supplement of summertime aerosol volatility measurements ......2 figure s1. particle mass loss...

12
Supplement of Atmos. Chem. Phys., 19, 10205–10216, 2019 https://doi.org/10.5194/acp-19-10205-2019-supplement © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement of Summertime aerosol volatility measurements in Beijing, China Weiqi Xu et al. Correspondence to: Yele Sun ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Upload: others

Post on 29-Apr-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supplement of Summertime aerosol volatility measurements ......2 Figure S1. Particle mass loss within the thermal denuder in summer of (a) 2017 and (b) 2018. Figure S2. Mass spectra

Supplement of Atmos. Chem. Phys., 19, 10205–10216, 2019https://doi.org/10.5194/acp-19-10205-2019-supplement© Author(s) 2019. This work is distributed underthe Creative Commons Attribution 4.0 License.

Supplement of

Summertime aerosol volatility measurements in Beijing, ChinaWeiqi Xu et al.

Correspondence to: Yele Sun ([email protected])

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Page 2: Supplement of Summertime aerosol volatility measurements ......2 Figure S1. Particle mass loss within the thermal denuder in summer of (a) 2017 and (b) 2018. Figure S2. Mass spectra

2

Figure S1. Particle mass loss within the thermal denuder in summer of (a) 2017 and (b) 2018.

Figure S2. Mass spectra of OA factor resolved by (a) MSambient and (c) MSambient+TD using ME-2 analysis. (b) shows a comparison of

time series of OA factor resolved from MSambient and MSambient+TD in summer 2018.

1.0

0.9

0.8

0.7

0.6

0.5TD tr

ansm

issi

on e

ffici

ency

300250200150100500TD temperature(º)

1.0

0.9

0.8

0.7

0.6

0.5

300250200150100500

(a) (b)

86420

86420

1612840

% o

f Tot

al S

igna

l

20151050

120110100908070605040302010m/z (amu)

12840

5/21 5/26 5/31 6/5 6/10 6/15 6/20 6/25Date & Time

20151050

20151050

Mas

s C

onc.

(µg/

m3 )

1086420

86420

86420

1612840

% o

f Tot

al S

igna

l

2520151050

120110100908070605040302010m/z (amu)

H/C: 1.82; O/C: 0.18; N/C: 0.01; OM/OC: 1.40

H/C: 1.76; O/C: 0.28; N/C: 0.01; OM/OC: 1.53

H/C: 1.39; O/C: 0.79; N/C: 0.02; OM/OC: 2.19

H/C: 1.30; O/C: 1.20; N/C: 0.04; OM/OC: 2.71

CxHy+ CxHyO1

+ CxHyO2+ HyO1

+CxHyNp+ CxHyOzNp +

HOA

COA

LO-OOA

MO-OOA

Bypass-Only Bypass+TD

H/C: 1.83; O/C: 0.17; N/C: 0.01; OM/OC: 1.39

H/C: 1.76; O/C: 0.27; N/C: 0.00; OM/OC: 1.52

H/C: 1.44; O/C: 0.76; N/C: 0.02; OM/OC: 2.15

H/C: 1.13; O/C: 1.30; N/C: 0.03; OM/OC: 2.84

(a) (b) (c)

Page 3: Supplement of Summertime aerosol volatility measurements ......2 Figure S1. Particle mass loss within the thermal denuder in summer of (a) 2017 and (b) 2018. Figure S2. Mass spectra

3

Figure S3. Correlation between OA factors and tracers in summer 2018.

Figure S4. Thermograms of aerosol species measured by TD-HR-AMS and TD-SP-AMS in 2017.

1.00.80.60.40.20.0

C6H

6O2+

C2H

4O2+

C2H

3O+

C3H

5O+

C6H

10O

+

C3H

7+

C4H

8+

C4H

7+

C4H

9+

C8H

5+

CH

4N+

C2H

6N+

C3H

8N+

C2H

2O2+

CH

3SO

+

C3H

5O2+

C5H

8O+

CO

2+

SO2

O3

NO

2

CO O

x

SO4

NO

3

NH

4

SIA

Chl BC

1.00.80.60.40.20.0

1.00.80.60.40.20.0

R2

1.00.80.60.40.20.0

HOA

COA

LO-OOA

MO-OOA

1.0

0.8

0.6

0.4

0.2

0.03002001000

1.0

0.8

0.6

0.4

0.2

0.03002001000

1.0

0.8

0.6

0.4

0.2

0.03002001000

1.0

0.8

0.6

0.4

0.2

0.0

Mas

s fra

ctio

n re

mai

ning

3002001000

1.0

0.8

0.6

0.4

0.2

0.03002001000

TD temperature(º)

Org SO4 NO3

NH4 Chl

HR-AMS SP-AMS

Page 4: Supplement of Summertime aerosol volatility measurements ......2 Figure S1. Particle mass loss within the thermal denuder in summer of (a) 2017 and (b) 2018. Figure S2. Mass spectra

4

Figure S5. Thermograms of aerosol species and OA factors during four different time periods in 2018.

Figure S6. Thermograms of four different ion families in summer 2018.

1.0

0.8

0.6

0.4

0.2

0.0

250200150100500

TD temperature(º)

00:00-06:00 06:00-12:00 12:00-18:00 18:00-24:00

LO-OOA

1.0

0.8

0.6

0.4

0.2

0.0

250200150100500

00:00-06:00 06:00-12:00 12:00-18:00 18:00-24:00

COA

1.0

0.8

0.6

0.4

0.2

0.0

250200150100500

00:00-06:00 06:00-12:00 12:00-18:00 18:00-24:00

HOA

1.0

0.8

0.6

0.4

0.2

0.0

250200150100500

00:00-06:00 06:00-12:00 12:00-18:00 18:00-24:00

Chl

1.0

0.8

0.6

0.4

0.2

0.0

Mas

s fra

ctio

n re

mai

ning

250200150100500

00:00-06:00 06:00-12:00 12:00-18:00 18:00-24:00

NH4

1.0

0.8

0.6

0.4

0.2

0.0

250200150100500

00:00-06:00 06:00-12:00 12:00-18:00 18:00-24:00

NO3

1.0

0.8

0.6

0.4

0.2

0.0

250200150100500

00:00-06:00 06:00-12:00 12:00-18:00 18:00-24:00

SO4

1.0

0.8

0.6

0.4

0.2

0.0

250200150100500

00:00-06:00 06:00-12:00 12:00-18:00 18:00-24:00

Org

1.0

0.8

0.6

0.4

0.2

0.0

250200150100500

00:00-06:00 06:00-12:00 12:00-18:00 18:00-24:00

MO-OOA

1.0

0.8

0.6

0.4

0.2

0.0

Mas

s fra

ctio

n re

mai

ning

250200150100500

TD temperature(º)

1.0

0.8

0.6

0.4

0.2

0.0

250200150100500

CxHyO+

CxHyOz+

CxHy+

CxHyNz+

CxHyONz+

Page 5: Supplement of Summertime aerosol volatility measurements ......2 Figure S1. Particle mass loss within the thermal denuder in summer of (a) 2017 and (b) 2018. Figure S2. Mass spectra

5

Figure S7. Thermograms of OA and OA factors measured by TD-HR-AMS in 2018. The solid circles represent the measurements

and the error bars are one standard deviation. The black lines refer to the best-predicted MFR using the algorithm of Karnezi et al.

(2014)

Figure S8. Predicted absolute OA and four OA factors concentrations at different volatility bins in 2018.

300250200150100500Temperature(º)

1.0

0.8

0.6

0.4

0.2

0.0Mas

s fra

ctio

n re

mai

ning OA

300250200150100500Temperature(º)

1.0

0.8

0.6

0.4

0.2

0.0Mas

s fra

ctio

n re

mai

ning HOA

300250200150100500Temperature(º)

1.0

0.8

0.6

0.4

0.2

0.0Mas

s fra

ctio

n re

mai

ning COA

300250200150100500Temperature(º)

1.0

0.8

0.6

0.4

0.2

0.0Mas

s fra

ctio

n re

mai

ning MO-OOA

300250200150100500Temperature(º)

1.0

0.8

0.6

0.4

0.2

0.0Mas

s fra

ctio

n re

mai

ning LO-OOA

4

3

2

1

0

Con

c. (μ

g m

-3)

-5 -4 -3 -2 -1 0 1 2

C* (μg m

-3)

(a) OA1.0

0.8

0.6

0.4

0.2

0.0

Con

c. (μ

g m

-3)

-5 -4 -3 -2 -1 0 1 2

C* (μg m

-3)

(b) HOA1.0

0.8

0.6

0.4

0.2

0.0

Con

c. (μ

g m

-3)

-5 -4 -3 -2 -1 0 1 2

C* (μg m

-3)

(c) COA

2.0

1.5

1.0

0.5

0.0

Con

c. (μ

g m

-3)

-5 -4 -3 -2 -1 0 1 2

C* (μg m

-3)

(d) LO-OOA2.0

1.5

1.0

0.5

0.0

Con

c. (μ

g m

-3)

-5 -4 -3 -2 -1 0 1 2

C* (μg m

-3)

(e) MO-OOA

Page 6: Supplement of Summertime aerosol volatility measurements ......2 Figure S1. Particle mass loss within the thermal denuder in summer of (a) 2017 and (b) 2018. Figure S2. Mass spectra

6

Figure S9. Average diurnal cycles of Org/rBC ratio, and mass concentrations of ambient and BC-containing OA, POA and SOA.

