supplementary materials for · 4/20/2016  · continental arc volcanism as the principal driver of...

38
1 www.sciencemag.org/content/352/6284/444/suppl/DC1 Supplementary Materials for Continental arc volcanism as the principal driver of icehouse- greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E. Loomis, Daniel F. Stockli, Noah J. Planavsky, Cin-Ty A. Lee *Corresponding author Email: [email protected] Published 22 April 2016, Science 352, 444 (2016) DOI: 10.1126/science.aad5787 This PDF file includes: Materials and Methods Figs. S1 to S4 Tables S1 and S2 Caption for Data S1 Full Reference List Other Supplementary Material for this manuscript includes the following: (available at www.sciencemag.org/content/352/6282/444/suppl/DC1) Data S1 (Excel data tables for zircon U-Pb analyses)

Upload: others

Post on 28-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

1

www.sciencemag.org/content/352/6284/444/suppl/DC1

Supplementary Materials for

Continental arc volcanism as the principal driver of icehouse-greenhouse variability

N. Ryan McKenzie,* Brian K. Horton, Shannon E. Loomis, Daniel F. Stockli, Noah J. Planavsky, Cin-Ty A. Lee

*Corresponding author Email: [email protected]

Published 22 April 2016, Science 352, 444 (2016)

DOI: 10.1126/science.aad5787

This PDF file includes:

Materials and Methods Figs. S1 to S4 Tables S1 and S2 Caption for Data S1 Full Reference List

Other Supplementary Material for this manuscript includes the following: (available at www.sciencemag.org/content/352/6282/444/suppl/DC1)

Data S1 (Excel data tables for zircon U-Pb analyses)

Page 2: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

2

Materials and Methods Data Compilation

Data were compiled from publications that reported sample depositional age

constraints to at least the geologic period. In situations where a sample came from a

transitional unit spanning two geologic periods (e.g., Late Permian-Early Triassic) the

data were assigned to the younger age bin. Due to different protocols for data filtering

and reporting from various labs, we accepted all data as reported by the original authors.

In cases where unfiltered data were provided, we used a simple 10% discordance cutoff

for age data (a common filter used by many groups). In rare cases where anomalous

grains far too young for the sedimentary host rock were reported, which can result from

contamination, metamorphic overgrowths, or erroneous measurements, or where grains

with exceedingly large errors were noted, these grains were manually deleted. This

accounted for less than 0.1% of the data compilation, which does not influence the trends

observed or the interpretations made in this study. All references used in our data

compilation are listed below.

Regional bins were defined by prominent terranes/continents that recorded

independent geologic histories or geographically distinct margins on the same

terrane/continent with independent geologic histories (e.g., the Laurentian margins were

partitioned) to increase our spatial resolution of volcanic arc activity (Fig. S1). While the

overarching goal was to define as many regional and spatial bins as possible, we were

ultimately limited by available data. For example, Antarctica (ANT) and Australia (AUS)

have limited overlapping temporal data, which did not allow us to subdivide them

geographically. Nearly all available Phanerozoic age data from South America comes

from the western margin, so we could only divide that region into northern and southern

bins (SAN and SAS). Data from Africa either comes from the northern or southern

regions, and therefore it could only be reasonably divided into northern and southern bins

(AFN and AFS). Avalonia was only treated as a distinct terrane until the Silurian, when it

was amalgamated with eastern Laurentia (40). Modern-day China consists of three

notably distinct cratons: Tarim (TAR), South China Block (SCB), and the North China

Block (NCB). Although these terranes were amalgamated by the Mesozoic (41, 42), we

treated them as distinct throughout to maintain our spatial resolution. Tibet (TIB) consists

Page 3: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

3

of various small terranes that were treated as a single region. Southeast (SEA) also

includes a series of what are considered distinct terranes, such as Sibumasu, Burma,

Indochina, etc. (43), but due to limited data, they were lumped into a single region.

Mexico (MEX), consisting of the Oaxaca terrane (44), was treated as a distinct region.

The Alaska–Chukotka terrane (ALK) was treated as distinct terrane throughout. Cadomia

(CDM) and Iberia (IBR), which may have had slightly distinct early Paleozoic tectonic

histories (45), were treated as discrete terranes to increase spatial resolution; the limited

data from other eastern European terranes (e.g., Bohemia and Turkey) were lumped

within Cadomia.

Our normalization process was intended to circumvent biases in available age data

(see Table S1). All age data were divided into 20 Myr age bins and converted to

percentages. The 20 Myr bin size was selected because a median error of ± 21 Ma was

calculated during an early assessment of the compilation (prior to completion) and it is a

convenient round number. When considering cumulative distributions of age data relative

to minimum and maximum ages of the temporal bins (Fig. 3, main text), we must round

to the nearest 20 Myr bin. Minimum ages were as followed (in Ma): Cryogenian=640;

Ediacaran=540; Cambrian=500*; Ordovician=440; Silurian=420; Devonian=360;

Carboniferous=300; Permian=260*; Triassic=200; Jurassic=140; Cretaceous=60;

Paleogene=20; Neogene-Quaternary=0. Maximum ages (in Ma): Cryogenian=720;

Ediacaran=640; Cambrian=540; Ordovician=480; Silurian=440; Devonian=420;

Carboniferous=360; Permian=300; Triassic=240; Jurassic=200; Cretaceous=140;

Paleogene=60; Neogene-Quaternary=20. *The Cambrian–Ordovician boundary was

recently lowered from ~489 to ~485 Ma, however we rounded up to 500 Ma because

most of the Cambrian age data came from deposits older than Cambrian Stage 10 (> 490

Ma), with much of the data coming from Middle Cambrian and older rocks (i.e., rocks

with depositional ages > 500 Ma) (46). Therefore, rounding down to 480 Ma would have

added an inappropriate gap of ~10-20 Myr. We chose to round up for the minimum age

of the Permian as well. Ultimately, using a minimum age of 500 Ma for the Cambrian

had a negligible effect on the trends observed, as it only shifted the mean young age by

~2% from that of the 480 Ma age. In either case the Cambrian dataset clearly contains a

larger abundance of young grains than the all other periods, except the Jurassic and

Page 4: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

4

Cretaceous. Further, the maximum ages of both Cambrian and Permian are within < 4

Myr of the dated maximum ages of each bin, and the differentiation in the cumulative

frequency distributions for both minimum and maximum ages show similar spreads.

We backfilled age data for prominent terranes with reasonably well known geologic

histories in order to fill empty temporal bins. For a given empty bin, we took the

normalized frequency distributions from the next youngest bin, removed the grain ages

that were too young for the older bin, re-normalized the data, and used those data to fill

the empty bin. For example, data were generated for the Ordovician of the NCB by

taking the NCB Silurian data, removing all data younger than the terminal age of the

Ordovician (444 Ma), and renormalizing the remaining data so they were equally

weighted to all other Ordovician regional bins. Backfilling allows us to improve the

spatial resolution of global assessment and reduce the potential effects of sampling

biases. We use the next youngest bin to backfill an empty bin because it allows for the

inclusion of any grains that may have existed during the previous interval we aim to fill.

An Ordovician dataset would not have included any grains with magmatic crystallization

ages younger the time of deposition, so using Ordovician data to fill a Carboniferous bin

would instill a potential bias creating an artificial gap that would skew the distribution

towards older grains. For this reason we only backfill and do not attempt to forward-fill.

Here we use India (IND) and western Laurentia (LAW) to illustrate this process.

Backfilled data were generated for the Silurian, Devonian, and Carboniferous of IND by

using Permian data from the region. India was primarily surrounded by passive margins

throughout that interval (that is, there was likely no major zircon-generating magmatism),

and because Permian and Triassic zircon data are remarkably similar to Cambrian and

Ordovician data (Fig. S2), it is reasonable to assume that zircon data from the Silurian,

Devonian, and Carboniferous would be similar to those distributions as well. Only ~3%

of the grains (13 of 452) in the Permian dataset are younger than the terminal Ordovician.

Out of those 13, only 3 grains have Silurian ages, so the other 10 grains that are too

young to have existed in the Silurian were removed from the bin, and the dataset was

renormalized and equally weighted to the other Silurian bins. For the Devonian, only 1

grain in the Permian dataset was too young for that bin, so that single grain was removed

and the dataset was renormalized. All grains were used for the Carboniferous. In each of

Page 5: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

5

these cases, all young grains that could have plausibly existed during that interval were

retained.

Our compilation has data gaps for the Ordovician and Silurian of LAW. Ediacaran

and Cambrian deposits show the same prominent trimodal distribution of Proterozoic

grains (~1100, ~1400, and ~1700 Ma), with some older Archean grains. The trimodal

populations are also notable in Devonian and Carboniferous datsets, although these bins

do contain some younger early Paleozoic grains likely transported across the continent

and sourced from the Taconic orogen of Eastern Laurentia (LAE). These early Paleozoic

grains account for ~6% of the Devonian dataset (40 of 691 total grains). Of these, 21

grains (3%) were too young for the Ordovician, so those were removed and the dataset

was renormalized. For the Silurian, 11 grains were too young (~1.6%) and were removed.

Backfilled data were used for all Laurentian bins (LAW, LAN, LAE, GRN), ALK,

ANT, AUS, Baltica (BAL), IND, NCB, SCB, SAN, SAS, SBR, TAR, and TIB (the TIB

record begins during the Carboniferous). Backfilled data were not used for Arabia

(ARB), Iran (IRN), SEA, and MEX due to limited available data and uncertainties on the

geologic histories of those regions. The data record for IBR only spans from the

Ediacaran to Carboniferous, and due to similarities with CDM, data were not generated

for IBR. In cases where major shifts in populations occur across data gaps, backfilled

data were not generated. This is due to uncertainties in the onset of substantial

magmatism, and more importantly, the potential lag time for the surface expression of

this magmatism. The Ediacaran of SAN lacks relatively young zircons whereas the

Ordovician of that region contains abundant young Cambrian-Ediacaran zircons. We

cannot assume that abundant Cambrian zircons were at the surface during the Cambrian;

therefore we did not backfill that particular temporal bin. We also did not backfill any

Neogene-Quaternary bins as they are the youngest possible bins. As discussed above, we

did not forward-fill any bins due to the potential biasing from the inherent lack of young

grains in older bins.

Ultimately, the application of data backfilling should yield more accurate, globally

representative distributions. For the IND and LAW examples, given our knowledge of the

regional geologic histories, it seems unreasonable to ignore those regions and leave the

original empty data bins, as this greatly reduces our spatial resolution and increases the

Page 6: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

6

potential for the distributions to be regionally biased. Our objective is to assess

spatiotemporal variation in continental magmatism by way of zircon production, and the

more spatial data we have, the better our assessment will be. It should be noted, however,

that despite some variation between the absolute abundances, the same general trends are

observed when comparing raw data without backfilled data to the trends observed with

the inclusion of backfilled data: that is, the proportions of young grains increase during

greenhouse intervals and decrease during icehouse intervals (Fig. S3).

References for regional data sources are as follows: AFN (47-53); AFS (54-58); ALK (59-65); ANT (57, 66-76); ARB-IRN (77-79); AUS (68, 80-95); AVL (40, 96-99); BAL (100-109); CDM (45, 110-116); GRN (117); IBR (22, 45, 118-123); IND (124-138); LAE (139-148); LAN (63, 149-157); LAW (158-174); MEX (44, 175, 176); NCB (177-190); SCB (125, 191-197); SAN-SAS (198-216); SBR (63, 148, 217-221); SEA (22, 222, 223); TAR (224-232); TIB (131, 233-238)

Page 7: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

7

Fig. S1.

Global map of broad regionally partitioned sources of zircon U-Pb data.

Page 8: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

8

Fig. S2.

U-Pb age probability density plots for Indian (IND) and western Laurentia (LAW)

as examples of backfilling. Age data for IND show that the general age populations

present in Cambrian and Ordovician datasets (e.g., age populations centered around ~500

Ma (yellow), ~900 Ma (blue), and ~1700 Ma (orange)) match the abundant populations

in Permian and Triassic datasets. Given the known geologic history of IND, it is

Page 9: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

9

reasonable to assume comparable detrital age data for Silurian, Devonian, and

Carboniferous deposits; therefore Permian data are used to backfill those empty bins, as

discussed in the text. LAW datasets show that the same general age populations present

in Ediacaran and Cambrian datasets (e.g., populations around ~1100 Ma (yellow), ~1400

Ma (blue), and ~1700 Ma (orange)) are also prominent in Devonian and Carboniferous

datasets, along with subpopulations of younger Taconic age zircons. Therefore, the

Devonian dataset was used to backfill the older empty bins, following the procedure

discussed in the text.

Page 10: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

10

Fig. S3.

Comparison of the proportion of young grains for normalized raw and backfilled

datasets. The “raw” curve (blue) does not include backfilled data. The “backfilled” curve

(red) includes both raw and backfilled data. The upper graph compares the mean

proportions of young grains relative to the minimum age of the bin; the lower graph

compares mean proportions of young grains relative to the maximum age of the bin.

Although there is some variation in the absolute proportions of each bin, both raw and

backfilled datasets show the same relative shifts in abundance of young grains: the

proportions are low during the Cryogenian, increase into the early Paleozoic greenhouse,

decrease during the later Ordovician-Silurian icehouse, increase moderately during mid-

Paleozoic time, decease during the late Paleozoic icehouse, increase during the Mesozoic

greenhouse, and decrease during the Cenozoic icehouse.

Page 11: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

11

Table S1.

Summary of regional and temporal zircon U-Pb data. Each box indicates the total

number of zircon U-Pb ages for each bin. Yellow boxes highlight bins for which

backfilled data were generated and red boxes indicate bins that were rejected via our

statistical filter, as described in the text. The total number of ages are indicated for each

temporal bin and each regional bin, as well as the percentage each represents of the total

dataset. It is important to note that nearly ~40% of all data come from Laurentian terranes

(21% from LAW alone) and ~50% of the data range from Cretaceous to Quaternary

rocks. This illustrates the importance of the normalization process applied here. If data

were simply pooled, the distribution would be biased towards the Laurentian record and

the 140–0 Ma record.

Page 12: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

12

Screening for regional biasing of composite distributions

An outlier test was preformed to identify anomalous datasets that significantly

skewed the composite distributions. First, the mean and standard deviation of the young

zircon populations of each composite distribution were determined by fitting a Gaussian

curve through all ages < 300 Myr older than the youngest depositional age using the

Matlab fit function. All ages outside of this window were converted to zeros to optimize

the similarity to, and fit of, a Gaussian function. Data with a value of zero were also

created for the time period -100 to 0 Ma to optimize the potential for a Gaussian fit for

the Neogene and Paleogene data. To ensure that a single region did not disproportionately

alter the composite distribution, global zircon age probability distributions were

recalculated using a jackknife procedure, leaving out one region at a time, renormalizing

the data, and fitting Gaussian curves to each of these distributions. Regions were

considered outliers if the optimal ages or the error fell outside of 3.5 standard deviations

of the parameter mean. This procedure was employed in an iterative process until no

regions were identified as outliers. Only four outliers were identified (Table S1).

To examine the potential for our choice of window size to significantly alter the

means and standard deviations of the youngest peak, mean fits were recalculated by

increasing the window size by 20 Myr until the widow size reached 400 Myr. Although

this altered the values of the means and standard deviations of the first peak, the temporal

trends remain the same for all periods except the Triassic (Fig. S4). The large difference

in the mean value for the Triassic data occurs because the data have a bimodal

distribution from 700 Ma to present, and increasing the window size results in a Gaussian

fit of both peaks. Given that this method was developed to identify the age of the

youngest population, we ultimately chose to utilize a window size of 300 Myr, as it is

offered the best fit through all geologic periods.

Page 13: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

13

Figure S4.

Mean age offset of young populations using a varying time window. Each line

represents the relative age offset (peak age – minimum depositional age) vs. the

minimum depositional age, varying the time window by 20 Myr from 300 Myr to 400

Myr.

Page 14: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

14

Detrital Zircon U-Pb Geochronology

New detrital zircon U-Pb age data were generated for Ordovician, Devonian,

Carboniferous, Permian, and Triassic siliciclastic sedimentary rocks from western

Argentina (SAS). These samples consist of: RBL01, Triassic Choiyoi Formation (S

31.91090°; 69.88968°; 2175m); CAR01, Carboniferous Paganzo Group (S 31.51772°; W

68.94825°; 953m); TAL04, Devonian Punta Negra Formation (S 31.00470°; W

68.79044°; 1470m); TAL05, Devonian Punta Negra Formation (S 30.98914°; W

68.80254°; 1512m); ST01, Ordovician Alcaparosa Formation (S 31.25869°; W

69.15356°; 1225m); ST02, Carboniferous Paganzo Group (S 31.24429°; W 69.27795°;

1266m); ST03, Permian Paganzo Group (S 31.24445°; W 69.27845°; 1268m), CRA01S:

Carboniferous El Imperial Formation (S 35.00377°; W 68.64511°; 1254m); CRA02S,

Carboniferous El Imperial Formation (S 34.99136°; W 68.62245°; 1110m); CRA03S,

Devonian (S 34.96428°; W 68.61156°; 1048m); CRA04S, Puesto Viejo Formation

(Triassic) (S 34.81542°; W 68.49364°; 783m).

All samples were processed and analyzed at the UTChron laboratory, Department of

Geological Sciences, University of Texas at Austin. Zircon grains were extracted from

sandstone samples using standard mineral separation techniques, which included

crushing, passing samples over a density-separation water table, magnetic separation, and

heavy liquids. Whole zircon grains were fixed on a ~1 inch resin mount with double-

sided tape for analysis by laser ablation inductively couple mass spectrometry (LA-ICP-

MS). Mounts were placed into a Helex 9 sample cell, volume ca. 30 cm3, and ablated

with a 30µm spot from a Photon Machines Analyte G2 ATLex 300si ArF Excimer laser.

Ablated material was carried by helium gas to a ThermoFisher Element2 double-focusing

magnetic sector ICP-MS for isotopic measurements. Data analyses were accomplished

using Iolite (Igor Pro) (See Table S2 for analytical details). We report the 206Pb/238U ages

for grains < 1000 Ma (< 10 % discordance) and the 207Pb/206Pb ages for grains ≥ 1000 Ma

(< 20% discordance). We allowed the larger discordance window for older grains

because Pb loss is more common in older grains, which produces a greater discordance.

However, there is no fractionation during Pb loss and the 207Pb/206Pb ages are generally

unaffected by this process (18, 239). Therefore, applying the same fixed discordance

filter to old and young grains disproportionately emphasizes younger ages, which is why

Page 15: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

15

we prefer a more relaxed filter for older ages. Data tables are available online as

Supplementary Materials (Data S1).

Page 16: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

16

Table S2: Laboratory & Sample Preparation

Laboratory name UTChron, Department of Geological Sciences, University of Texas at Austin

Sample type/mineral Detrital zircons Sample preparation Conventional mineral separation, 1 inch resin mount, grain mount on

double-sided tape Laser ablation system Make, Model & type PhotonMachines Analyte.G2 ATLex 300si ArF Excimer laser Ablation cell & volume Helex 9 sample cell, volume c.30cm3 Laser wavelength 193 nm Pulse width ≤ 4ns Energy 6 mJ, laser attenuator 16% Fluence 1.43 J.cm-2 Repetition rate 10 Hz Spot size 30µm Sampling mode 6 preablation shots, 35 sec of baseline data collection, 300 ablation shots,

27 sec washout Sample cell washout time (s)

<0.5 sec

Carrier gas He: 0.5 L/min (ultrapure) Ablation duration/depth 30 secs at ~0.5µm/sec for depth of 15-17 µm ICP-MS Instrument Make, Model & type ThermoFisher Element2 double-focusing magnetic sector ICP-MS Sample introduction Ablation aerosol (dry plasma) RF power 1000-1100 W Cooling gas Ar: 16 L/min Auxiliary gas Ar: 0.79 L/min Sample gas He: 0.93-1.0 L/min Make-up gas flow N2: 2 L/min Detection system Secondary electron multiplier (SEM) Masses measured 202, 204, 206, 207,208, 232, 235, 238, 254 Dwell time 4 ms (238U); 16 ms (207Pb) Sensitivity (238U) 0.4% (238U dry aerosol)

Data Processing Gas blank 35 second on-peak zero subtracted Calibration strategy GJ1 used as primary reference material, Pak1 (internal) used as secondary

reference material Reference Material info GJ1 206Pb/238U 601.7 ± 1.3Ma, 207Pb/206Pb 607 ± 4Ma (Jackson et al, 2004,

Kylander-Clark et al., 2013) Data processing package used

Iolite (Igor Pro)

Mass discrimination 206Pb/238U, 207Pb/235U and 208Pb/232U normalized to reference material Common-Pb correction None applied Uncertainty level & propagation

Ages are quoted at 2 sigma absolute error, propagation is by quadratic addition. Reproducibility and age uncertainty of reference material are propagated.

LA-ICP-MS U-Pb Analytical details.

Page 17: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

17

Data S1. Data tables and probability density plots for all new U-Pb age data included in compilation (available online as supplementary materials). References and Notes 1. P. F. Hoffman, A. J. Kaufman, G. P. Halverson, D. P. Schrag, A neoproterozoic

snowball Earth. Science 281, 1342–1346 (1998). Medline doi:10.1126/science.281.5381.1342

2. F. A. Macdonald, M. D. Schmitz, J. L. Crowley, C. F. Roots, D. S. Jones, A. C. Maloof, J. V. Strauss, P. A. Cohen, D. T. Johnston, D. P. Schrag, Calibrating the Cryogenian. Science 327, 1241–1243 (2010). Medline doi:10.1126/science.1183325

3. S. Finnegan, K. Bergmann, J. M. Eiler, D. S. Jones, D. A. Fike, I. Eisenman, N. C. Hughes, A. K. Tripati, W. W. Fischer, The magnitude and duration of Late Ordovician-Early Silurian glaciation. Science 331, 903–906 (2011). Medline doi:10.1126/science.1200803

4. I. P. Montañez, C. J. Poulsen, The late Paleozoic ice age: An evolving paradigm. Annu. Rev. Earth Planet. Sci. 41, 629–656 (2013). doi:10.1146/annurev.earth.031208.100118

5. N. M. Bergman, T. M. Lenton, A. J. Watson, COPSE: A new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004). doi:10.2475/ajs.304.5.397

6. D. L. Royer, R. A. Berner, I. P. Montanez, N. J. Tabor, D. J. Beerling, CO2 as a primary driver of Phanerozoic climate. GSA Today 14, 4–10 (2004). doi:10.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2

7. R. A. Berner, Z. Kothavala, GEOCARB III: A revised model of atmospheric CO2 over phanerozoic time. Am. J. Sci. 301, 182–204 (2001). doi:10.2475/ajs.301.2.182

8. R. A. Berner, A. C. Lasaga, R. M. Garrels, The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983). doi:10.2475/ajs.283.7.641

9. L. R. Kump, S. L. Brantley, M. A. Arthur, Chemical, weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci. 28, 611–667 (2000). doi:10.1146/annurev.earth.28.1.611

10. R. L. Larson, Latest pulse of Earth: Evidence for a mid-Cretaceous superplume. Geology 19, 547–550 (1991). doi:10.1130/0091-7613(1991)019<0547:LPOEEF>2.3.CO;2

11. M. E. Raymo, W. F. Ruddiman, Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992). doi:10.1038/359117a0

12. M. R. Burton, G. M. Sawyer, D. Granieri, Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75, 323–354 (2013). doi:10.2138/rmg.2013.75.11

Page 18: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

18

13. R. Dasgupta, Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev. Mineral. Geochem. 75, 183–229 (2013). doi:10.2138/rmg.2013.75.7

14. C.-T. A. Lee, J. S. Lackey, Global continental arc flare-ups and their relation to long-term greenhouse conditions. Elements 11, 125–130 (2015). doi:10.2113/gselements.11.2.125

15. C.-T. A. Lee, B. Shen, B. S. Slotnick, K. Liao, G. R. Dickens, Y. Yokoyama, A. Lenardic, R. Dasgupta, M. Jellinek, J. S. Lackey, T. Schneider, M. M. Tice, Continental arc–island arc fluctuations, growth of crustal carbonates, and long-term climate change. Geosphere 9, 21–36 (2013). doi:10.1130/GES00822.1

16. D. M. Kerrick, K. Caldeira, Metamorphic CO2 degassing from orogenic belts. Chem. Geol. 145, 213–232 (1998). doi:10.1016/S0009-2541(97)00144-7

17. P. G. Silver, M. D. Behn, Intermittent plate tectonics? Science 319, 85–88 (2008). Medline doi:10.1126/science.1148397

18. G. Gehrels, Detrital zircon U-Pb geochronology applied to tectonics. Annu. Rev. Earth Planet. Sci. 42, 127–149 (2014). doi:10.1146/annurev-earth-050212-124012

19. C.-T. A. Lee, O. Bachmann, How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth Planet. Sci. Lett. 393, 266–274 (2014). doi:10.1016/j.epsl.2014.02.044

20. S. R. Paterson, M. N. Ducea, Arc magmatic tempos: Gathering the evidence. Elements 11, 91–98 (2015). doi:10.2113/gselements.11.2.91

21. P. A. Cawood, C. J. Hawkesworth, B. Dhuime, Detrital zircon record and tectonic setting. Geology 40, 875–878 (2012). doi:10.1130/G32945.1

22. N. R. McKenzie, N. C. Hughes, B. C. Gill, P. M. Myrow, Plate tectonic influences on Neoproterozoic–early Paleozoic climate and animal evolution. Geology 42, 127–130 (2014). doi:10.1130/G34962.1

23. Materials and methods are available as supplementary materials on Science Online.

24. D. C. Bradley, Secular trends in the geologic record and the supercontinent cycle. Earth Sci. Rev. 108, 16–33 (2011). doi:10.1016/j.earscirev.2011.05.003

25. R. T. Pierrehumbert, D. S. Abbot, A. Voigt, D. Koll, Climate of the Neoproterozoic. Annu. Rev. Earth Planet. Sci. 39, 417–460 (2011). doi:10.1146/annurev-earth-040809-152447

26. D. P. Schrag, R. A. Berner, P. F. Hoffman, G. P. Halverson, On the initiation of a snowball Earth. Geochem. Geophys. Geosyst. 3, 1–21 (2002). doi:10.1029/2001GC000219

27. Y. Donnadieu, Y. Goddéris, G. Ramstein, A. Nédélec, J. Meert, A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature 428, 303–306 (2004). Medline doi:10.1038/nature02408

Page 19: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

19

28. N. J. Planavsky et al., in Earth-Life Transitions: Paleobiology in the Context of Earth System Evolution, P. D. Polly, J. J. Head, D. L. Fox, Eds. (The Paleontological Society, 2015), vol. 21, pp. 47–82.

29. R. E. Ernst, K. L. Buchan, I. H. Campbell, Frontiers in large igneous province research. Lithos 79, 271–297 (2005). doi:10.1016/j.lithos.2004.09.004

30. C. R. Scotese, Plate tectonic maps and continental drift animations: PALEOMAP Project (2001); www.scotese.com.

31. D. A. D. Evans, Reconstructing pre-Pangean supercontinents. Geol. Soc. Am. Bull. 125, 1735–1751 (2013). doi:10.1130/B30950.1

32. Z. X. Li, S. V. Bogdanova, A. S. Collins, A. Davidson, B. De Waele, R. E. Ernst, I. C. W. Fitzsimons, R. A. Fuck, D. P. Gladkochub, J. Jacobs, K. E. Karlstrom, S. Lu, L. M. Natapov, V. Pease, S. A. Pisarevsky, K. Thrane, V. Vernikovsky, Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res. 160, 179–210 (2008). doi:10.1016/j.precamres.2007.04.021

33. K. C. Condie, C. O’Neill, R. C. Aster, Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. Earth Planet. Sci. Lett. 282, 294–298 (2009). doi:10.1016/j.epsl.2009.03.033

34. D. G. Van Der Meer, R. E. Zeebe, D. J. van Hinsbergen, A. Sluijs, W. Spakman, T. H. Torsvik, Plate tectonic controls on atmospheric CO2 levels since the Triassic. Proc. Natl. Acad. Sci. U.S.A. 111, 4380–4385 (2014). Medline doi:10.1073/pnas.1315657111

35. J. Zachos, M. Pagani, L. Sloan, E. Thomas, K. Billups, Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001). Medline doi:10.1126/science.1059412

36. C. P. Conrad, C. Lithgow-Bertelloni, The temporal evolution of plate driving forces: Importance of “slab suction” versus “slab pull” during the Cenozoic. J. Geophys. Res. 109, B10407 (2004). doi:10.1029/2004JB002991

37. A. Lenardic, L. Moresi, A. M. Jellinek, C. J. O’Neill, C. M. Cooper, C. T. Lee, Continents, supercontinents, mantle thermal mixing, and mantle thermal isolation: Theory, numerical simulations, and laboratory experiments. Geochem. Geophys. Geosyst. 12, Q10016 (2011). doi:10.1029/2011GC003663

38. Y. Goddéris, Y. Donnadieu, G. Le Hir, V. Lefebvre, E. Nardin, The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth Sci. Rev. 128, 122–138 (2014). doi:10.1016/j.earscirev.2013.11.004

39. R. A. Berner, K. Caldeira, The need for mass balance and feedback in the geochemical carbon cycle. Geology 25, 955–956 (1997). doi:10.1130/0091-7613(1997)025<0955:TNFMBA>2.3.CO;2

40. J. B. Murphy, J. Fernandez-Suarez, T. E. Jeffries, R. A. Strachan, U-Pb (LA-ICP-MS) dating of detrital zircons from Cambrian elastic rocks in Avalonia: Erosion of a Neoproterozoic arc along the northern Gondwanan margin. J. Geol. Soc. London 161, 243–254 (2004). doi:10.1144/0016-764903-064

Page 20: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

20

41. A. M. C. Sengor, B. A. Natalin, in The Tectonic Evolution of Asia, A. Yin, T. M. Harrison, Eds. (Cambridge Univ. Press, 1996), pp. 486–641.

42. A. Yin, S.-y. Nie, in The Tectonic Evolution of Asia, A. Yin, T. M. Harrison, Eds. (Cambridge Univ. Press, 1996), pp. 442–485.

43. I. Metcalfe, Gondwanaland dispersion, Asian accretion and the evolution of eastern Tethys. Aust. J. Earth Sci. 43, 605–623 (1996). doi:10.1080/08120099608728282

44. R. J. Gillis, G. E. Gehrels, J. Ruiz, L. A. F. D. Gonzalez, Detrital zircon provenance of Cambrian-Ordovician and Carboniferous strata of the Oaxaca terrane, southern Mexico. Sediment. Geol. 182, 87–100 (2005). doi:10.1016/j.sedgeo.2005.07.013

45. U. Linnemann, F. Pereira, T. E. Jeffries, K. Drost, A. Gerdes, The Cadomian Orogeny and the opening of the Rheic Ocean: The diacrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461, 21–43 (2008). doi:10.1016/j.tecto.2008.05.002

46. S. C. Peng, L. E. Babcock, R. A. Cooper, in The Geologic Time Scale 2012, F. M. Gradstein, J. G. Ogg, M. Schmidtz, G. Ogg, Eds. (Elsevier, 2012), chap. 19, pp. 437–488.

47. D. Avigad, R. J. Stern, M. Beyth, N. Miller, M. O. McWilliams, Detrital zircon U-Pb geochronology of Cryogenian diamictites and Lower Paleozoic sandstone in Ethiopia (Tigrai): Age constraints on Neoproterozoic glaciation and crustal evolution of the southern Arabian-Nubian Shield. Precambrian Res. 154, 88–106 (2007). doi:10.1016/j.precamres.2006.12.004

48. U. Linnemann, K. Ouzegane, A. Drareni, M. Hofmann, S. Becker, A. Gärtner, A. Sagawe, Sands of West Gondwana: An archive of secular magmatism and plate interactions — A case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U-Pb-LA-ICP-MS detrital zircon ages. Lithos 123, 188–203 (2011). doi:10.1016/j.lithos.2011.01.010

49. G. Meinhold, A. C. Morton, C. M. Fanning, D. Frei, J. P. Howard, R. J. Phillips, D. Strogen, A. G. Whitham, Evidence from detrital zircons for recycling of Mesoproterozoic and Neoproterozoic crust recorded in Paleozoic and Mesozoic sandstones of southern Libya. Earth Planet. Sci. Lett. 312, 164–175 (2011). doi:10.1016/j.epsl.2011.09.056

50. M. M. Altumi, O. Elicki, U. Linnemann, M. Hofmann, A. Sagawe, A. Gärtner, U-Pb LA-ICP-MS detrital zircon ages from the Cambrian of Al Qarqaf Arch, central-western Libya: Provenance of the West Gondwanan sand sea at the dawn of the early Palaeozoic. J. Afr. Earth Sci. 79, 74–97 (2013). doi:10.1016/j.jafrearsci.2012.11.007

51. D. Avigad, A. Gerdes, N. Morag, T. Bechstadt, Coupled U-Pb-Hf of detrital zircons of Cambrian sandstones from Morocco and Sardinia: Implications for provenance and Precambrian crustal evolution of North Africa. Gondwana Res. 21, 690–703 (2012). doi:10.1016/j.gr.2011.06.005

Page 21: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

21

52. Y. Be’eri-Shlevin, D. Avigad, A. Gerdes, O. Zlatkin, Detrital zircon U-Pb-Hf systematics of Israeli coastal sands: New perspectives on the provenance of Nile sediments. J. Geol. Soc. London 171, 107–116 (2014). doi:10.1144/jgs2012-151

53. G. Meinhold, A. C. Morton, D. Avigad, New insights into peri-Gondwana paleogeography and the Gondwana super-fan system from detrital zircon U-Pb ages. Gondwana Res. 23, 661–665 (2013). doi:10.1016/j.gr.2012.05.003

54. M. Hofmann, U. Linnemann, K.-H. Hoffmann, A. Gerdes, K. Eckelmann, A. Gärtner, The Namuskluft and Dreigratberg sections in southern Namibia (Kalahari Craton, Gariep Belt): A geological history of Neoproterozoic rifting and recycling of cratonic crust during the dispersal of Rodinia until the amalgamation of Gondwana. Int. J. Earth Sci. 103, 1187–1202 (2014). doi:10.1007/s00531-013-0949-6

55. G. Blanco, G. J. B. Germs, H. M. Rajesh, F. Chemale Jr., I. A. Dussin, D. Justino, Provenance and paleogeography of the Nama Group (Ediacaran to early Palaeozoic, Namibia): Petrography, geochemistry and U-Pb detrital zircon geochronology. Precambrian Res. 187, 15–32 (2011). doi:10.1016/j.precamres.2011.02.002

56. P. H. Fourie, U. Zimmermann, N. J. Beukes, T. Naidoo, K. Kobayashi, J. Kosler, E. Nakamura, J. Tait, J. N. Theron, Provenance and reconnaissance study of detrital zircons of the Palaeozoic Cape Supergroup in South Africa: Revealing the interaction of the Kalahari and Rio de la Plata cratons. Int. J. Earth Sci. 100, 527–541 (2011). doi:10.1007/s00531-010-0619-x

57. J. J. Veevers, A. Saeed, Central Antarctic provenance of Permian sandstones in Dronning Maud Land and the Karoo Basin: Integration of U-Pb and T-DM ages and host-rock affinity from detrital zircons. Sediment. Geol. 202, 653–676 (2007). doi:10.1016/j.sedgeo.2007.07.011

58. E. M. Roberts, N. J. Stevens, P. M. O’Connor, P. H. G. M. Dirks, M. D. Gottfried, W. C. Clyde, R. A. Armstrong, A. I. S. Kemp, S. Hemming, Initiation of the western branch of the East African Rift coeval with the eastern branch. Nat. Geosci. 5, 289–294 (2012). doi:10.1038/ngeo1432

59. D. C. Bradley et al., Detrital zircon geochronology of some Neoproterozoic to Triassic rocks in interior Alaska. Geol. Soc. Am. Spec. Pap. 431, 155–189 (2007).

60. J. M. Amato, T. L. Pavlis, P. D. Clift, E. J. Kochelek, J. P. Hecker, C. M. Worthman, E. M. Day, Architecture of the Chugach accretionary complex as revealed by detrital zircon ages and lithologic variations: Evidence for Mesozoic subduction erosion in south-central Alaska. Geol. Soc. Am. Bull. 125, 1891–1911 (2013). doi:10.1130/B30818.1

61. J. M. Amato, J. Toro, E. L. Miller, G. E. Gehrels, G. L. Farmer, E. S. Gottlieb, A. B. Till, Late Proterozoic-Paleozoic evolution of the Arctic Alaska-Chukotka terrane based on U-Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions. Geol. Soc. Am. Bull. 121, 1219–1235 (2009). doi:10.1130/B26510.1

Page 22: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

22

62. M. A. Malkowski, B. A. Hampton, Sedimentology, U-Pb detrital geochronology, and Hf isotopic analyses from Mississippian-Permian stratigraphy of the Mystic subterrane, Farewell terrane, Alaska. Lithosphere 6, 383–398 (2014). doi:10.1130/L365.1

63. E. L. Miller, J. Toro, G. Gehrels, J. M. Amato, A. Prokopiev, M. I. Tuchkova, V. V. Akinin, T. A. Dumitru, T. E. Moore, M. P. Cecile, New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology. Tectonics 25, TC3013 (2006). doi:10.1029/2005TC001830

64. E. J. Kochelek, J. M. Amato, T. L. Pavlis, P. D. Clift, Flysch deposition and preservation of coherent bedding in an accretionary complex: Detrital zircon ages from the Upper Cretaceous Valdez Group, Chugach terrane, Alaska. Lithosphere 3, 265–274 (2011). doi:10.1130/L131.1

65. F. A. Macdonald, W. C. McClelland, D. P. Schrag, W. P. Macdonald, Neoproterozoic glaciation on a carbonate platform margin in Arctic Alaska and the origin of the North Slope subterrane. Geol. Soc. Am. Bull. 121, 448–473 (2009). doi:10.1130/B26401.1

66. J. W. Goodge, I. S. Williams, P. M. Myrow, Provenance of Neoproterozoic and lower Paleozoic siliciclastic rocks of the central Ross Orogen, Antarctica: Detrital record of rift-, passive-, and active-margin sedimentation. Geol. Soc. Am. Bull. 116, 1253–1279 (2004). doi:10.1130/B25347.1

67. M. J. Flowerdew, I. L. Millar, M. L. Curtis, A. P. M. Vaughan, M. S. A. Horstwood, M. J. Whitehouse, C. M. Fanning, Combined U-Pb geochronology and Hf isotope geochemistry of detrital zircons from early Paleozoic sedimentary rocks, Ellsworth-Whitmore Mountains block, Antarctica. Geol. Soc. Am. Bull. 119, 275–288 (2007). doi:10.1130/B25891.1

68. C. J. Adams, J. D. Bradshaw, T. R. Ireland, Provenance connections between late Neoproterozoic and early Palaeozoic sedimentary basins of the Ross Sea region, Antarctica, south-east Australia and southern Zealandia. Antarct. Sci. 26, 173–182 (2014). doi:10.1017/S0954102013000461

69. D. H. Elliot, C. M. Fanning, Detrital zircons from upper Permian and lower Triassic Victoria Group sandstones, Shackleton Glacier region, Antarctica: Evidence for multiple sources along the Gondwana plate margin. Gondwana Res. 13, 259–274 (2008). doi:10.1016/j.gr.2007.05.003

70. J. J. Veevers, A. Saeed, Gamburtsev Subglacial Mountains provenance of Permian-Triassic sandstones in the Prince Charles Mountains and offshore Prydz Bay: Integrated U-Pb and T(DM) ages and host-rock affinity from detrital zircons. Gondwana Res. 14, 316–342 (2008). doi:10.1016/j.gr.2007.12.007

71. J. J. Veevers, A. Saeed, N. Pearson, E. Belousova, P. D. Kinny, Zircons and clay from morainal Permian siltstone at Mt Rymill (73°S, 66°E), Prince Charles Mountains, Antarctica, reflect the ancestral Gamburtsev Subglacial Mountains–Vostok Subglacial Highlands complex. Gondwana Res. 14, 343–354 (2008). doi:10.1016/j.gr.2007.12.006

Page 23: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

23

72. F. Hervé, V. Faundez, M. Brix, M. Fanning, Jurassic sedimentation of the Miers Bluff Formation, Livingston Island, Antarctica: Evidence from SHRIMP U-Pb ages of detrital and plutonic zircons. Antarct. Sci. 18, 229–238 (2006). doi:10.1017/S0954102006000277

73. C. J. Tochilin, P. W. Reiners, S. N. Thomson, G. E. Gehrels, S. R. Hemming, E. L. Pierce, Erosional history of the Prydz Bay sector of East Antarctica from detrital apatite and zircon geo- and thermochronology multidating. Geochem. Geophys. Geosyst. 13, Q11015 (2012). doi:10.1029/2012GC004364

74. T. Paulsen, J. Encarnación, V. A. Valencia, J. M. Roti Roti, C. Rasoazanamparany, Detrital U-Pb zircon analysis of an Eocene McMurdo Erratic sandstone, McMurdo Sound, Antarctica. N .Z. J. Geol. Geophys. 54, 353–360 (2011). doi:10.1080/00288306.2011.582123

75. J. J. Veevers, A. Saeed, Age and composition of Antarctic sub-glacial bedrock reflected by detrital zircons, erratics, and recycled microfossils in the Ellsworth Land–Antarctic Peninsula–Weddell Sea–Dronning Maud Land sector (240°E–0°–015°E). Gondwana Res. 23, 296–332 (2013). doi:10.1016/j.gr.2012.05.010

76. J. J. Veevers, A. Saeed, P. E. O’Brien, Provenance of the Gamburtsev Subglacial Mountains from U-Pb and Hf analysis of detrital zircons in Cretaceous to Quaternary sediments in Prydz Bay and beneath the Amery Ice Shelf. Sediment. Geol. 211, 12–32 (2008). doi:10.1016/j.sedgeo.2008.08.003

77. B. K. Horton, J. Hassanzadeh, D. F. Stockli, G. J. Axen, R. J. Gillis, B. Guest, A. Amini, M. D. Fakhari, S. M. Zamanzadeh, M. Grove, Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran; implications for chronostratigraphy and collisional tectonics. Tectonophysics 451, 97–122 (2008). doi:10.1016/j.tecto.2007.11.063

78. K. Kolodner, D. Avigad, M. McWilliams, J. L. Wooden, T. Weissbrod, S. Feinstein, Provenance of north Gondwana Cambrian-Ordovician sandstone: U-PbSHRIMP dating of detrital zircons from Israel and Jordan. Geol. Mag. 143, 367–391 (2006). doi:10.1017/S0016756805001640

79. E. Garzanti, M. Padoan, S. Andò, A. Resentini, G. Vezzoli, M. Lustrino, Weathering and relative durability of detrital minerals in equatorial climate: Sand petrology and geochemistry in the East African Rift. J. Geol. 121, 547–580 (2013). doi:10.1086/673259

80. C. J. Carson, The Victoria and Birrindudu Basins, Victoria River region, Northern Territory, Australia: A SHRIMP U-Pb detrital zircon and Sm-Nd study. Aust. J. Earth Sci. 60, 175–196 (2013). doi:10.1080/08120099.2013.772920

81. D. W. Maidment, I. S. Williams, M. Hand, Testing long-term patterns of basin sedimentation by detrital zircon geochronology, Centralian Superbasin, Australia. Basin Res. 19, 335–360 (2007). doi:10.1111/j.1365-2117.2007.00326.x

82. C. V. Rose, A. C. Maloof, B. Schoene, R. C. Ewing, U. Linnemann, M. Hofmann, J. M. Cottle, The end-Cryogenian glaciation of South Australia. Geosci. Can. 40, 256–293 (2013). doi:10.12789/geocanj.2013.40.019

Page 24: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

24

83. R. J. Squire, I. H. Campbell, C. M. Allen, C. L. Wilson, Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth? Earth Planet. Sci. Lett. 250, 116–133 (2006). doi:10.1016/j.epsl.2006.07.032

84. P. A. Cawood, A. A. Nemchin, Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia. Sediment. Geol. 134, 209–234 (2000). doi:10.1016/S0037-0738(00)00044-0

85. C. L. Fergusson, A. P. Nutman, T. Kamiichi, H. Hidaka, Evolution of a Cambrian active continental margin: The Delamerian-Lachlan connection in southeastern Australia from a zircon perspective. Gondwana Res. 24, 1051–1066 (2013). doi:10.1016/j.gr.2013.03.006

86. J. J. Veevers, A. Saeed, E. A. Belousova, W. L. Griffin, U-Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modem sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgam Craton. Earth Sci. Rev. 68, 245–279 (2005). doi:10.1016/j.earscirev.2004.05.005

87. P. A. Cawood, C. A. Landis, A. A. Nemchin, S. Hada, Permian fragmentation, accretion and subsequent translation of a low-latitude Tethyan seamount to the high-latitude east Gondwana margin: Evidence from detrital zircon age data. Geol. Mag. 139, 131–144 (2002). doi:10.1017/S0016756801006276

88. C. J. Lewis, K. N. Sircombe, in The Sedimentary Basins of Western Australia IV: Proceedings of the Petroleum Exploration Society of Australia Symposium, M. Keep, S. J. Moss, Eds. (Petroleum Exploration Society of Australia, 2013).

89. C. J. Adams, H. J. Campbell, W. L. Griffin, Provenance comparisons of Permian to Jurassic tectonostratigraphic terranes in New Zealand: Perspectives from detrital zircon age patterns. Geol. Mag. 144, 701–729 (2007). doi:10.1017/S0016756807003469

90. D. Cluzel, C. J. Adams, P. Maurizot, S. Meffre, Detrital zircon records of Late Cretaceous syn-rift sedimentary sequences of New Caledonia: An Australian provenance questioned. Tectonophysics 501, 17–27 (2011). doi:10.1016/j.tecto.2011.01.007

91. J. D. MacDonald, S. P. Holford, P. F. Green, I. R. Duddy, R. C. King, G. Backe, Detrital zircon data reveal the origin of Australia’s largest delta system. J. Geol. Soc. London 170, 3–6 (2013). doi:10.1144/jgs2012-093

92. C. J. Adams, N. Mortimer, H. J. Campbell, W. L. Griffin, Detrital zircon geochronology and sandstone provenance of basement Waipapa Terrane (Triassic-Cretaceous) and Cretaceous cover rocks (Northland Allochthon and Houhora Complex) in northern North Island, New Zealand. Geol. Mag. 150, 89–109 (2013). doi:10.1017/S0016756812000258

93. R. T. Tucker, E. M. Roberts, Y. Hu, A. I. S. Kemp, S. W. Salisbury, Detrital zircon age constraints for the Winton Formation, Queensland: Contextualizing Australia’s Late Cretaceous dinosaur faunas. Gondwana Res. 24, 767–779 (2013). doi:10.1016/j.gr.2012.12.009

Page 25: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

25

94. J. J. Veevers, E. A. Belousova, A. Saeed, K. Sircombe, A. F. Cooper, S. E. Read, Pan-Gondwanaland detrital zircons from Australia analysed for Hf-isotopes and trace elements reflect an ice-covered Antarctic provenance of 700-500 Ma age, T-DM of 2.0-1.0 Ga, and alkaline affinity. Earth Sci. Rev. 76, 135–174 (2006). doi:10.1016/j.earscirev.2005.11.001

95. P. A. Cawood, A. A. Nemchin, M. Freeman, K. Sircombe, Linking source and sedimentary basin: Detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth Planet. Sci. Lett. 210, 259–268 (2003). doi:10.1016/S0012-821X(03)00122-5

96. J. C. Pollock, D. H. C. Wilton, C. R. Van Staal, K. D. Morrissey, U-Pb detrital zircon geochronological constraints on the Early Silurian collision of Ganderia and Laurentia along the Dog Bay Line: The terminal Iapetan suture in the Newfoundland Appalachians. Am. J. Sci. 307, 399–433 (2007). doi:10.2475/02.2007.04

97. J. C. Pollock, J. P. Hibbard, P. J. Sylvester, Early Ordovician rifting of Avalonia and birth of the Rheic Ocean: U-Pb detrital zircon constraints from Newfoundland. J. Geol. Soc. London 166, 501–515 (2009). doi:10.1144/0016-76492008-088

98. S. M. Barr, M. A. Hamilton, S. D. Samson, A. M. Satkoski, C. E. White, J. B. Murphy, Provenance variations in northern Appalachian Avalonia based on detrital zircon age patterns in Ediacaran and Cambrian sedimentary rocks, New Brunswick and Nova Scotia, Canada. Can. J. Earth Sci. 49, 533–546 (2012). doi:10.1139/e11-070

99. A. M. Satkoski, S. M. Barr, S. D. Samson, Provenance of Late Neoproterozoic and Cambrian Sediments in Avalonia: Constraints from Detrital Zircon Ages and Sm-Nd Isotopic Compositions in Southern New Brunswick, Canada. J. Geol. 118, 187–200 (2010). doi:10.1086/649818

100. B. Bingen, W. L. Griffin, T. H. Torsvik, A. Saeed, Timing of Late Neoproterozoic glaciation on Baltica constrained by detrital zircon geochronology in the Hedmark Group, south-east Norway. Terra Nova 17, 250–258 (2005). doi:10.1111/j.1365-3121.2005.00609.x

101. E. L. Miller, N. Kuznetsov, A. Soboleva, O. Udoratina, M. J. Grove, G. Gehrels, Baltica in the Cordillera? Geology 39, 791–794 (2011). doi:10.1130/G31910.1

102. A. Põldvere, Y. Isozaki, H. Bauert, J. Kirs, K. Aoki, S. Sakata, T. Hirata, Detrital zircon ages of Cambrian and Devonian sandstones from Estonia, central Baltica: A possible link to Avalonia during the Late Neoproterozoic. GFF 136, 214–217 (2014). doi:10.1080/11035897.2013.873986

103. D. Gasser, A. Andresen, Caledonian terrane amalgamation of Svalbard: Detrital zircon provenance of Mesoproterozoic to Carboniferous strata from Oscar II Land, western Spitsbergen. Geol. Mag. 150, 1103–1126 (2013). doi:10.1017/S0016756813000174

104. A. M. Lundmark, E. P. Bue, R. H. Gabrielsen, K. Flaat, T. Strand, S. E. Ohm, Provenance of late Palaeozoic terrestrial sediments on the northern flank of the

Page 26: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

26

Mid North Sea High: Detrital zircon geochronology and rutile geochemical constraints. Geol. Soc. Spec. Publ. 386, 243–259 (2014). doi:10.1144/SP386.4

105. M. Kristoffersen, thesis, University of Oslo (2011).

106. A. Morton, C. Hallsworth, D. Strogen, A. Whitham, M. Fanning, Evolution of provenance in the NE Atlantic rift: The Early-Middle Jurassic succession in the Heidrun Field, Halten Terrace, offshore Mid-Norway. Mar. Pet. Geol. 26, 1100–1117 (2009). doi:10.1016/j.marpetgeo.2008.07.006

107. A. C. Morton, A. G. Whitham, C. M. Fanning, Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. Sediment. Geol. 182, 3–28 (2005). doi:10.1016/j.sedgeo.2005.08.007

108. A. Morton, M. Fanning, P. Milner, Provenance characteristics of Scandinavian basement terrains: Constraints from detrital zircon ages in modern river sediments. Sediment. Geol. 210, 61–85 (2008). doi:10.1016/j.sedgeo.2008.07.001

109. B. Bingen, E. A. Belousova, W. L. Griffin, Neoproterozoic recycling of the Sveconorwegian orogenic belt: Detrital-zircon data from the Sparagmite basins in the Scandinavian Caledonides. Precambrian Res. 189, 347–367 (2011). doi:10.1016/j.precamres.2011.07.005

110. U. Linnemann, A. Gerdes, M. Hofmann, L. Marko, The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton-Constraints from U-Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res. 244, 236–278 (2014). doi:10.1016/j.precamres.2013.08.007

111. H. Bahlburg, J. D. Vervoort, S. A. DuFrane, Plate tectonic significance of Middle Cambrian and Ordovician siliciclastic rocks of the Bavarian Facies, Armorican Terrane Assemblage, Germany - U-Pb and Hf isotope evidence from detrital zircons. Gondwana Res. 17, 223–235 (2010). doi:10.1016/j.gr.2009.11.007

112. P. A. Ustaömer, T. Ustaömer, A. Gerdes, G. Zulauf, Detrital zircon ages from a Lower Ordovician quartzite of the İstanbul exotic terrane (NW Turkey): Evidence for Amazonian affinity. Int. J. Earth Sci. 100, 23–41 (2011). doi:10.1007/s00531-009-0498-1

113. K. Eckelmann, H.-D. Nesbor, P. Königshof, U. Linnemann, M. Hofmann, J.-M. Lange, A. Sagawe, Plate interactions of Laurussia and Gondwana during the formation of Pangaea — Constraints from U-Pb LA-SF-ICP-MS detrital zircon ages of Devonian and Early Carboniferous siliciclastics of the Rhenohercynian zone, Central European Variscides. Gondwana Res. 25, 1484–1500 (2014). doi:10.1016/j.gr.2013.05.018

114. N. Okay, T. Zack, A. I. Okay, M. Barth, Sinistral transport along the Trans-European Suture Zone: Detrital zircon-rutile geochronology and sandstone petrography from the Carboniferous flysch of the Pontides. Geol. Mag. 148, 380–403 (2011). doi:10.1017/S0016756810000804

Page 27: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

27

115. N. Zajzon, Z. Szabo, T. G. Weiszburg, T. E. Jeffries, Multiple provenance of detrital zircons from the Permian-Triassic boundary in the Bükk Mts., Hungary. Int. J. Earth Sci. 100, 125–138 (2011). doi:10.1007/s00531-009-0500-y

116. A. Krippner, H. Bahlburg, Provenance of Pleistocene Rhine River Middle Terrace sands between the Swiss-German border and Cologne based on U-Pb detrital zircon ages. Int. J. Earth Sci. 102, 917–932 (2013). doi:10.1007/s00531-012-0842-8

117. J. Slama, O. Walderhaug, H. Fonneland, J. Kosler, R. B. Pedersen, Provenance of Neoproterozoic to upper Cretaceous sedimentary rocks, eastern Greenland: Implications for recognizing the sources of sediments in the Norwegian Sea. Sediment. Geol. 238, 254–267 (2011). doi:10.1016/j.sedgeo.2011.04.018

118. J. Fernandez-Suarez, F. D. Garcia, T. E. Jeffries, R. Arenas, J. Abati, Constraints on the provenance of the uppermost allochthonous terrane of the NW Iberian Massif: Inferences from detrital zircon U-Pb ages. Terra Nova 15, 138–144 (2003). doi:10.1046/j.1365-3121.2003.00479.x

119. J. Fernández-Suárez, G. Gutiérrez-Alonso, D. Pastor-Galán, M. Hofmann, J. B. Murphy, U. Linnemann, The Ediacaran–Early Cambrian detrital zircon record of NW Iberia: Possible sources and paleogeographic constraints. Int. J. Earth Sci. 103, 1335–1357 (2014). doi:10.1007/s00531-013-0923-3

120. M. F. Pereira, U. Linnemann, M. Hofmann, M. Chichorro, A. R. Solá, J. Medina, J. B. Silva, The provenance of Late Ediacaran and Early Ordovician siliciclastic rocks in the Southwest Central Iberian Zone: Constraints from detrital zircon data on northern Gondwana margin evolution during the late Neoproterozoic. Precambrian Res. 192–195, 166–189 (2012). doi:10.1016/j.precamres.2011.10.019

121. P. Dinis, T. Andersen, G. Machado, F. Guimaraes, Detrital zircon U-Pb ages of a late-Variscan Carboniferous succession associated with the Porto-Tomar shear zone (West Portugal): Provenance implications. Sediment. Geol. 273–274, 19–29 (2012). doi:10.1016/j.sedgeo.2012.06.007

122. J. R. M. Catalan et al., U-Pb detrital zircon ages in synorogenic deposits of the NW Iberian Massif (Variscan belt): Interplay of Devonian-Carboniferous sedimentation and thrust tectonics. J. Geol. Soc. London 165, 687–698 (2008). doi:10.1144/0016-76492007-066

123. R. D. Fernández, D. A. Foster, J. G. Barreiro, M. Alonso-García, Rheological control on the tectonic evolution of a continental suture zone: The Variscan example from NW Iberia (Spain). Int. J. Earth Sci. 102, 1305–1319 (2013). doi:10.1007/s00531-013-0885-5

124. N. R. McKenzie, N. C. Hughes, P. M. Myrow, S. Xiao, M. Sharma, Correlation of Precambrian–Cambrian sedimentary successions across northern India and the utility of isotopic signatures of Himalayan lithotectonic zones. Earth Planet. Sci. Lett. 312, 471–483 (2011). doi:10.1016/j.epsl.2011.10.027

Page 28: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

28

125. M. Hofmann, U. Linnemann, V. Rai, S. Becker, A. Gärtner, A. Sagawe, The India and South China cratons at the margin of Rodinia — Synchronous Neoproterozoic magmatism revealed by LA-ICP-MS zircon analyses. Lithos 123, 176–187 (2011). doi:10.1016/j.lithos.2011.01.012

126. N. C. Hughes et al., Cambrian rocks and faunas of the Wachi La, Black Mountains, Bhutan. Geol. Mag. 148, 351–379 (2011).

127. P. M. Myrow, N. C. Hughes, J. W. Goodge, C. M. Fanning, I. S. Williams, S. Peng, O. N. Bhargava, S. K. Parcha, K. R. Pogue, Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian-Ordovician. Geol. Soc. Am. Bull. 122, 1660–1670 (2010). doi:10.1130/B30123.1

128. P. M. Myrow, N. C. Hughes, T. S. Paulsen, I. S. Williams, S. K. Parcha, K. R. Thompson, S. A. Bowring, S.-C. Peng, A. D. Ahluwalia, Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth Planet. Sci. Lett. 212, 433–441 (2003). doi:10.1016/S0012-821X(03)00280-2

129. S. Long, N. McQuarrie, T. Tobgay, C. Rose, G. Gehrels, D. Grujic, Tectonostratigraphy of the Lesser Himalaya of Bhutan: Implications for the along-strike stratigraphic continuity of the northern Indian margin. Geol. Soc. Am. Bull. 123, 1406–1426 (2011). doi:10.1130/B30202.1

130. J. J. Veevers, A. Saeed, Permian-Jurassic Mahanadi and Pranhita-Godavari Rifts of Gondwana India: Provenance from regional paleoslope and U-Pb/Hf analysis of detrital zircons. Gondwana Res. 16, 633–654 (2009). doi:10.1016/j.gr.2009.05.013

131. J. C. Aitchison, X. P. Xia, A. T. Baxter, J. R. Ali, Detrital zircon U-Pb ages along the Yarlung-Tsangpo suture zone, Tibet: Implications for oblique convergence and collision between India and Asia. Gondwana Res. 20, 691–709 (2011). doi:10.1016/j.gr.2011.04.002

132. P. G. DeCelles, G. E. Gehrels, Y. Najman, A. J. Martin, A. Carter, E. Garzanti, Detrital geochronology and geochemistry of Cretaceous–Early Miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet. Sci. Lett. 227, 313–330 (2004). doi:10.1016/j.epsl.2004.08.019

133. P. D. Clift, L. Giosan, J. Blusztajn, I. H. Campbell, C. Allen, M. Pringle, A. R. Tabrez, M. Danish, M. M. Rabbani, A. Alizai, A. Carter, A. Lückge, Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon. Geology 36, 79–82 (2008). doi:10.1130/G24315A.1

134. P. G. DeCelles, G. E. Gehrels, J. Quade, B. LaReau, M. Spurlin, Tectonic implications of U-Pb zircon ages of the himalayan orogenic belt in nepal. Science 288, 497–499 (2000). Medline doi:10.1126/science.288.5465.497

135. A. Alizai, A. Carter, P. D. Clift, S. VanLaningham, J. C. Williams, R. Kumar, Sediment provenance, reworking and transport processes in the Indus River by U-Pb dating of detrital zircon grains. Global Planet. Change 76, 33–55 (2011). doi:10.1016/j.gloplacha.2010.11.008

Page 29: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

29

136. I. H. Campbell, P. W. Reiners, C. M. Allen, S. Nicolescu, R. Upadhyay, He-Pb double dating of detrital zircons from the Ganges and Indus Rivers: Implication for quantifying sediment recycling and provenance studies. Earth Planet. Sci. Lett. 237, 402–432 (2005). doi:10.1016/j.epsl.2005.06.043

137. S. E. Cina, A. Yin, M. Grove, C. S. Dubey, D. P. Shukla, O. M. Lovera, T. K. Kelty, G. E. Gehrels, D. A. Foster, Gangdese arc detritus within the eastern Himalayan Neogene foreland basin: Implications for the Neogene evolution of the Yalu-Brahmaputra River system. Earth Planet. Sci. Lett. 285, 150–162 (2009). doi:10.1016/j.epsl.2009.06.005

138. J. Y. Zhang, A. Yin, W. C. Liu, F. Y. Wu, D. Lin, M. Grove, Coupled U-Pb dating and Hf isotopic analysis of detrital zircon of modern river sand from the Yalu River (Yarlung Tsangpo) drainage system in southern Tibet: Constraints on the transport processes and evolution of Himalayan rivers. Geol. Soc. Am. Bull. 124, 1449–1473 (2012). doi:10.1130/B30592.1

139. C. L. Hebert, A. J. Kaufman, S. C. Penniston-Dorland, A. J. Martin, Radiometric and stratigraphic constraints on terminal Ediacaran (post-Gaskiers) glaciation and metazoan evolution. Precambrian Res. 182, 402–412 (2010). doi:10.1016/j.precamres.2010.07.008

140. K. A. Eriksson, I. H. Campbell, J. M. Palin, C. M. Allen, Predominance of Grenvillian magmatism recorded in detrital zircons from modern Appalachian rivers. J. Geol. 111, 707–717 (2003). doi:10.1086/378338

141. K. A. Eriksson, I. H. Campbell, J. M. Palin, C. M. Allen, B. Bock, Evidence for multiple recycling in neoproterozoic through Pennsylvanian sedimentary rocks of the central Appalachian basin. J. Geol. 112, 261–276 (2004). doi:10.1086/382758

142. H. Park, D. L. Barbeau Jr., A. Rickenbaker, D. Bachmann-Krug, G. Gehrels, Application of foreland basin detrital-zircon geochronology to the reconstruction of the southern and central Appalachian orogen. J. Geol. 118, 23–44 (2010). doi:10.1086/648400

143. C. K. McWilliams, G. J. Walsh, R. P. Wintsch, Silurian-Devonian age and tectonic setting of the Connecticut Valley-Gaspé trough in Vermont based on U-Pb SHRIMP analyses of detrital zircons. Am. J. Sci. 310, 325–363 (2010). doi:10.2475/05.2010.01

144. T. P. Becker, W. A. Thomas, S. D. Samson, G. E. Gehrels, Detrital zircon evidence of Laurentian crustal dominance in the lower Pennsylvanian deposits of the Alleghanian clastic wedge in eastern North America. Sediment. Geol. 182, 59–86 (2005). doi:10.1016/j.sedgeo.2005.07.014

145. M. Blum, M. Pecha, Mid-Cretaceous to Paleocene North American drainage reorganization from detrital zircons. Geology 42, 607–610 (2014). doi:10.1130/G35513.1

146. W. H. Craddock, A. R. C. Kylander-Clark, U-Pb ages of detrital zircons from the Tertiary Mississippi River Delta in central Louisiana: Insights into sediment provenance. Geosphere 9, 1832–1851 (2013). doi:10.1130/GES00917.1

Page 30: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

30

147. C. Y. Wang, I. H. Campbell, C. M. Allen, I. S. Williams, S. M. Eggins, Rate of growth of the preserved North American continental crust: Evidence from Hf and O isotopes in Mississippi detrital zircons. Geochim. Cosmochim. Acta 73, 712–728 (2009). doi:10.1016/j.gca.2008.10.037

148. C. Y. Wang, I. H. Campbell, A. S. Stepanov, C. M. Allen, I. N. Burtsev, Growth rate of the preserved continental crust: II. Constraints from Hf and O isotopes in detrital zircons from Greater Russian Rivers. Geochim. Cosmochim. Acta 75, 1308–1345 (2011). doi:10.1016/j.gca.2010.12.010

149. L. S. Lane, G. E. Gehrels, Detrital zircon lineages of late Neoproterozoic and Cambrian strata, NW Laurentia. Geol. Soc. Am. Bull. 126, 398–414 (2014). doi:10.1130/B30848.1

150. O. A. Anfinson, A. L. Leier, A. F. Embry, K. Dewing, Detrital zircon geochronology and provenance of the Neoproterozoic to Late Devonian Franklinian Basin, Canadian Arctic Islands. Geol. Soc. Am. Bull. 124, 415–430 (2012). doi:10.1130/B30503.1

151. O. A. Anfinson, A. L. Leier, R. Gaschnig, A. F. Embry, K. Dewing, M. Colpron, U-Pb and Hf isotopic data from Franklinian Basin strata: Insights into the nature of Crockerland and the timing of accretion, Canadian Arctic Islands. Can. J. Earth Sci. 49, 1316–1328 (2012). doi:10.1139/e2012-067

152. L. P. Beranek, V. Pease, R. A. Scott, T. B. Thomsen, J. B. Mahoney, Detrital zircon geochronology of Ediacaran to Cambrian deep-water strata of the Franklinian basin, northern Ellesmere Island, Nunavut: Implications for regional stratigraphic correlations. Can. J. Earth Sci. 50, 1007–1018 (2013). doi:10.1139/cjes-2013-0026

153. T. Hadlari, W. J. Davis, K. Dewing, L. M. Heaman, Y. Lemieux, L. Ootes, B. R. Pratt, L. J. Pyle, Two detrital zircon signatures for the Cambrian passive margin of northern Laurentia highlighted by new U-Pb results from northern Canada. Geol. Soc. Am. Bull. 124, 1155–1168 (2012). doi:10.1130/B30530.1

154. L. P. Beranek, C. R. van Staal, W. C. McClelland, S. Israel, M. G. Mihalynuk, Detrital zircon Hf isotopic compositions indicate a northern Caledonian connection for the Alexander terrane. Lithosphere 5, 163–168 (2013). doi:10.1130/L255.1

155. L. P. Beranek, C. R. van Staal, W. C. McClelland, S. Israel, M. G. Mihalynuk, Baltican crustal provenance for Cambrian-Ordovician sandstones of the Alexander terrane, North American Cordillera: Evidence from detrital zircon U-Pb geochronology and Hf isotope geochemistry. J. Geol. Soc. London 170, 7–18 (2013). doi:10.1144/jgs2012-028

156. L. P. Beranek, J. K. Mortensen, L. S. Lane, T. L. Allen, T. A. Fraser, T. Hadlari, W. G. Zantvoort, Detrital zircon geochronology of the western Ellesmerian clastic wedge, northwestern Canada: Insights on Arctic tectonics and the evolution of the northern Cordilleran miogeocline. Geol. Soc. Am. Bull. 122, 1899–1911 (2010). doi:10.1130/B30120.1

Page 31: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

31

157. L. P. Beranek, J. K. Mortensen, M. J. Orchard, T. Ullrich, Provenance of North American Triassic strata from west-central and southeastern Yukon: Correlations with coeval strata in the Western Canada Sedimentary Basin and Canadian Arctic Islands. Can. J. Earth Sci. 47, 53–73 (2010). doi:10.1139/E09-065

158. E. A. Balgord, W. A. Yonkee, P. K. Link, C. M. Fanning, Stratigraphic, geochronologic, and geochemical record of the Cryogenian Perry Canyon Formation, northern Utah: Implications for Rodinia rifting and snowball Earth glaciation. Geol. Soc. Am. Bull. 125, 1442–1467 (2013). doi:10.1130/B30860.1

159. R. C. Mahon, C. M. Dehler, P. K. Link, K. E. Karlstrom, G. E. Gehrels, Detrital zircon provenance and paleogeography of the Pahrump Group and overlying strata, Death Valley, California. Precambrian Res. 251, 102–117 (2014). doi:10.1016/j.precamres.2014.06.005

160. W. A. Schoenborn, C. M. Fedo, G. L. Farmer, Provenance of the Neoproterozoic Johnnie Formation and Stirling Quartzite, southeastern California, determined by detrital zircon geochronology and Nd isotope geochemistry. Precambrian Res. 206–207, 182–199 (2012). doi:10.1016/j.precamres.2012.02.017

161. J. H. Stewart, G. E. Gehrels, A. P. Barth, P. K. Link, N. Christie-Blick, C. T. Wrucke, Detrital zircon provenance of Mesoproterozoic to Cambrian arenites in the western United States and northwestern Mexico. Geol. Soc. Am. Bull. 113, 1343–1356 (2001). doi:10.1130/0016-7606(2001)113<1343:DZPOMT>2.0.CO;2

162. G. E. Gehrels, R. Blakey, K. E. Karlstrom, J. M. Timmons, B. Dickinson, M. Pecha, Detrital zircon U-Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona. Lithosphere 3, 183–200 (2011). doi:10.1130/L121.1

163. S. R. May, G. G. Gray, L. L. Summa, N. R. Stewart, G. E. Gehrels, M. E. Pecha, Detrital zircon geochronology from the Bighorn Basin, Wyoming, USA: Implications for tectonostratigraphic evolution and paleogeography. Geol. Soc. Am. Bull. 125, 1403–1422 (2013). doi:10.1130/B30824.1

164. P. Druschke, A. D. Hanson, M. L. Wells, G. E. Gehrels, D. Stockli, Paleogeographic isolation of the Cretaceous to Eocene Sevier hinterland, east-central Nevada: Insights from U-Pb and (U-Th)/He detrital zircon ages of hinterland strata. Geol. Soc. Am. Bull. 123, 1141–1160 (2011). doi:10.1130/B30029.1

165. T. A. LaMaskin, J. D. Vervoort, R. J. Dorsey, J. E. Wright, Early Mesozoic paleogeography and tectonic evolution of the western United States: Insights from detrital zircon U-Pb geochronology, Blue Mountains Province, northeastern Oregon. Geol. Soc. Am. Bull. 123, 1939–1965 (2011). doi:10.1130/B30260.1

166. M. K. Raines, S. M. Hubbard, R. B. Kukulski, A. L. Leier, G. E. Gehrels, Sediment dispersal in an evolving foreland: Detrital zircon geochronology from Upper Jurassic and lowermost Cretaceous strata, Alberta Basin, Canada. Geol. Soc. Am. Bull. 125, 741–755 (2013). doi:10.1130/B30671.1

167. W. R. Dickinson, G. E. Gehrels, Sediment delivery to the Cordilleran foreland basin: Insights from U-Pb ages of detrital zircons in Upper Jurassic and Cretaceous strata of the Colorado Plateau. Am. J. Sci. 308, 1041–1082 (2008).

Page 32: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

32

168. C. S. Painter, B. Carrapa, P. G. DeCelles, G. E. Gehrels, S. N. Thomson, Exhumation of the North American Cordillera revealed by multi-dating of Upper Jurassic-Upper Cretaceous foreland basin deposits. Geol. Soc. Am. Bull. 126, 1439–1464 (2014). doi:10.1130/B30999.1

169. G. R. Sharman, S. A. Graham, M. Grove, D. L. Kimbrough, J. E. Wright, Detrital zircon provenance of the Late Cretaceous−Eocene California forearc: Influence of Laramide low-angle subduction on sediment dispersal and paleogeography. Geol. Soc. Am. Bull. 127, 38–60 (2014). doi:10.1130/B31065.1

170. K. DeGraaff-Surpless, S. A. Graham, J. L. Wooden, M. O. McWilliams, Detrital zircon provenance analysis of the Great Valley Group, California: Evolution of an arc-forearc system. Geol. Soc. Am. Bull. 114, 1564–1580 (2002). doi:10.1130/0016-7606(2002)114<1564:DZPAOT>2.0.CO;2

171. S. J. Davis, W. R. Dickinson, G. E. Gehrels, J. E. Spencer, T. F. Lawton, A. R. Carroll, The Paleogene California River: Evidence of Mojave-Uinta paleodrainage from U-Pb ages of detrital zircons. Geology 38, 931–934 (2010). doi:10.1130/G31250.1

172. T. A. Dumitru, W. G. Ernst, J. E. Wright, J. L. Wooden, R. E. Wells, L. P. Farmer, A. J. R. Kent, S. A. Graham, Eocene extension in Idaho generated massive sediment floods into the Franciscan trench and into the Tyee, Great Valley, and Green River basins. Geology 41, 187–190 (2013). doi:10.1130/G33746.1

173. M. R. Cecil, M. N. Ducea, P. Reiners, G. Gehrels, A. Mulch, C. Allen, I. Campbell, Provenance of Eocene river sediments from the central northern Sierra Nevada and implications for paleotopography. Tectonics 29, TC6010 (2010). doi:10.1029/2010TC002717

174. J. M. Fletcher, M. Grove, D. Kimbrough, O. Lovera, G. E. Gehrels, Ridge-trench interactions and the Neogene tectonic evolution of the Magdalena shelf and southern Gulf of California: Insights from detrital zircon U-Pb ages from the Magdalena fan and adjacent areas. Geol. Soc. Am. Bull. 119, 1313–1336 (2007). doi:10.1130/B26067.1

175. B. Weber, P. Schaaf, V. A. Valencia, A. Iriondo, F. Ortega-Gutierrez, Provenance ages of late Paleozoic sandstones (Santa Rosa Formation) from the Maya block, SE Mexico. Implications on the tectonic evolution of western Pangea. Rev. Mex. Cienc. Geol. 23, 262–276 (2006).

176. B. Ortega-Flores, L. Solari, T. F. Lawton, C. Ortega-Obregon, Detrital-zircon record of major Middle Triassic-Early Cretaceous provenance shift, central Mexico: Demise of Gondwanan continental fluvial systems and onset of back-arc volcanism and sedimentation. Int. Geol. Rev. 56, 237–261 (2014). doi:10.1080/00206814.2013.844313

177. N. R. McKenzie, N. C. Hughes, P. M. Myrow, D. K. Choi, T. Y. Park, Trilobites and zircons link north China with the eastern Himalaya during the Cambrian. Geology 39, 591–594 (2011). doi:10.1130/G31838.1

Page 33: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

33

178. H. S. Kim, M. K. Hwang, J. H. Ree, K. Yi, Tectonic linkage between the Korean Peninsula and mainland Asia in the Cambrian: Insights from U-Pb dating of detrital zircon. Earth Planet. Sci. Lett. 368, 204–218 (2013). doi:10.1016/j.epsl.2013.03.003

179. Y. Isozaki, K. Aoki, S. Sakata, T. Hirata, The eastern extension of Paleozoic South China in NE Japan evidenced by detrital zircon. GFF 136, 116–119 (2014). doi:10.1080/11035897.2014.893254

180. J. H. Yang, Y. S. Du, P. A. Cawood, Y. J. Xu, Silurian collisional suturing onto the southern margin of the North China craton: Detrital zircon geochronology constraints from the Qilian Orogen. Sediment. Geol. 220, 95–104 (2009). doi:10.1016/j.sedgeo.2009.07.001

181. R. W. Li, S. Y. Li, F. Q. Jin, Y. S. Wan, S. K. Zhang, Provenance of Carboniferous sedimentary rocks in the northern margin of Dabie Mountains, central China and the tectonic significance: Constraints from trace elements, mineral chemistry and SHRIMP dating of zircons. Sediment. Geol. 166, 245–264 (2004). doi:10.1016/j.sedgeo.2003.12.009

182. T. Cope, B. D. Ritts, B. J. Darby, A. Fildani, S. A. Graham, Late Paleozoic sedimentation on the northern margin of the North China block: Implications for regional tectonics and climate change. Int. Geol. Rev. 47, 270–296 (2005). doi:10.2747/0020-6814.47.3.270

183. X. Y. Xie, P. L. Heller, U-Pb detrital zircon geochronology and its implications: The early Late Triassic Yanchang Formation; south Ordos Basin, China. J. Asian Earth Sci. 64, 86–98 (2013). doi:10.1016/j.jseaes.2012.11.045

184. J. Liu, Y. Zhao, X. M. Liu, Y. Wang, X. W. Liu, Rapid exhumation of basement rocks along the northern margin of the North China craton in the early Jurassic: Evidence from the Xiabancheng Basin, Yanshan Tectonic Belt. Basin Res. 24, 544–558 (2012). doi:10.1111/j.1365-2117.2011.00538.x

185. W. Fujisaki, Y. Isozaki, K. Maki, S. Sakata, T. Hirata, S. Maruyama, Age spectra of detrital zircon of the Jurassic clastic rocks of the Mino-Tanba AC belt in SW Japan: Constraints to the provenance of the mid-Mesozoic trench in East Asia. J. Asian Earth Sci. 88, 62–73 (2014). doi:10.1016/j.jseaes.2014.02.006

186. E. Meng, W.-L. Xu, F.-P. Pei, D.-B. Yang, Y. Yu, X.-Z. Zhang, Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China: Implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt. Tectonophysics 485, 42–51 (2010). doi:10.1016/j.tecto.2009.11.015

187. Y. I. Lee, T. Choi, H. S. Lim, Y. Orihashi, Detrital zircon geochronology of the Cretaceous Sindong Group, Southeast Korea: Implications for depositional age and Early Cretaceous igneous activity. Isl. Arc 19, 647–658 (2010). doi:10.1111/j.1440-1738.2010.00717.x

Page 34: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

34

188. K. Aoki, Y. Isozaki, S. Yamamoto, K. Maki, T. Yokoyama, T. Hirata, Tectonic erosion in a Pacific-type orogen: Detrital zircon response to Cretaceous tectonics in Japan. Geology 40, 1087–1090 (2012). doi:10.1130/G33414.1

189. S. Q. Li, F. Chen, W. Siebel, J.-D. Wu, X.-Y. Zhu, X.-L. Shan, X.-M. Sun, Late Mesozoic tectonic evolution of the Songliao basin, NE China: Evidence from detrital zircon ages and Sr-Nd isotopes. Gondwana Res. 22, 943–955 (2012). doi:10.1016/j.gr.2012.04.002

190. F. X. Meng, S. Gao, H. L. Yuan, H. J. Gong, Permian-Triassic (260-220 Ma) Crustal Growth of Eastern Central Asian Orogenic Belt as Revealed by Detrital Zircon Studies. Am. J. Sci. 310, 364–404 (2010). doi:10.2475/05.2010.02

191. Y. J. Wang, F. Zhang, W. Fan, G. Zhang, S. Chen, P. A. Cawood, A. Zhang, Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics 29, n/a (2010). doi:10.1029/2010TC002750

192. Y. J. Xu, P. A. Cawood, Y. Du, L. Hu, W. Yu, Y. Zhu, W. Li, Linking south China to northern Australia and India on the margin of Gondwana: Constraints from detrital zircon U-Pb and Hf isotopes in Cambrian strata. Tectonics 32, 1547–1558 (2013). doi:10.1002/tect.20099

193. Y. Zhou et al., U–Pb geochronology and Hf-isotopes on detrital zircons of Lower Paleozoic strata from Hainan Island: New clues for the early crustal evolution of southeastern South China. Gondwana Res. 27, 1586–1598 (2015).

194. P. A. Cawood, Y. J. Wang, Y. J. Xu, G. C. Zhao, Locating South China in Rodinia and Gondwana: A fragment of greater India lithosphere? Geology 41, 903–906 (2013). doi:10.1130/G34395.1

195. L. Duan, Q. R. Meng, G. L. Wu, S. X. Ma, L. Li, Detrital zircon evidence for the linkage of the South China block with Gondwanaland in early Palaeozoic time. Geol. Mag. 149, 1124–1131 (2012). doi:10.1017/S0016756812000404

196. M. Y. He, H. B. Zheng, B. Bookhagen, P. D. Clift, Controls on erosion intensity in the Yangtze River basin tracked by U-Pb detrital zircon dating. Earth Sci. Rev. 136, 121–140 (2014). doi:10.1016/j.earscirev.2014.05.014

197. M. Y. He, H. B. Zheng, P. D. Clift, Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China. Chem. Geol. 360–361, 186–203 (2013). doi:10.1016/j.chemgeo.2013.10.020

198. B. McGee, A. S. Collins, R. I. F. Trindade, J. Payne, Age and provenance of the Cryogenian to Cambrian passive margin to foreland basin sequence of the northern Paraguay Belt, Brazil. Geol. Soc. Am. Bull. 127, 76–86 (2014). doi:10.1130/B30842.1

199. M. Babinski, P. C. Boggiani, R. I. F. Trindade, C. M. Fanning, Detrital zircon ages and geochronological constraints on the Neoproterozoic Puga diamictites and associated BIFs in the southern Paraguay Belt, Brazil. Gondwana Res. 23, 988–997 (2013). doi:10.1016/j.gr.2012.06.011

Page 35: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

35

200. H. Bahlburg, J. D. Vervoort, S. Andrew DuFrane, V. Carlotto, C. Reimann, J. Cárdenas, The U-Pb and Hf isotope evidence of detrital zircons of the Ordovician Ollantaytambo Formation, southern Peru, and the Ordovician provenance and paleogeography of southern Peru and northern Bolivia. J. S. Am. Earth Sci. 32, 196–209 (2011). doi:10.1016/j.jsames.2011.07.002

201. C. R. Reimann, H. Bahlburg, E. Kooijman, J. Berndt, A. Gerdes, V. Carlotto, S. López, Geodynamic evolution of the early Paleozoic Western Gondwana margin 14°-17°S reflected by the detritus of the Devonian and Ordovician basins of southern Peru and northern Bolivia. Gondwana Res. 18, 370–384 (2010). doi:10.1016/j.gr.2010.02.002

202. B. K. Horton et al., Resolving uplift of the northern Andes using detrital zircon age signatures. GSA Today 20, 4–9 (2012).

203. B. K. Horton, J. E. Saylor, J. Nie, A. Mora, M. Parra, A. Reyes-Harker, D. F. Stockli, Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Geol. Soc. Am. Bull. 122, 1423–1442 (2010). doi:10.1130/B30118.1

204. M. J. Reitsma, thesis, University of Geneva (2012).

205. M. Tunik, A. Folguera, M. Naipauer, M. Pimentel, V. A. Ramos, Early uplift and orogenic deformation in the Neuquen Basin: Constraints on the Andean uplift from U-Pb and Hf isotopic data of detrital zircons. Tectonophysics 489, 258–273 (2010). doi:10.1016/j.tecto.2010.04.017

206. A. Fildani, T. D. Cope, S. A. Graham, J. L. Wooden, Initiation of the Magallanes foreland basin: Timing of the southernmost Patagonian Andes orogeny revised by detrital zircon provenance analysis. Geology 31, 1081–1084 (2003). doi:10.1130/G20016.1

207. D. L. Barbeau Jr., D. J. Gombosi, K. M. Zahid, M. Bizimis, N. Swanson-Hysell, V. Valencia, G. E. Gehrels, U-Pb zircon constraints on the age and provenance of the Rocas Verdes basin fill, Tierra del Fuego, Argentina. Geochem. Geophys. Geosyst. 10, Q12001 (2009). doi:10.1029/2009GC002749

208. D. L. Barbeau Jr., E. B. Olivero, N. L. Swanson-Hysell, K. M. Zahid, K. E. Murray, G. E. Gehrels, Detrital-zircon geochronology of the eastern Magallanes foreland basin: Implications for Eocene kinematics of the northern Scotia Arc and Drake Passage. Earth Planet. Sci. Lett. 284, 489–503 (2009). doi:10.1016/j.epsl.2009.05.014

209. N. Martin-Gombojav, W. Winkler, Recycling of Proterozoic crust in the Andean Amazon foreland of Ecuador: Implications for orogenic development of the Northern Andes. Terra Nova 20, 22–31 (2008). doi:10.1111/j.1365-3121.2007.00782.x

210. J. E. Saylor, J. N. Knowles, B. K. Horton, J. S. Nie, A. Mora, Mixing of source populations recorded in detrital zircon U-Pb age spectra of modern river sands. J. Geol. 121, 17–33 (2013). doi:10.1086/668683

Page 36: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

36

211. M. Levina, B. K. Horton, F. Fuentes, D. F. Stockli, Cenozoic sedimentation and exhumation of the foreland basin system preserved in the Precordillera thrust belt (31-32°S), southern central Andes, Argentina. Tectonics 33, 1659–1680 (2014). doi:10.1002/2013TC003424

212. T. Iizuka, T. Komiya, S. Rino, S. Maruyama, T. Hirata, Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. Geochim. Cosmochim. Acta 74, 2450–2472 (2010). doi:10.1016/j.gca.2010.01.023

213. R. L. Lawrence, R. Cox, R. W. Mapes, D. S. Coleman, Hydrodynamic fractionation of zircon age populations. Geol. Soc. Am. Bull. 123, 295–305 (2010). doi:10.1130/B30151.1

214. R. W. Mapes, thesis, University of North Carolina at Chapel Hill (2009).

215. H. Miller, C. Adams, F. G. Acenolaza, A. J. Toselli, Evolution of exhumation and erosion in western West Gondwanaland as recorded by detrital zircons of late Neoproterozoic and Cambrian sedimentary rocks of NW and Central Argentina. Int. J. Earth Sci. 100, 619–629 (2011). doi:10.1007/s00531-010-0559-5

216. G. Collo, R. A. Astini, P. A. Cawood, C. Buchan, M. Pimentel, U-Pb detrital zircon ages and Sm-Nd isotopic features in low-grade metasedimentary rocks of the Famatina belt: Implications for late Neoproterozoic-early Palaeozoic evolution of the proto-Andean margin of Gondwana. J. Geol. Soc. London 166, 303–319 (2009). doi:10.1144/0016-76492008-051

217. N. B. Kuznetsov, J. G. Meert, T. V. Romanyuk, Ages of detrital zircons (U/Pb, LA-ICP-MS) from the Latest Neoproterozoic-Middle Cambrian(?) Asha Group and Early Devonian Takaty Formation, the Southwestern Urals: A test of an Australia-Baltica connection within Rodinia. Precambrian Res. 244, 288–305 (2014). doi:10.1016/j.precamres.2013.09.011

218. S. Glorie, J. De Grave, M. M. Buslov, F. I. Zhimulev, I. Y. Safonova, Detrital zircon provenance of early Palaeozoic sediments at the southwestern margin of the Siberian Craton: Insights from U-Pb geochronology. J. Asian Earth Sci. 82, 115–123 (2014). doi:10.1016/j.jseaes.2013.12.007

219. T. K. Kelty, A. Yin, B. Dash, G. E. Gehrels, A. E. Ribeiro, Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay-Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol-Okhotsk Ocean in central Asia. Tectonophysics 451, 290–311 (2008). doi:10.1016/j.tecto.2007.11.052

220. E. L. Miller, G. E. Gehrels, V. Pease, S. Sokolov, Stratigraphy and U-Pb detrital zircon geochronology of Wrangel Island, Russia: Implications for Arctic paleogeography. AAPG Bull. 94, 665–692 (2010). doi:10.1306/10200909036

221. D. B. Harris, J. Toro, A. V. Prokopiev, Detrital zircon U-Pb geochronology of Mesozoic sandstones from the Lower Yana River, northern Russia. Lithosphere 5, 98–108 (2013). doi:10.1130/L250.1

222. A. Carter, C. S. Bristow, Linking hinterland evolution and continental basin sedimentation by using detrital zircon thermochronology: A study of the Khorat

Page 37: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

37

Plateau Basin, eastern Thailand. Basin Res. 15, 271–285 (2003). doi:10.1046/j.1365-2117.2003.00201.x

223. R. A. J. Robinson, C. A. Brezina, R. R. Parrish, M. S. A. Horstwood, M. I. Bird, Myint Thein, A. S. Walters, G. J. H. Oliver, Khin Zaw; Nay Win Oo, Large rivers and orogens: The evolution of the Yarlung Tsangpo-Irrawaddy system and the eastern Himalayan syntaxis. Gondwana Res. 26, 112–121 (2014). doi:10.1016/j.gr.2013.07.002

224. J. W. He, W. B. Zhu, R. F. Ge, New age constraints on Neoproterozoic diamicites in Kuruktag, NW China and Precambrian crustal evolution of the Tarim Craton. Precambrian Res. 241, 44–60 (2014). doi:10.1016/j.precamres.2013.11.005

225. J. W. He, W. B. Zhu, R. F. Ge, B. H. Zheng, H. L. Wu, Detrital zircon U-Pb ages and Hf isotopes of Neoproterozoic strata in the Aksu area, northwestern Tarim Craton: Implications for supercontinent reconstruction and crustal evolution. Precambrian Res. 254, 194–209 (2014). doi:10.1016/j.precamres.2014.08.016

226. A. R. Carroll, T. A. Dumitru, S. A. Graham, M. S. Hendrix, An 800 million-year detrital zircon record of continental amalgamation: Tarim basin, NW China. Int. Geol. Rev. 55, 818–829 (2013). doi:10.1080/00206814.2013.787232

227. T. M. Gibson, P. M. Myrow, F. A. Macdonald, C. Minjin, G. E. Gehrels, Depositional history, tectonics, and detrital zircon geochronology of Ordovician and Devonian strata in southwestern Mongolia. Geol. Soc. Am. Bull. 125, 877–893 (2013). doi:10.1130/B30746.1

228. M. Wang, J. J. Zhang, K. Liu, Continuous denudation and pediplanation of the Chinese Western Tianshan orogen during Triassic to Middle Jurassic: Integrated evidence from detrital zircon age and heavy mineral chemical data. J. Asian Earth Sci. 113, 310–324 (2015). doi:10.1016/j.jseaes.2014.05.013

229. Z. Li, S. T. Peng, Detrital zircon geochronology and its provenance implications: Responses to Jurassic through Neogene basin-range interactions along northern margin of the Tarim Basin, Northwest China. Basin Res. 22, 126–138 (2010). doi:10.1111/j.1365-2117.2009.00440.x

230. Z. Li, D. X. Wang, W. Lin, Q. C. Wang, Mesozoic-cenozoic clastic composition in Kuqa depression, northwest China: Implication for provenance types and tectonic attributes\. Acta Petrol. Sin. 20, 655–666 (2004).

231. H. S. Liu, B. Wang, L. S. Shu, B. M. Jahn, Y. Lizuka, Detrital zircon ages of Proterozoic meta-sedimentary rocks and Paleozoic sedimentary cover of the northern Yili Block: Implications for the tectonics of microcontinents in the Central Asian Orogenic Belt. Precambrian Res. 252, 209–222 (2014). doi:10.1016/j.precamres.2014.07.018

232. X. X. Ma, L. S. Shu, M. Santosh, J. Y. Li, Detrital zircon U-Pb geochronology and Hf isotope data from Central Tianshan suggesting a link with the Tarim Block: Implications on Proterozoic supercontinent history. Precambrian Res. 206–207, 1–16 (2012). doi:10.1016/j.precamres.2012.02.015

Page 38: Supplementary Materials for · 4/20/2016  · Continental arc volcanism as the principal driver of icehouse - greenhouse variability N. Ryan McKenzie,* Brian K. Horton, Shannon E

38

233. A. L. Leier, P. G. Decelles, P. Kapp, G. E. Gehrels, Lower cretaceous strata in the Lhasa Terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan plateau. J. Sediment. Res. 77, 809–825 (2007). doi:10.2110/jsr.2007.078

234. A. L. Leier, P. Kapp, G. E. Gehrels, P. G. DeCelles, Detrital zircon geochronology of carboniferous-cretaceous strata in the lhasa terrane, Southern Tibet. Basin Res. 19, 361–378 (2007). doi:10.1111/j.1365-2117.2007.00330.x

235. L. Guangwei, L. Xiaohan, P. Alex, W. Lijie, L. Xiaobing, H. Feixin, Z. Xuejun, In-situ detrital zircon geochronology and Hf isotopic analyses from Upper Triassic Tethys sequence strata. Earth Planet. Sci. Lett. 297, 461–470 (2010). doi:10.1016/j.epsl.2010.06.050

236. P. Kapp, P. G. DeCelles, G. E. Gehrels, M. Heizler, L. Ding, Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol. Soc. Am. Bull. 119, 917–932 (2007). doi:10.1130/B26033.1

237. F. Y. Wu, W. Q. Ji, C. Z. Liu, S. L. Chung, Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chem. Geol. 271, 13–25 (2010). doi:10.1016/j.chemgeo.2009.12.007

238. P. G. DeCelles, P. Kapp, J. Quade, G. E. Gehrels, Oligocene-Miocene Kailas basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone. Geol. Soc. Am. Bull. 123, 1337–1362 (2011). doi:10.1130/B30258.1

239. B. Schoene, in Treatise on Geochemistry, H. D. Holland, K. K. Turekian, Eds. (Elsevier, ed. 2, 2013), vol. 4, pp. 341–378.