supplementary materials for · 2017-09-27 · via a natural, exogenous antigen-independent...

26
www.sciencemag.org/cgi/content/full/science.aan6619/DC1 Supplementary Materials for Natural polyreactive IgA antibodies coat the intestinal microbiota Jeffrey J. Bunker, Steven A. Erickson, Theodore M. Flynn, Carole Henry, Jason C. Koval, Marlies Meisel, Bana Jabri, Dionysios A. Antonopoulos, Patrick C. Wilson, Albert Bendelac* *Corresponding author. Email: [email protected] Published 28 September 2017 on Science First Release DOI: 10.1126/science.aan6619 This PDF file includes: Figs. S1 to S14 Table S1 Caption for Database S1 References Other Supplementary Materials for this manuscript includes the following: (available at www.sciencemag.org/cgi/content/full/science.aan6619/DC1) Database S1 (Excel)

Upload: others

Post on 03-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

www.sciencemag.org/cgi/content/full/science.aan6619/DC1

Supplementary Materials for

Natural polyreactive IgA antibodies coat the intestinal microbiota

Jeffrey J. Bunker, Steven A. Erickson, Theodore M. Flynn, Carole Henry, Jason C. Koval, Marlies Meisel, Bana Jabri, Dionysios A. Antonopoulos, Patrick C. Wilson, Albert Bendelac*

*Corresponding author. Email: [email protected]

Published 28 September 2017 on Science First Release

DOI: 10.1126/science.aan6619

This PDF file includes:

Figs. S1 to S14 Table S1 Caption for Database S1 References

Other Supplementary Materials for this manuscript includes the following: (available at www.sciencemag.org/cgi/content/full/science.aan6619/DC1)

Database S1 (Excel)

Page 2: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

Figure S1. Reproducibility of mAb staining of microbiota. (A) Percent hIgG+ of Rag1-/- SI microbiota stained with mAbs from indicated panels at indicated concentrations. Representative of multiple independent experiments. (B) Correlation of %hIgG+ bacteria and median fluorescence intensity (MFI) within the positive gate. P and R2 values calculated by linear regression. (C) Reproducibility of microbiota staining. Percent hIgG+ bacteria of Rag1-/- SI microbiota stained with mAbs from indicated panels in three independent experiments. Independent preparations of SI microbiota were isolated from three distinct cohorts of Rag1-/

-

mice from our colony and stained on three separate days. The average standard deviation across experiments was 1.00% hIgG+. Lines connect individual mAbs across experiments. Each mAb was assigned a unique color according to its rank order within its panel in experiment 1, with purple being the lowest rank and yellow the highest; color assignment was performed separately for B2 and IgA panels. (D) Representative flow cytometry plots depicting staining of Rag1-/- SI microbiota by indicated mAbs and panels. Gated on FSC+SSC+SYTO BC+DAPI- cells. Plots are representative of multiple independent experiments.

2

Page 3: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

Figure S2. Reactivities of individual mAbs from naïve B cell subsets or anti-influenza panels. (A-D) Microbiota-reactivity percentile scores and polyreactivity ELISA OD405 values for individual mAbs from indicated panels. Data are summarized in Fig. 1C-D.

3

Page 4: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

Figure S3. Anti-nuclear reactivities of individual mAbs, serum retention in vivo, and protein quality validation of polyreactive mAbs. (A) HEp2 lysate anti-nuclear antibody (ANA) ELISA. Filled circles indicate individual mAbs and all mAbs shown in Fig. 1 were assayed. Open circle in positive control column indicates 3H9 high positive control mAb; open square indicates low positive control serum provided by the manufacturer; these controls were included on all plates assayed. * in Fig S2B indicates the single HEp2-reactive MZ B mAb. Data compiled from five independent experiments. (B) Serum concentration of mAbs at 5 days-post-injection (dpi) of 2 µg into Rag1-/- mice. Data compiled from three independent experiments. P value calculated by unpaired t test. (C) List of mAbs used for in vivo serum retention measurements. (D) Size exclusion chromatography A280 trace of indicated mAbs. Brackets indicate monomeric fractions purified and immediately used in polyreactivity ELISAs against indicated antigens (right).

4

Page 5: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

Figure S4. Correlates of microbiota-reactivity and polyreactivity. (A) Correlation of average polyreactivity ELISA OD405 across all seven antigens for individual mAbs with their microbiota reactivity percentile score. Plot includes all mAbs in this study except germline reverted mAbs and anti-influenza panels. P and R2 values calculated by linear regression. (B) Percent of mAbs among low microbiota-reactivity and high microbiota-reactivity classifications (upper panels) or polyreactive and non-polyreactive classifications (lower panels) with indicated repertoire features. Plots include all mAbs in this study except germline reverted mAbs and anti-influenza panels. P values calculated by chi-square test. (C) Percent high microbiota reactivity (upper panel) or polyreactive mAbs (lower panel) among all naïve B cell or IgA-derived antibodies in this study, grouped according to VH gene usage. V genes other than 1, 3, and 5 were not included as sample numbers were inadequate for statistical comparison due to low or absent representation in many panels. P values calculated by 2x2 Fisher’s exact test.

5

Page 6: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

Figure S5. Contributions of TI or TD pathways to intestinal and extraintestinal IgA populations. (A) Representative staining and cell number summary of IgA plasma cells in indicated tissues of Tcrb-/-d-/- mice, controls, or Rag1-/- mice. Mice were compared to co-housed Tcrb+/-d+/- littermates for all tissues except for the lactating mammary gland; this analysis consisted of a separate cohort of 3-7d post-partum Tcrb-/-d-/- females compared to age-matched and co-housed WT B6 females. P values calculated by unpaired t test. Data compiled from two independent experiments. (B) Number of IgH somatic mutations for individual mAbs of indicated cellular origin. (C) Summary of somatic mutations for indicated panels. P values calculated by Fisher’s exact test.

6

Page 7: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

Figure S6. Reactivities of individual mAbs from colonic and extraintestinal IgA PC populations. (A-D) Microbiota-reactivity percentile scores and polyreactivity ELISA OD405 values for individual mAbs from indicated panels. Data are summarized in Fig. 1C-D.

7

Page 8: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

Figure S7. Microbial targets of individual microbiota-reactive IgA-derived mAbs. (A-B) Microbial taxa bound by individual mAbs from indicated panels. Enrichment calculated from 16S sequencing data as relative abundance in mAb+/mAb- or endogenous polyclonal IgA+/IgA- samples purified from WT B6 colonic microbiota in A or Rag1-/- SI microbiota in B. All mAbs in a given panel were co-purified in the same experiment.

8

Page 9: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

Figure S8. Microbial targets of individual microbiota-reactive naïve B cell-derived mAbs or anti-influenza controls. (A) Microbial taxa bound by individual mAbs from indicated panels. Enrichment calculated from 16S sequencing data as relative abundance in mAb+/mAb- samples purified from Rag1-/- SI microbiota. All mAbs in a given panel were co-purified in the same experiment.

9

Page 10: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

Figure S9. Microbiota-reactivity of individual mAbs from anti-influenza HA head strain-specific or HA stalk bnAb panels. (A) Microbiota-reactivity percentile scores assigned according to the HA head distribution and polyreactivity ELISA OD405 values for individual mAbs from indicated panels. Data are summarized in Fig. 2D.

10

Page 11: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

Figure S10. Reactivity of mAbs to in vitro cultured bacterial strains and ex vivo staining after nuclease pre-treatment or low pH pre-washing. (A) Flow cytometry staining with SI IgA mAb 41C10 of ex vivo Rag1-/- SI microbiota or individual strains cultured in vitro from the 41C10 mAb+ fraction. All staining was performed at 10 µg/mL. Taxonomy abbreviations: o= order; f=family; g=genus; s=species. Similar negative staining of these in vitro cultured isolates was obtained with an additional 27 microbiota-reactive SI IgA mAbs. (B) Flow cytometry staining with mAb 02B6 of ex vivo Rag1-/- SI microbiota or individual strains cultured in vitro from the 02B6 mAb+ fraction. All staining was performed at 10 µg/mL. (C) mAb staining of ex vivo Rag1-/- SI microbiota that was untreated, pre-treated with nuclease, or pre-washed with glycine-HCl pH 3.0.

11

Page 12: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

Figure S11. Microbial glycan microarray analysis of individual mAbs. Microbial glycan microarray data for (A) Indicated negative control B2 mAbs selected based on lack of microbiota-reactivity or (B) microbiota-reactive SI IgA mAbs. Data expressed as enrichment over average background of six B2 mAb negative controls. Annotated peaks showed >5-fold enrichment. Data compiled from two independent experiments.

12

Page 13: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

Figure S12. Reactivities of individual T-dependent or T-independent SI IgA mAbs. (A) Number of IgH somatic mutations for individual mAbs from indicated SI IgA panels. (B, D) Microbiota-reactivity percentile scores and polyreactivity ELISA OD405 values for indicated mAbs and panels. Data summarized in Fig. 3B-C. (C, E) Microbial taxa bound by indicated mAbs and panels. Enrichment calculated from 16S sequencing data as relative abundance in mAb+/mAb- samples purified from Rag1-/- SI microbiota. All mAbs in a given panel were co-purified in the same experiment.

13

Page 14: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

Figure S13. Reactivities of individual mutated or germline reverted SI IgA mAbs. (A) IgH somatic mutations in mAbs selected for reversion to germline. IgK chains were similarly reverted. (B) Microbiota-reactivity percentile scores and (C) polyreactivity ELISA scoring of indicated mutated or germline reverted mAbs. (D) Percent nonsynonymous mutations among individual mutated mAbs in indicated panels.

14

Page 15: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

Figure S14. Summary model for selection of microbiota-reactive and polyreactive IgAs. Microbiota-reactive and polyreactive specificities occur naturally at frequencies of ~30% in the repertoires of all naïve B cell subsets. Upon trafficking through Peyer’s patches, cells expressing these specificities are selected to divide via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of local factors that direct IgA class-switch recombination and gut imprinting. Cells then proceed through either T-dependent or T-independent pathways that instruct differentiation to IgA plasma cells. Cells migrate to the intestinal lamina propria or to extraintestinal tissues and secrete specificities that naturally bind a diverse but defined subset of commensal microbiota.

15

Page 16: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

Table S1. Recipe for antigen-free diet.

Aqueous Solution 1 Add to sterile nanopure water at 70 ºC g/L 0.36 L H2O Dextrose (Sigma D9434) 220

Aqueous Solution 2 Add to sterile nanopure water at 70 ºC 0.64 L H20 Leucine (Sigma L8000) 5.775 Phenylalanine (Sigma P2126) 2.25 Isoleucine (Sigma I2752) 3.3 Methionine (Sigma M9625) 4.8 Tryptophan (Sigma T0254) 1.125 Valine (Sigma V0500) 4.1 Asparagine (Sigma A0884) 3.75 Arginine-HCl (Sigma A5131) 2.775 Threonine (Sigma T8625) 2.25 Lysine-HCl (Sigma L5626) 5.4 Histidine-HCl*H2O (Sigma H5659) 2.25

Cool to 45C, add the following: Glycine (Sigma G7126) 1.8 Proline (Sigma P0380) 4.5 Serine (Sigma A0884) 4.05 Alanine (Sigma A7627) 1.8 Na-Glutamate (Sigma G1626) 10.35 Ethyl L-tyrosinate HCl (Sigma T4879) 1.875 Ferrous gluconate (Sigma 344427) 0.15 Mn acetate tetrahydrate (Sigma 229776) 0.1662 ZnSO4*H2O (Sigma 96495) 0.1218 Cu acetate*H2O (Sigma 217557) 1.11E-02 Cr acetate*H2O (Santa Cruz sc-227648) 7.50E-03 NaF (Sigma 201154) 6.30E-03 SnSO4*2H2O (Sigma 244635) 1.11E-03 Ammonium molybdate tetrahydrate (Sigma 09880)

1.11E-03

NiCl2 hydrate (Sigma 364304) 1.11E-03 Cobalt acetate tetrahydrate (Sigma 403024) 3.30E-04 Sodium orthovanadate (Sigma 450243) 6.60E-04 Sodium selenate (Sigma S5261) 2.88E-04

16

Page 17: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

Cool to 4 ºC, add the following: Ca glycerophosphate (Sigma G6626) 15.9 Mg glycerophosphate (Sigma 17766) 4.35 CaCl2*2H2O (Sigma 3881) 0.5625 NaCl (Sigma S9888) 0.1778 KI (Sigma 207969) 1.42E-03 K acetate (Sigma P1190) 5.625 Choline HCl (Sigma C1879) 0.95 Vitamin B12 (Sigma V2876) 4.72E-03 Biotin (Sigma B4501) 8.20E-04 Folic acid (Sigma 7876) 1.23E-03 Thiamine HCl (Sigma T4625) 4.10E-03 Pyridoxine HCl (Sigma 9755) 5.13E-03 Riboflavin (Sigma R4500) 6.15E-03 Niacinamide (Sigma N5535) 3.08E-02 D-Pantothenic acid (Sigma 21210) 4.10E-02 myo-Inositol (Sigma I5125) 2.05E-01

Combine both solutions at 4 ºC & sterile filter

Lipid Solution Soybean oil (Sigma S7381) Retinyl palmitate (Sigma R3375) 1.87E-01 Cholecalciferol (Sigma C9756) 5.00E-04 Vitamin K (Sigma V3501) 0.675 DL-tocopherol acetate (Sigma T3376) 20 DL-tocopherol (Sigma 258024) 10

Warm to 50 ºC prior to sterile filtration

17

Page 18: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

Online supplementary files

Database S1. List of mAbs. Excel file listing name, cellular origin, microbiota-reactivity, polyreactivity, variable gene usage, and sequences of antibodies used in this study. Sequence characteristics were determined using IMGT (www.imgt.org).

18

Page 19: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

References and Notes 1. K. Honda, D. R. Littman, The microbiota in adaptive immune homeostasis and disease. Nature 535,

75–84 (2016). doi:10.1038/nature18848 Medline

2. A. J. Macpherson, T. Uhr, Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004). doi:10.1126/science.1091334 Medline

3. E. Slack, S. Hapfelmeier, B. Stecher, Y. Velykoredko, M. Stoel, M. A. E. Lawson, M. B. Geuking, B. Beutler, T. F. Tedder, W.-D. Hardt, P. Bercik, E. F. Verdu, K. D. McCoy, A. J. Macpherson, Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325, 617–620 (2009). doi:10.1126/science.1172747 Medline

4. J. J. Bunker, T. M. Flynn, J. C. Koval, D. G. Shaw, M. Meisel, B. D. McDonald, I. E. Ishizuka, A. L. Dent, P. C. Wilson, B. Jabri, D. A. Antonopoulos, A. Bendelac, Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 43, 541–553 (2015). doi:10.1016/j.immuni.2015.08.007 Medline

5. A. J. Macpherson, D. Gatto, E. Sainsbury, G. R. Harriman, H. Hengartner, R. M. Zinkernagel, A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000). doi:10.1126/science.288.5474.2222 Medline

6. A. Reboldi, T. I. Arnon, L. B. Rodda, A. Atakilit, D. Sheppard, J. G. Cyster, IgA production requires B cell interaction with subepithelial dendritic cells in Peyer’s patches. Science 352, aaf4822 (2016). doi:10.1126/science.aaf4822 Medline

7. S. Fagarasan, M. Muramatsu, K. Suzuki, H. Nagaoka, H. Hiai, T. Honjo, Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002). doi:10.1126/science.1077336 Medline

8. J. L. Kubinak, J. L. Round, Do antibodies select a healthy microbiota? Nat. Rev. Immunol. 16, 767–774 (2016). doi:10.1038/nri.2016.114 Medline

9. S. Kawamoto, M. Maruya, L. M. Kato, W. Suda, K. Atarashi, Y. Doi, Y. Tsutsui, H. Qin, K. Honda, T. Okada, M. Hattori, S. Fagarasan, Foxp3+ T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41, 152–165 (2014). doi:10.1016/j.immuni.2014.05.016 Medline

10. S. Kawamoto, T. H. Tran, M. Maruya, K. Suzuki, Y. Doi, Y. Tsutsui, L. M. Kato, S. Fagarasan, The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336, 485–489 (2012). doi:10.1126/science.1217718 Medline

11. C. P. Quan, A. Berneman, R. Pires, S. Avrameas, J. P. Bouvet, Natural polyreactive secretory immunoglobulin A autoantibodies as a possible barrier to infection in humans. Infect. Immun. 65, 3997–4004 (1997). Medline

12. F. Fransen, E. Zagato, E. Mazzini, B. Fosso, C. Manzari, S. El Aidy, A. Chiavelli, A. M. D’Erchia, M. K. Sethi, O. Pabst, M. Marzano, S. Moretti, L. Romani, G. Penna, G. Pesole, M. Rescigno, BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity 43, 527–540 (2015). doi:10.1016/j.immuni.2015.08.011 Medline

13. O. L. Wijburg, T. K. Uren, K. Simpfendorfer, F.-E. Johansen, P. Brandtzaeg, R. A. Strugnell, Innate secretory antibodies protect against natural Salmonella typhimurium infection. J. Exp. Med. 203, 21–26 (2006). doi:10.1084/jem.20052093 Medline

19

Page 20: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

14. J. Benckert, N. Schmolka, C. Kreschel, M. J. Zoller, A. Sturm, B. Wiedenmann, H. Wardemann, The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific. J. Clin. Invest. 121, 1946–1955 (2011). doi:10.1172/JCI44447 Medline

15. D. A. Peterson, N. P. McNulty, J. L. Guruge, J. I. Gordon, IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2, 328–339 (2007). doi:10.1016/j.chom.2007.09.013 Medline

16. M. Shimoda, Y. Inoue, N. Azuma, C. Kanno, Natural polyreactive immunoglobulin A antibodies produced in mouse Peyer’s patches. Immunology 97, 9–17 (1999). doi:10.1046/j.1365-2567.1999.00755.x Medline

17. I. Y. Ho, J. J. Bunker, S. A. Erickson, K. E. Neu, M. Huang, M. Cortese, B. Pulendran, P. C. Wilson, Refined protocol for generating monoclonal antibodies from single human and murine B cells. J. Immunol. Methods 438, 67–70 (2016). doi:10.1016/j.jim.2016.09.001 Medline

18. H. Mouquet, M. C. Nussenzweig, Polyreactive antibodies in adaptive immune responses to viruses. Cell. Mol. Life Sci. 69, 1435–1445 (2012). doi:10.1007/s00018-011-0872-6 Medline

19. S. F. Andrews, Y. Huang, K. Kaur, L. I. Popova, I. Y. Ho, N. T. Pauli, C. J. Henry Dunand, W. M. Taylor, S. Lim, M. Huang, X. Qu, J.-H. Lee, M. Salgado-Ferrer, F. Krammer, P. Palese, J. Wrammert, R. Ahmed, P. C. Wilson, Immune history profoundly affects broadly protective B cell responses to influenza. Sci. Transl. Med. 7, 316ra192 (2015). doi:10.1126/scitranslmed.aad0522 Medline

20. H. Mouquet, J. F. Scheid, M. J. Zoller, M. Krogsgaard, R. G. Ott, S. Shukair, M. N. Artyomov, J. Pietzsch, M. Connors, F. Pereyra, B. D. Walker, D. D. Ho, P. C. Wilson, M. S. Seaman, H. N. Eisen, A. K. Chakraborty, T. J. Hope, J. V. Ravetch, H. Wardemann, M. C. Nussenzweig, Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467, 591–595 (2010). doi:10.1038/nature09385 Medline

21. H. Wardemann, S. Yurasov, A. Schaefer, J. W. Young, E. Meffre, M. C. Nussenzweig, Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003). doi:10.1126/science.1086907 Medline

22. A. L. Notkins, Polyreactivity of antibody molecules. Trends Immunol. 25, 174–179 (2004). doi:10.1016/j.it.2004.02.004 Medline

23. Y. Cong, T. Feng, K. Fujihashi, T. R. Schoeb, C. O. Elson, A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc. Natl. Acad. Sci. U.S.A. 106, 19256–19261 (2009). doi:10.1073/pnas.0812681106 Medline

24. T. C. Cullender, B. Chassaing, A. Janzon, K. Kumar, C. E. Muller, J. J. Werner, L. T. Angenent, M. E. Bell, A. G. Hay, D. A. Peterson, J. Walter, M. Vijay-Kumar, A. T. Gewirtz, R. E. Ley, Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe 14, 571–581 (2013). doi:10.1016/j.chom.2013.10.009 Medline

25. M. J. Lodes, Y. Cong, C. O. Elson, R. Mohamath, C. J. Landers, S. R. Targan, M. Fort, R. M. Hershberg, Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Invest. 113, 1296–1306 (2004). doi:10.1172/JCI200420295 Medline

26. S. V. Sitaraman, J. M. Klapproth, D. A. Moore 3rd, C. Landers, S. Targan, I. R. Williams, A. T. Gewirtz, Elevated flagellin-specific immunoglobulins in Crohn’s disease. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G403–G406 (2005). doi:10.1152/ajpgi.00357.2004 Medline

20

Page 21: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

27. E. Lüllau, S. Heyse, H. Vogel, I. Marison, U. von Stockar, J.-P. Kraehenbuhl, B. Corthésy, Antigen binding properties of purified immunoglobulin A and reconstituted secretory immunoglobulin A antibodies. J. Biol. Chem. 271, 16300–16309 (1996). doi:10.1074/jbc.271.27.16300 Medline

28. G. Sigounas, N. Harindranath, G. Donadel, A. L. Notkins, Half-life of polyreactive antibodies. J. Clin. Immunol. 14, 134–140 (1994). doi:10.1007/BF01541346 Medline

29. J. L. Kubinak, C. Petersen, W. Z. Stephens, R. Soto, E. Bake, R. M. O’Connell, J. L. Round, MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe 17, 153–163 (2015). doi:10.1016/j.chom.2014.12.009 Medline

30. N. W. Palm, M. R. de Zoete, T. W. Cullen, N. A. Barry, J. Stefanowski, L. Hao, P. H. Degnan, J. Hu, I. Peter, W. Zhang, E. Ruggiero, J. H. Cho, A. L. Goodman, R. A. Flavell, Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158, 1000–1010 (2014). doi:10.1016/j.cell.2014.08.006 Medline

31. A. L. Kau, J. D. Planer, J. Liu, S. Rao, T. Yatsunenko, I. Trehan, M. J. Manary, T.-C. Liu, T. S. Stappenbeck, K. M. Maleta, P. Ashorn, K. G. Dewey, E. R. Houpt, C.-S. Hsieh, J. I. Gordon, Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci. Transl. Med. 7, 276ra24 (2015). doi:10.1126/scitranslmed.aaa4877 Medline

32. J. D. Planer, Y. Peng, A. L. Kau, L. V. Blanton, I. M. Ndao, P. I. Tarr, B. B. Warner, J. I. Gordon, Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 534, 263–266 (2016). Medline

33. J. Mirpuri, M. Raetz, C. R. Sturge, C. L. Wilhelm, A. Benson, R. C. Savani, L. V. Hooper, F. Yarovinsky, Proteobacteria-specific IgA regulates maturation of the intestinal microbiota. Gut Microbes 5, 28–39 (2014). doi:10.4161/gmic.26489 Medline

34. E. Lécuyer, S. Rakotobe, H. Lengliné-Garnier, C. Lebreton, M. Picard, C. Juste, R. Fritzen, G. Eberl, K. D. McCoy, A. J. Macpherson, C.-A. Reynaud, N. Cerf-Bensussan, V. Gaboriau-Routhiau, Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 40, 608–620 (2014). doi:10.1016/j.immuni.2014.03.009 Medline

35. H. L. Klaasen, P. J. Van der Heijden, W. Stok, F. G. Poelma, J. P. Koopman, M. E. Van den Brink, M. H. Bakker, W. M. Eling, A. C. Beynen, Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice. Infect. Immun. 61, 303–306 (1993). Medline

36. K. Atarashi, T. Tanoue, M. Ando, N. Kamada, Y. Nagano, S. Narushima, W. Suda, A. Imaoka, H. Setoyama, T. Nagamori, E. Ishikawa, T. Shima, T. Hara, S. Kado, T. Jinnohara, H. Ohno, T. Kondo, K. Toyooka, E. Watanabe, S. Yokoyama, S. Tokoro, H. Mori, Y. Noguchi, H. Morita, I. I. Ivanov, T. Sugiyama, G. Nuñez, J. G. Camp, M. Hattori, Y. Umesaki, K. Honda, Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015). doi:10.1016/j.cell.2015.08.058 Medline

37. C. M. Krinos, M. J. Coyne, K. G. Weinacht, A. O. Tzianabos, D. L. Kasper, L. E. Comstock, Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature 414, 555–558 (2001). doi:10.1038/35107092 Medline

38. J. C. Lee, S. Takeda, P. J. Livolsi, L. C. Paoletti, Effects of in vitro and in vivo growth conditions on expression of type 8 capsular polysaccharide by Staphylococcus aureus. Infect. Immun. 61, 1853–1858 (1993). Medline

21

Page 22: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

39. S. Lebeer, T. L. A. Verhoeven, G. Francius, G. Schoofs, I. Lambrichts, Y. Dufrêne, J. Vanderleyden, S. C. J. De Keersmaecker, Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Appl. Environ. Microbiol. 75, 3554–3563 (2009). doi:10.1128/AEM.02919-08 Medline

40. S. M. Logan, Flagellar glycosylation—a new component of the motility repertoire? Microbiology 152, 1249–1262 (2006). doi:10.1099/mic.0.28735-0 Medline

41. I. Gryllos, H. J. Tran-Winkler, M.-F. Cheng, H. Chung, R. Bolcome 3rd, W. Lu, R. I. Lehrer, M. R. Wessels, Induction of group A Streptococcus virulence by a human antimicrobial peptide. Proc. Natl. Acad. Sci. U.S.A. 105, 16755–16760 (2008). doi:10.1073/pnas.0803815105 Medline

42. N. Kamada, Y.-G. Kim, H. P. Sham, B. A. Vallance, J. L. Puente, E. C. Martens, G. Núñez, Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012). doi:10.1126/science.1222195 Medline

43. B. D. Needham, M. S. Trent, Fortifying the barrier: The impact of lipid A remodelling on bacterial pathogenesis. Nat. Rev. Microbiol. 11, 467–481 (2013). doi:10.1038/nrmicro3047 Medline

44. M. J. Coyne, B. Reinap, M. M. Lee, L. E. Comstock, Human symbionts use a host-like pathway for surface fucosylation. Science 307, 1778–1781 (2005). doi:10.1126/science.1106469 Medline

45. S. van Houte, A. Buckling, E. R. Westra, Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev. 80, 745–763 (2016). doi:10.1128/MMBR.00011-16 Medline

46. S. Lebeer, J. Vanderleyden, S. C. De Keersmaecker, Host interactions of probiotic bacterial surface molecules: Comparison with commensals and pathogens. Nat. Rev. Microbiol. 8, 171–184 (2010). doi:10.1038/nrmicro2297 Medline

47. S. R. Stowell, C. M. Arthur, R. McBride, O. Berger, N. Razi, J. Heimburg-Molinaro, L. C. Rodrigues, J.-P. Gourdine, A. J. Noll, S. von Gunten, D. F. Smith, Y. A. Knirel, J. C. Paulson, R. D. Cummings, Microbial glycan microarrays define key features of host-microbial interactions. Nat. Chem. Biol. 10, 470–476 (2014). doi:10.1038/nchembio.1525 Medline

48. D. A. Peterson, J. D. Planer, J. L. Guruge, L. Xue, W. Downey-Virgin, A. L. Goodman, H. Seedorf, J. I. Gordon, Characterizing the interactions between a naturally primed immunoglobulin A and its conserved Bacteroides thetaiotaomicron species-specific epitope in gnotobiotic mice. J. Biol. Chem. 290, 12630–12649 (2015). doi:10.1074/jbc.M114.633800 Medline

49. O. Pabst, New concepts in the generation and functions of IgA. Nat. Rev. Immunol. 12, 821–832 (2012). doi:10.1038/nri3322 Medline

50. T. Tiller, M. Tsuiji, S. Yurasov, K. Velinzon, M. C. Nussenzweig, H. Wardemann, Autoreactivity in human IgG+ memory B cells. Immunity 26, 205–213 (2007). doi:10.1016/j.immuni.2007.01.009 Medline

51. C. Lindner, I. Thomsen, B. Wahl, M. Ugur, M. K. Sethi, M. Friedrichsen, A. Smoczek, S. Ott, U. Baumann, S. Suerbaum, S. Schreiber, A. Bleich, V. Gaboriau-Routhiau, N. Cerf-Bensussan, H. Hazanov, R. Mehr, P. Boysen, P. Rosenstiel, O. Pabst, Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota. Nat. Immunol. 16, 880–888 (2015). doi:10.1038/ni.3213 Medline

52. L. S. Yeap, J. K. Hwang, Z. Du, R. M. Meyers, F.-L. Meng, A. Jakubauskaitė, M. Liu, V. Mani, D. Neuberg, T. B. Kepler, J. H. Wang, F. W. Alt, Sequence-intrinsic mechanisms that target AID

22

Page 23: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

mutational outcomes on antibody genes. Cell 163, 1124–1137 (2015). doi:10.1016/j.cell.2015.10.042 Medline

53. A. Cerutti, The regulation of IgA class switching. Nat. Rev. Immunol. 8, 421–434 (2008). doi:10.1038/nri2322 Medline

54. J. R. Mora, M. Iwata, B. Eksteen, S.-Y. Song, T. Junt, B. Senman, K. L. Otipoby, A. Yokota, H. Takeuchi, P. Ricciardi-Castagnoli, K. Rajewsky, D. H. Adams, U. H. von Andrian, Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006). doi:10.1126/science.1132742 Medline

55. M. B. Litinskiy, B. Nardelli, D. M. Hilbert, B. He, A. Schaffer, P. Casali, A. Cerutti, DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 3, 822–829 (2002). doi:10.1038/ni829 Medline

56. J. Mestecky, Mucosal Immunology (Elsevier, ed. 4, 2015).

57. K. S. Kim, S.-W. Hong, D. Han, J. Yi, J. Jung, B.-G. Yang, J. Y. Lee, M. Lee, C. D. Surh, Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 351, 858–863 (2016). doi:10.1126/science.aac5560 Medline

58. J. R. Pleasants, M. H. Johnson, B. S. Wostmann, Adequacy of chemically defined, water-soluble diet for germfree BALB/c mice through successive generations and litters. J. Nutr. 116, 1949–1964 (1986). Medline

59. A. E. Reynolds, M. Kuraoka, G. Kelsoe, Natural IgM is produced by CD5– plasma cells that occupy a distinct survival niche in bone marrow. J. Immunol. 194, 231–242 (2015). doi:10.4049/jimmunol.1401203 Medline

60. B. Pasquier, P. Launay, Y. Kanamaru, I. C. Moura, S. Pfirsch, C. Ruffié, D. Hénin, M. Benhamou, M. Pretolani, U. Blank, R. C. Monteiro, Identification of FcαRI as an inhibitory receptor that controls inflammation: Dual role of FcRgamma ITAM. Immunity 22, 31–42 (2005). doi:10.1016/j.immuni.2004.11.017 Medline

61. M. Gomez de Agüero, S. C. Ganal-Vonarburg, T. Fuhrer, S. Rupp, Y. Uchimura, H. Li, A. Steinert, M. Heikenwalder, S. Hapfelmeier, U. Sauer, K. D. McCoy, A. J. Macpherson, The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016). doi:10.1126/science.aad2571 Medline

62. M. A. Koch, G. L. Reiner, K. A. Lugo, L. S. M. Kreuk, A. G. Stanbery, E. Ansaldo, T. D. Seher, W. B. Ludington, G. M. Barton, Maternal IgG and IgA antibodies dampen mucosal T helper cell responses in early life. Cell 165, 827–841 (2016). doi:10.1016/j.cell.2016.04.055 Medline

63. S. Hapfelmeier, M. A. E. Lawson, E. Slack, J. K. Kirundi, M. Stoel, M. Heikenwalder, J. Cahenzli, Y. Velykoredko, M. L. Balmer, K. Endt, M. B. Geuking, R. Curtiss III, K. D. McCoy, A. J. Macpherson, Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328, 1705–1709 (2010). doi:10.1126/science.1188454 Medline

64. K. Moor, M. Diard, M. E. Sellin, B. Felmy, S. Y. Wotzka, A. Toska, E. Bakkeren, M. Arnoldini, F. Bansept, A. D. Co, T. Völler, A. Minola, B. Fernandez-Rodriguez, G. Agatic, S. Barbieri, L. Piccoli, C. Casiraghi, D. Corti, A. Lanzavecchia, R. R. Regoes, C. Loverdo, R. Stocker, D. R. Brumley, W.-D. Hardt, E. Slack, High-avidity IgA protects the intestine by enchaining growing bacteria. Nature 544, 498–502 (2017). doi:10.1038/nature22058 Medline

65. C. R. Stokes, J. F. Soothill, M. W. Turner, Immune exclusion is a function of IgA. Nature 255, 745–746 (1975). doi:10.1038/255745a0 Medline

23

Page 24: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

66. R. C. Williams, R. J. Gibbons, Inhibition of bacterial adherence by secretory immunoglobulin A: A mechanism of antigen disposal. Science 177, 697–699 (1972). doi:10.1126/science.177.4050.697 Medline

67. Y. Ichiyoshi, P. Casali, Analysis of the structural correlates for antibody polyreactivity by multiple reassortments of chimeric human immunoglobulin heavy and light chain V segments. J. Exp. Med. 180, 885–895 (1994). doi:10.1084/jem.180.3.885 Medline

68. H. Wardemann, J. Hammersen, M. C. Nussenzweig, Human autoantibody silencing by immunoglobulin light chains. J. Exp. Med. 200, 191–199 (2004). doi:10.1084/jem.20040818 Medline

69. R. Mußmann, L. Du Pasquier, E. Hsu, Is Xenopus IgX an analog of IgA? Eur. J. Immunol. 26, 2823–2830 (1996). doi:10.1002/eji.1830261205 Medline

70. Y. A. Zhang, I. Salinas, J. Li, D. Parra, S. Bjork, Z. Xu, S. E. LaPatra, J. Bartholomew, J. O. Sunyer, IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat. Immunol. 11, 827–835 (2010). doi:10.1038/ni.1913 Medline

71. C. Martinoli, A. Chiavelli, M. Rescigno, Entry route of Salmonella typhimurium directs the type of induced immune response. Immunity 27, 975–984 (2007). doi:10.1016/j.immuni.2007.10.011 Medline

72. V. J. Craig, I. Arnold, C. Gerke, M. Q. Huynh, T. Wündisch, A. Neubauer, C. Renner, S. Falkow, A. Müller, Gastric MALT lymphoma B cells express polyreactive, somatically mutated immunoglobulins. Blood 115, 581–591 (2010). doi:10.1182/blood-2009-06-228015 Medline

73. I. Isnardi, Y.-S. Ng, I. Srdanovic, R. Motaghedi, S. Rudchenko, H. von Bernuth, S.-Y. Zhang, A. Puel, E. Jouanguy, C. Picard, B.-Z. Garty, Y. Camcioglu, R. Doffinger, D. Kumararatne, G. Davies, J. I. Gallin, S. Haraguchi, N. K. Day, J.-L. Casanova, E. Meffre, IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans. Immunity 29, 746–757 (2008). doi:10.1016/j.immuni.2008.09.015 Medline

74. S. Yurasov, H. Wardemann, J. Hammersen, M. Tsuiji, E. Meffre, V. Pascual, M. C. Nussenzweig, Defective B cell tolerance checkpoints in systemic lupus erythematosus. J. Exp. Med. 201, 703–711 (2005). doi:10.1084/jem.20042251 Medline

75. J. F. Scheid, H. Mouquet, B. Ueberheide, R. Diskin, F. Klein, T. Y. K. Oliveira, J. Pietzsch, D. Fenyo, A. Abadir, K. Velinzon, A. Hurley, S. Myung, F. Boulad, P. Poignard, D. R. Burton, F. Pereyra, D. D. Ho, B. D. Walker, M. S. Seaman, P. J. Bjorkman, B. T. Chait, M. C. Nussenzweig, Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333, 1633–1637 (2011). doi:10.1126/science.1207227 Medline

76. B. F. Haynes, J. Fleming, E. W. St Clair, H. Katinger, G. Stiegler, R. Kunert, J. Robinson, R. M. Scearce, K. Plonk, H. F. Staats, T. L. Ortel, H. X. Liao, S. M. Alam, Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science 308, 1906–1908 (2005). doi:10.1126/science.1111781 Medline

77. T. Tiller, C. E. Busse, H. Wardemann, Cloning and expression of murine Ig genes from single B cells. J. Immunol. Methods 350, 183–193 (2009). doi:10.1016/j.jim.2009.08.009 Medline

78. K. Smith, L. Garman, J. Wrammert, N.-Y. Zheng, J. D. Capra, R. Ahmed, P. C. Wilson, Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat. Protoc. 4, 372–384 (2009). doi:10.1038/nprot.2009.3 Medline

24

Page 25: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

79. X. Brochet, M. P. Lefranc, V. Giudicelli, IMGT/V-QUEST: The highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 36, W503–W508 (2008). doi:10.1093/nar/gkn316 Medline

