, U. S. Ozkan, Heteroatom-doped carbon nanostructures as oxygen reduction reaction catalysts in acidic media: An overview. Catal. Lett. 145, 436–450 (2015). doi:10.1007/s10562-014-1434-y6. G. Wu, P. Zelenay, Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 46, 1878–1889 (2013). doi:10.1021/ar400011z Medline7. U. I. Kramm, M. Lefèvre, N. Larouche, D. Schmeisser, J.-P. Dodelet, Correlations between mass activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via 57Fe Mössbauer spectroscopy and other techniques. J. Am. Chem...8. E. F. Holby, G. Wu, P. Zelenay, C. D. Taylor, Structure of Fe-Nx-C defects in oxygen reduction reaction catalysts from first-principles modeling. J. Phys. Chem. C 118, 14388–14393 (2014). doi:10.1021/jp503266h9. A. Zitolo, V. Goellner, V. Armel, M.-T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 14, 937–942 (2015). doi:10.1038/nmat43...10. N. R. Sahraie, U. I. Kramm, J. Steinberg, Y. Zhang, A. Thomas, T. Reier, J.-P. Paraknowitsch, P. Strasser, Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nat. Commun. 6, 8618 (2015)...11. J. K. Li, S. Ghoshal, W. Liang, M.-T. Sougrati, F. Jaouen, B. Halevi, S. McKinney, G. McCool, C. Ma, X. Yuan, Z.-F. Ma, S. Mukerjee, Q. Jia, Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction. Energy...12. E. Proietti, F. Jaouen, M. Lefèvre, N. Larouche, J. Tian, J. Herranz, J.-P. Dodelet, Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2, 416 (2011). doi:10.1038/ncomms1427 Medline13. A. Serov, K. Artyushkova, P. Atanassov, Fe-N-C oxygen reduction fuel cell catalyst derived from carbendazim: Synthesis, structure, and reactivity. Adv. Energy Mater. 4, 1301735 (2014). doi:10.1002/aenm.20130173514. S. Ma, G. A. Goenaga, A. V. Call, D.-J. Liu, Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chemistry 17, 2063–2067 (2011). doi:10.1002/chem.201003080 Medline15. J. Shui, C. Chen, L. Grabstanowicz, D. Zhao, D. J. Liu, Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network. Proc. Natl. Acad. Sci. U.S.A. 112, 10629–10634 (2015). doi:10.107...16. G. Wu, C. M. Johnston, N. H. Mack, K. Artyushkova, M. Ferrandon, M. Nelson, J. S. Lezama-Pacheco, S. D. Conradson, K. L. More, D. J. Myers, P. Zelenay, Synthesis-structure-performance correlation for polyaniline-Me-C non-precious metal cathode cat...17. G. Wu, K. L. More, C. M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011). doi:10.1126/science.1200832 Medline18. M. Ferrandon, A. J. Kropf, D. J. Myers, K. Artyushkova, U. Kramm, P. Bogdanoff, G. Wu, C. M. Johnston, P. Zelenay, Multitechnique characterization of a polyaniline–iron–carbon oxygen reduction catalyst. J. Phys. Chem. C 116, 16001–16013 (2012). do...19. H. T. Chung, C. M. Johnston, K. Artyushkova, M. Ferrandon, D. J. Myers, P. Zelenay, Cyanamide-derived non-precious metal catalyst for oxygen reduction. Electrochem. Commun. 12, 1792–1795 (2010). doi:10.1016/j.elecom.2010.10.02720. H. T. Chung, J. H. Won, P. Zelenay, Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 4, 1922 (2013). doi:10.1038/ncomms2944 Medline21. A. S. Varela, N. Ranjbar Sahraie, J. Steinberg, W. Ju, H.-S. Oh, P. Strasser, Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem. Int. Ed. 54, 10758–10762 (2015). doi:10.100...23. F. Jaouen, J. Herranz, M. Lefèvre, J.-P. Dodelet, U. I. Kramm, I. Herrmann, P. Bogdanoff, J. Maruyama, T. Nagaoka, A. Garsuch, J. R. Dahn, T. Olson, S. Pylypenko, P. Atanassov, E. A. Ustinov, Cross-laboratory experimental study of non-noble-metal ...24. D. A. Cullen, R. Koestner, R. S. Kukreja, Z. Y. Liu, S. Minko, O. Trotsenko, A. Tokarev, L. Guetaz, H. M. Meyer, C. M. Parish, K. L. More, Imaging and microanalysis of thin ionomer layers by scanning transmission electron microscopy. J. Electroche...25. D. Zhao, J.