Figure S10. Thermograms of OA, POA and SOA factors measured by (a,b,c) TD-HR-AMS and (d,e,f) TD-SP-AMS in 2017. The

solid circles represent the measurements, and the error bars are one standard deviation. The black lines refer to the best-predicted

MFR using the algorithm of Karnezi et al. (2014)

16

12

8

4

0Mas

s C

onc.

(µg

m-3

)

24201612840

8

6

4

2

0

24201612840

10

8

6

4

2

0

24201612840

Hours of day

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Org/rBC

HR-AMS SP-AMS OAexCOA in ambient Org/rBC

OA POA SOA

1.0

0.8

0.6

0.4

0.2

0.0Mas

s fra

ctio

n re

mai

ning

300250200150100500Temperature(º)

POA

POAexCOA

300250200150100500Temperature(º)

1.0

0.8

0.6

0.4

0.2

0.0Mas

s fra

ctio

n re

mai

ning OA

1.0

0.8

0.6

0.4

0.2

0.0Mas

s fra

ctio

n re

mai

ning

300250200150100500Temperature(º)

OA 1.0

0.8

0.6

0.4

0.2

0.0Mas

s fra

ctio

n re

mai

ning

300250200150100500Temperature(º)

POA

1.0

0.8

0.6

0.4

0.2

0.0Mas

s fra

ctio

n re

mai

ning

300250200150100500Temperature(º)

SOA

1.0

0.8

0.6

0.4

0.2

0.0Mas

s fra

ctio

n re

mai

ning

300250200150100500Temperature(º)

SOA

(a) (b) (c)

(d) (e) (f)

Page 7: Supplement of Summertime aerosol volatility measurements ......2 Figure S1. Particle mass loss within the thermal denuder in summer of (a) 2017 and (b) 2018. Figure S2. Mass spectra

7

Figure S11. Thermograms and predicted volatility distributions of four OA factors measured by TD-HR-AMS in 2017. The solid

circles represent the measurements and the error bars are one standard deviation. The black lines refer to the best-predicted MFR

using the algorithm of Karnezi et al. (2014). The error bars in bottom panels are the uncertainties derived using the approach of

Karnezi et al. (2014). Predicted volatility distributions of four OA factors in 2018 are also shown for comparisons.

1.0

0.8

0.6

0.4

0.2

0.0

mas

s fra

ctio

n

-5 -4 -3 -2 -1 0 1 2

log10C* (µg m-3)

HOA Summer2017 Summer2018

1.0

0.8

0.6

0.4

0.2

0.0Mas

s fra

ctio

n re

mai

ning

300250200150100500Temperature(º)

HOA 1.0

0.8

0.6

0.4

0.2

0.0Mas

s fra

ctio

n re

mai

ning

300250200150100500Temperature(º)

COA

1.0

0.8

0.6

0.4

0.2

0.0

mas

s fra

ctio

n

-5 -4 -3 -2 -1 0 1 2

log10C* (µg m-3)

COA Summer2017 Summer2018

1.0

0.8

0.6

0.4

0.2

0.0

mas

s fra

ctio

n

-5 -4 -3 -2 -1 0 1 2

log10C* (µg m-3)

LO-OOA Summer2017 Summer2018

1.0

0.8

0.6

0.4

0.2

0.0Mas

s fra

ctio

n re

mai

ning

300250200150100500Temperature(º)

LO-OOA

1.0

0.8

0.6

0.4

0.2

0.0

mas

s fra

ctio

n

-5 -4 -3 -2 -1 0 1 2

log10C* (µg m-3)

MO-OOA Summer2017 Summer2018

1.0

0.8

0.6

0.4

0.2

0.0Mas

s fra

ctio

n re

mai

ning

300250200150100500Temperature(º)

MO-OOA

Page 8: Supplement of Summertime aerosol volatility measurements ......2 Figure S1. Particle mass loss within the thermal denuder in summer of (a) 2017 and (b) 2018. Figure S2. Mass spectra

8

Table S1. Average ambient concentrations, threshold concentrations for PM species and OA factors and corresponding

fraction of the data above the threshold.

Average mass concentration (µg m−3)

Threshold concentration (µg m−3)

% of measurements above threshold

HR-AMS2018 Org 12.7 1.5 99.6% SO4 6.5 0.4 99.7% NO3 7.4 0.06 99.6% NH4 4.3 0.16 99.6% Chl 0.18 0.02 98.6% HOA 1.7 0.05 97.6% COA 2.0 0.04 97.6% LO-OOA 5.8 0.4 97.2% MO-OOA 3.4 0.5 98.5% HR-AMS2017 Org 9.8 2.98 97.6% POA 3.4 0.48 99.5% HOA 1.0 0.19 98.9% COA 2.4 0.16 96.4% SOA 6.4 1.31 98.2% LO-OOA 3.8 1.01 97.6% MO-OOA 2.6 0.12 98.6% SP-AMS2017 Org 5.5 1.3 98.6% POA 2.2 0.41 96.7% SOA 3.3 0.81 97.7%

Page 9: Supplement of Summertime aerosol volatility measurements ......2 Figure S1. Particle mass loss within the thermal denuder in summer of (a) 2017 and (b) 2018. Figure S2. Mass spectra

9

Table S2. Average peak diameters of SOA and POA in summer of 2017 and 2018.

Average peak diameters (nm)

HR-AMS2018 OA 536

POA 485 SOA 600

HR-AMS2017 OA 371

POA 350 SOA 380

SP-AMS2017 OA 235

POA 150 SOA 298

Page 10: Supplement of Summertime aerosol volatility measurements ......2 Figure S1. Particle mass loss within the thermal denuder in summer of (a) 2017 and (b) 2018. Figure S2. Mass spectra

10

Table S3. Best fit OA volatility parameter values in previous field studies.

Species Volatility distribution ∆H am

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

OAa 0.2 0.2 0.3 0.3 80 1

OAa 0.2 0.2 0.3 0.3 80 0.05

HOAb 0.13 0.14 0.08 0.02 0.06 0.57 100 1

COAb 0.13 0.15 0.07 0.2 0.08 0.37 100 1

MOAb 0.03 0.03 0.05 0.28 0.42 0.19 100 1

SV-OOAb 0.06 0.14 0.15 0.13 0.18 0.34 100 1

LV-OOAb 0.2 0.24 0.28 0.25 0.03 100 1

HOAc 0.11 0.09 0.07 0.12 0.11 0.5 100 1

COAc 0.12 0.11 0.14 0.42 0.11 0.1 100 1

BBOAc 0.2 0.09 0.08 0.13 0.09 0.41 100 1

OOAc 0.3 0.09 0.07 0.09 0.1 0.35 100 1

OAd 0.3 0.08 0.12 0.12 0.12 0.26 100 1

OOAd 0.41 0.11 0.09 0.08 0.11 0.2 100 1

HOAd 0.3 0.07 0.14 0.21 0.17 0.11 100 1

BBOAd 0.1 0.1 0.15 0.15 0.14 0.36 100 1

COAd 0.1 0.52 0.08 0.05 0.07 0.18 100 1

OAe 0.14 0.05 0.06 0.15 0.29 0.31 100 0.5

OAf 0.14 0.06 0.08 0.12 0.28 0.32 100 0.5

MO-OOAg 0.44 0.14 0.42 89 1

LO-OOAg 0.27 0.19 0.54 58 1

isoprene-OAg 0.41 0.16 0.43 63 1

BBOAg 0.47 0.29 0.24 55 1

OAg 0.54 0.19 0.27 86 1

OAh 0.06 0.06 0.06 0.07 0.07 0.08 0.10 0.16 0.34 100 1

OAh 0.27 0.11 0.11 0.12 0.15 0.24 100 1

OAh 0.04 0.04 0.04 0.04 0.05 0.06 0.1 0.2 0.43 100 0.1

OAh 0.21 0.07 0.09 0.10 0.18 0.35 100 0.1 a Sampling site is Finokalia, and the sampling time is May, 2008. (Lee et al., 2010). This estimation use the transfer model of Riipinen et al.

(2010) with least-squares minimization. Assumed a priori values for the effective vaporization enthalpy with 80 KJ mol-1 and the mass

accommodation coefficient with 1/0.05. b and C Sampling site is Paris, and the sampling time is July, 2009 and January/February 2010, respectively(Paciga et al., 2016). This

estimation use the transfer model of Riipinen et al. (2010), and the uncertainties are calculated by Karnezi et al. (2014). Assumed a priori

values for the effective vaporization enthalpy with 100 KJ mol-1 and the mass accommodation coefficient with 1. d Sampling site is Athens, and the sampling time is January/February 2013 (Louvaris et al., 2017). This estimation use the transfer model

Page 11: Supplement of Summertime aerosol volatility measurements ......2 Figure S1. Particle mass loss within the thermal denuder in summer of (a) 2017 and (b) 2018. Figure S2. Mass spectra

11

of Riipinen et al. (2010), and the uncertainties are calculated by Karnezi et al. (2014). Assumed a priori values for the effective

vaporization enthalpy with 100 KJ mol-1 and the mass accommodation coefficient with 1. e and f Sampling site is Centreville and Raleigh, and the sampling time is June/July and Nov./Oct. 2013, respectively (Saha et al., 2017). This

estimation use the volatility parameter extraction framework(Saha et al., 2015) to extract a set of volatility parameter (C∗, Hvap, γe) values

via inversion of dual-TD data using an evaporation kinetics model. g Sampling site is Centreville, and the sampling time is June/July 2013 (Kostenidou et al., 2018). This estimation use the transfer model of

Riipinen et al. (2010), and the uncertainties are calculated by Karnezi et al. (2014). The enthalpy of vaporization was also estimated, while

the accommodation coefficient was assumed to be equal to unity. h Sampling site is Mexico City, and the sampling time is March/April 2006(Cappa and Jimenez, 2010)

Page 12: Supplement of Summertime aerosol volatility measurements ......2 Figure S1. Particle mass loss within the thermal denuder in summer of (a) 2017 and (b) 2018. Figure S2. Mass spectra

12

References Cappa, C. D., and Jimenez, J. L.: Quantitative estimates of the volatility of ambient organic aerosol, Atmos. Chem. Phys., 10,

5409-5424, 10.5194/acp-10-5409-2010, 2010. Karnezi, E., Riipinen, I., and Pandis, S. N.: Measuring the atmospheric organic aerosol volatility distribution: a theoretical

analysis, Atmospheric Measurement Techniques, 7, 2953-2965, 10.5194/amt-7-2953-2014, 2014. Kostenidou, E., Karnezi, E., Hite Jr, J. R., Bougiatioti, A., Cerully, K., Xu, L., Ng, N. L., Nenes, A., and Pandis, S. N.:

Organic aerosol in the summertime southeastern United States: components and their link to volatility distribution, oxidation state and hygroscopicity, Atmos. Chem. Phys., 18, 5799-5819, 10.5194/acp-18-5799-2018, 2018.

Lee, B. H., Kostenidou, E., Hildebrandt, L., Riipinen, I., Engelhart, G. J., Mohr, C., DeCarlo, P. F., Mihalopoulos, N., Prevot, A. S. H., Baltensperger, U., and Pandis, S. N.: Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008), Atmos. Chem. Phys., 10, 12149-12160, 10.5194/acp-10-12149-2010, 2010.

Louvaris, E. E., Florou, K., Karnezi, E., Papanastasiou, D. K., Gkatzelis, G. I., and Pandis, S. N.: Volatility of source apportioned wintertime organic aerosol in the city of Athens, Atmos. Environ., 158, 138-147, 10.1016/j.atmosenv.2017.03.042, 2017.

Paciga, A., Karnezi, E., Kostenidou, E., Hildebrandt, L., Psichoudaki, M., Engelhart, G. J., Lee, B.-H., Crippa, M., Prevot, A. S. H., Baltensperger, U., and Pandis, S. N.: Volatility of organic aerosol and its components in the megacity of Paris, Atmos. Chem. Phys., 16, 2013-2023, 10.5194/acp-16-2013-2016, 2016.

Riipinen, I., Pierce, J. R., Donahue, N. M., and Pandis, S. N.: Equilibration time scales of organic aerosol inside thermodenuders: Evaporation kinetics versus thermodynamics, Atmos. Environ., 44, 597-607, 10.1016/j.atmosenv.2009.11.022, 2010.

Saha, P. K., Khlystov, A., and Grieshop, A. P.: Determining Aerosol Volatility Parameters Using a “Dual Thermodenuder” System: Application to Laboratory-Generated Organic Aerosols, Aerosol Sci. Tech., 49, 620-632, 10.1080/02786826.2015.1056769, 2015.

Saha, P. K., Khlystov, A., Yahya, K., Zhang, Y., Xu, L., Ng, N. L., and Grieshop, A. P.: Quantifying the volatility of organic aerosol in the southeastern US, Atmos. Chem. Phys., 17, 501-520, 10.5194/acp-17-501-2017, 2017.