80. V. Giudicelli, X. Brochet, M. P. Lefranc, IMGT/V-QUEST: IMGT standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences. Cold Spring Harb. Protoc. 2011, 695–715 (2011). Medline

81. Q. Wang, G. M. Garrity, J. M. Tiedje, J. R. Cole, Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007). doi:10.1128/AEM.00062-07 Medline

82. W. Walters, E. R. Hyde, D. Berg-Lyons, G. Ackermann, G. Humphrey, A. Parada, J. A. Gilbert, J. K. Jansson, J. G. Caporaso, J. A. Fuhrman, A. Apprill, R. Knight, Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, 00009-15 (2016) doi:10.1128/mSystems.00009-15

83. J. G. Caporaso, C. L. Lauber, W. A. Walters, D. Berg-Lyons, J. Huntley, N. Fierer, S. M. Owens, J. Betley, L. Fraser, M. Bauer, N. Gormley, J. A. Gilbert, G. Smith, R. Knight, Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012). doi:10.1038/ismej.2012.8 Medline

84. J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Peña, J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T. Kelley, D. Knights, J. E. Koenig, R. E. Ley, C. A. Lozupone, D. McDonald, B. D. Muegge, M. Pirrung, J. Reeder, J. R. Sevinsky, P. J. Turnbaugh, W. A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, R. Knight, QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010). doi:10.1038/nmeth.f.303 Medline

85. J. Zhang, K. Kobert, T. Flouri, A. Stamatakis, PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014). doi:10.1093/bioinformatics/btt593 Medline

86. J. G. Caporaso, K. Bittinger, F. D. Bushman, T. Z. DeSantis, G. L. Andersen, R. Knight, PyNAST: A flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010). doi:10.1093/bioinformatics/btp636 Medline

87. R. C. Edgar, Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010). doi:10.1093/bioinformatics/btq461 Medline

88. D. McDonald, M. N. Price, J. Goodrich, E. P. Nawrocki, T. Z. DeSantis, A. Probst, G. L. Andersen, R. Knight, P. Hugenholtz, An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012). doi:10.1038/ismej.2011.139 Medline

89. F. Meyer, D. Paarmann, M. D’Souza, R. Olson, E. M. Glass, M. Kubal, T. Paczian, A. Rodriguez, R. Stevens, A. Wilke, J. Wilkening, R. A. Edwards, The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386 (2008). doi:10.1186/1471-2105-9-386 Medline

90. C. J. Henry Dunand, P. E. Leon, M. Huang, A. Choi, V. Chromikova, I. Y. Ho, G. S. Tan, J. Cruz, A. Hirsh, N.-Y. Zheng, C. E. Mullarkey, F. A. Ennis, M. Terajima, J. J. Treanor, D. J. Topham, K. Subbarao, P. Palese, F. Krammer, P. C. Wilson, Both neutralizing and non-neutralizing human H7N9 influenza vaccine-induced monoclonal antibodies confer protection. Cell Host Microbe 19, 800–813 (2016). doi:10.1016/j.chom.2016.05.014 Medline

25

Page 26: Supplementary Materials for · 2017-09-27 · via a natural, exogenous antigen-independent mechanism. Cells that undergo IgA selection upregulate CCR6, which facilitates receipt of

91. C. J. Henry Dunand, P. E. Leon, K. Kaur, G. S. Tan, N.-Y. Zheng, S. Andrews, M. Huang, X. Qu, Y. Huang, M. Salgado-Ferrer, I. Y. Ho, W. Taylor, R. Hai, J. Wrammert, R. Ahmed, A. García-Sastre, P. Palese, F. Krammer, P. C. Wilson, Preexisting human antibodies neutralize recently emerged H7N9 influenza strains. J. Clin. Invest. 125, 1255–1268 (2015). doi:10.1172/JCI74374 Medline

92. C. Dreyfus, N. S. Laursen, T. Kwaks, D. Zuijdgeest, R. Khayat, D. C. Ekiert, J. H. Lee, Z. Metlagel, M. V. Bujny, M. Jongeneelen, R. van der Vlugt, M. Lamrani, H. J. W. M. Korse, E. Geelen, Ö. Sahin, M. Sieuwerts, J. P. J. Brakenhoff, R. Vogels, O. T. W. Li, L. L. M. Poon, M. Peiris, W. Koudstaal, A. B. Ward, I. A. Wilson, J. Goudsmit, R. H. E. Friesen, Highly conserved protective epitopes on influenza B viruses. Science 337, 1343–1348 (2012). doi:10.1126/science.1222908 Medline

93. J. Sui, W. C. Hwang, S. Perez, G. Wei, D. Aird, L. M. Chen, E. Santelli, B. Stec, G. Cadwell, M. Ali, H. Wan, A. Murakami, A. Yammanuru, T. Han, N. J. Cox, L. A. Bankston, R. O. Donis, R. C. Liddington, W. A. Marasco, Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16, 265–273 (2009). doi:10.1038/nsmb.1566 Medline

94. D. Corti, J. Voss, S. J. Gamblin, G. Codoni, A. Macagno, D. Jarrossay, S. G. Vachieri, D. Pinna, A. Minola, F. Vanzetta, C. Silacci, B. M. Fernandez-Rodriguez, G. Agatic, S. Bianchi, I. Giacchetto-Sasselli, L. Calder, F. Sallusto, P. Collins, L. F. Haire, N. Temperton, J. P. M. Langedijk, J. J. Skehel, A. Lanzavecchia, A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011). doi:10.1126/science.1205669 Medline

26