-L. Shui, L. R. Grabstanowicz, C. Chen, S. M. Commet, T. Xu, J. Lu, D.-J. Liu, Highly efficient non-precious metal electrocatalysts prepared from one-pot synthesized zeolitic imidazolate frameworks. Adv. Mater. 26, 1093–1097 (2014). doi...26. K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy, W. Liang, M.-T. Sougrati, F. Jaouen, S. Mukerjee, Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat. Commun. 6, 7343 (20...27. S. Komini Babu, H. T. Chung, P. Zelenay, S. Litster, Resolving electrode morphology’s impact on platinum group metal-free cathode performance using nano-CT of 3D hierarchical pore and ionomer distribution. ACS Appl. Mater. Interfaces 8, 32764–3277...28. A. Kongkanand, N. P. Subramanian, Y. Yu, Z. Liu, H. Igarashi, D. A. Muller, Achieving high-power PEM fuel cell performance with an ultralow-Pt-content core-shell catalyst. ACS Catal. 6, 1578–1583 (2016). doi:10.1021/acscatal.5b0281929. A. Serov, M. J. Workman, K. Artyushkova, P. Atanassov, G. McCool, S. McKinney, H. Romero, B. Halevi, T. Stephenson, Highly stable precious metal-free cathode catalyst for fuel cell application. J. Power Sources 327, 557–564 (2016). doi:10.1016/j.j...30. J. Tian, A. Morozan, M. T. Sougrati, M. Lefèvre, R. Chenitz, J.-P. Dodelet, D. Jones, F. Jaouen, Optimized synthesis of Fe/N/C cathode catalysts for PEM fuel cells: A matter of iron-ligand coordination strength. Angew. Chem. Int. Ed. 52, 6867–6870...32. H. T. Chung, P. Zelenay, A simple synthesis of nitrogen-doped carbon micro- and nanotubes. Chem. Commun. (Camb.) 51, 13546–13549 (2015). doi:10.1039/C5CC04621A Medline33. R. Zan, Q. M. Ramasse, R. Jalil, T. Georgiou, U. Bangert, K. S. Novoselov, Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 7, 10167–10174 (2013). doi:10.1021/nn4044035 Medline34. H. Fei, J. Dong, M. J. Arellano-Jiménez, G. Ye, N. Dong Kim, E. L. G. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, M. J. Yacaman, P. M. Ajayan, D. Chen, J. M. Tour, Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668...35. E. F. Z. Holby, P. Zelenay, Linking structure to function: The search for active sites in non-platinum group metal oxygen reduction reaction catalysts. Nano Energy 29, 54–64 (2016). doi:10.1016/j.nanoen.2016.05.02536. E. F. Holby, C. D. Taylor, Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands. Sci. Rep. 5, 9286 (2015). doi:10.1038/srep09286 Medline37. G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). doi:10.1016/0927-0256(96)00008-038. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). doi:10.1103/PhysRevB.54.11169 Medline39. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). doi:10.1103/PhysRevB.47.558 Medline40. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994). doi:10.1103/PhysRevB.49.14251 Medline41. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). doi:10.1103/PhysRevLett.77.3865 Medline42. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396–1396 (1997). doi:10.1103/PhysRevLett.78.1396 Medline43. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). doi:10.1002/jcc.20495 Medline44. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004). doi:10.1021/jp047349j45. A. B. Anderson, Insights into electrocatalysis. Phys. Chem. Chem. Phys. 14, 1330–1338 (2012). doi:10.1039/C2CP23616H Medline46. A. Lyalin, A. Nakayama, K. Uosaki, T. Taketsugu, Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 15, 2809–2820 (2013). doi:10.1039/c2cp42907a Medline47. T. Bligaard, J. K. Nørskov, S. Dahl, J. Matthiesen, C. H. Christensen, J. Sehested, The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004). doi:10.1016/j.jcat.2004.02.034

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /CreateJDFFile false /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice