supplement of - acp...beijing, 2015 urban 6/30/2015-7/27/2015 this study beijing, china rural/remote...

26
Supplement of Atmos. Chem. Phys., 18, 5293–5306, 2018 https://doi.org/10.5194/acp-18-5293-2018-supplement © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement of Nitrate-driven urban haze pollution during summertime over the North China Plain Haiyan Li et al. Correspondence to: Qiang Zhang ([email protected]) and Kebin He ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Upload: others

Post on 26-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

Supplement of Atmos. Chem. Phys., 18, 5293–5306, 2018https://doi.org/10.5194/acp-18-5293-2018-supplement© Author(s) 2018. This work is distributed underthe Creative Commons Attribution 4.0 License.

Supplement of

Nitrate-driven urban haze pollution during summertimeover the North China PlainHaiyan Li et al.

Correspondence to: Qiang Zhang ([email protected]) and Kebin He ([email protected])

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Page 2: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

2

Text S1. Positive matrix factorization of organic aerosol 19

Positive matrix factorization (PMF) analysis was performed for 1 to 8 factors with the rotational 20

parameter (FPEAK) varying from -1 to 1 (step = 0.2) for both the Beijing and Xinxiang 21

measurements. Detailed information on how to select the PMF factors can be found in Tables S1-22

2 and Figs. S2-7. Finally, a four-factor solution with FPEAK = 0 and a three-factor solution with 23

FPEAK = 0 were chosen as the optimal solutions for Beijing and Xinxiang, respectively. The mass 24

spectra, time series, diurnal variations, and correlations with external tracers of the organic aerosol 25

(OA) factors are evaluated in Figs. S2-7. 26

27

Page 3: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

3

Table S1. Detailed investigation of the PMF solutions of the Beijing measurements. 28

Factor

number FPEAK Q/Qexp Solution Description

1 0 1.11 Too few factors, large residuals at time periods and

key m/z’s

2 0 0.73 Too few factors, large residuals at time periods and

key m/z’s

3 0 0.69

Too few factors (mixed HOA and COA, SV-OOA,

and LV-OOA). Factors are mixed to some extent

based on the time series and spectra.

4 0 0.67

Optimum choices for PMF factors (HOA, COA,

SV-OOA, and LV-OOA). Time series and diurnal

variations of the PMF factors are consistent with

the external tracers. The spectra of the four factors

are consistent with the source spectra in the AMS

spectra database.

5-8 0 0.65-0.61

Factor split. For example, when factor num. = 5, HOA

was split into two factors with similar spectra but

different time series. When factor num. = 6, there is

an extra split factor from SV-OOA.

29

30

Page 4: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

4

Table S2. Detailed investigation of the PMF solutions of the Xinxiang measurements. 31

Factor

number FPEAK Q/Qexp Solution Description

1 0 1.24 Too few factors, large residuals at time periods and

key m/z’s

2 0 1.02

Too few factors (mixed HOA and SV-OOA, and LV-

OOA). Factors are mixed to some extent based on the

time series and spectra.

3 0 0.95

Optimum choices for PMF factors (HOA, SV-

OOA, and LV-OOA). Time series and diurnal

variations of the PMF factors are consistent with

the external tracers. The spectra of the three

factors are consistent with the source spectra in the

AMS spectra database.

4-8 0 0.84-0.92

Factor split. For example, when factor num. = 5, HOA

was split into two factors with similar spectra but

different time series. When factor num. = 6, there is

an extra split factor from SV-OOA.

32

Page 5: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

5

Table S3-1. Summary of the location, sampling period, and references of field measurements during summertime discussed in this study. 33

Dataset Name Site type Sampling period References

Beijing, 2006 urban 7/9/2006-7/21/2006 Sun et al. (2010)

Beijing, 2008 urban 7/24/2008-9/20/2008 Huang et al. (2010)

Beijing, 2011 urban 6/26/2011-8/28/2011 Sun et al. (2012)

Beijing, 2012 urban 7/29/2012-8/29/2012 Hu et al. (2017)

Beijing, 2015 urban 6/30/2015-7/27/2015 this study

Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011)

Xinxiang, China urban 8/8/2017-8/25/2017 this study

Xinzhou, China urban downwind 7/17/2014-9/5/2014 Wang et al. (2016)

Xianghe, China urban downwind 6/1/2013-6/30/2013 Sun et al. (2016)

Nanjing, China urban 6/1/2013-6/15/2013 Zhang et al. (2015)

Shanghai, China urban 5/15/2010-6/10/2010 Huang et al. (2012)

Jiaxing, China urban downwind 6/29/2010-7/15/2010 Huang et al. (2013)

Back Garden, China rural/remote 7/12/2006-7/30/2006 Xiao et al. (2011)

Hongkong, China urban downwind 9/1/2011-9/29/2011 Li et al. (2015)

Tokyo, Japan, 2003 urban 7/24/2003-8/13/2003 Takegawa, et al. (2006)

Tokyo, Japan, 2004 urban 7/26/2004-8/15/2004 Miyakawa et al. (2008)

Tokyo, Japan, 2008 urban 7/28/2008-8/29/2008 Xing et al. (2011)

Wakayama, Japan rural/remote 8/20/2010-8/30/2010 Han et al. (2014)

Gwangju, Korea urban 7/23/2012–8/6/2012 Park et al. (2013)

BNL, NY rural/remote 7/15/2011-8/15/2011 Zhou et al. (2016)

Page 6: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

6

Queens, NY, 2001 urban 6/30/2001-8/5/2001 Drewnick et al., (2010)

Queens, NY, 2009 urban 7/13/2009-8/3/2009 Sun et al. (2011)

Pinnacle State Park, NY rural/remote 7/18/2004-8/6/2004 Bae et al. (2007)

Look Rock, TN rural/remote 6/1/2013–9/21/2013 Budisulistiorini et al. (2016)

Centreville, AL rural/remote 6/1/2013-7/15/2013 Xu et al. (2015)

Yorkville, GA rural/remote 6/26/2012-7/20/2012 Xu et al. (2015)

Atlanta, GA urban 6/20/2012-9/21/2012 Budisulistiorini et al. (2016)

Rocky Park, CO rural/remote 7/2/2010-8/31/2010 Schurman et al. (2015)

Sacramento, CA urban downwind 6/2/2010-6/28/2010 Setyan et al. (2012)

Riverside, CA urban 7/15/2005-8/15/2005 Docherty et al. (2011)

London, UK urban downwind 7/30/2003-8/6/2003 Cubison et al. (2006)

Paris, France urban downwind 7/1/2009-7/31/2009 Crippa et al. (2013)

Zurich, Switzerland urban downwind 7/14/2005-8/4/2005 Lanz et al. (2010)

Melpitz, Germany rural/remote 5/23/2008-6/9/2008 Poulain et al. (2011)

Prague, Czech Republic urban downwind 6/20/2012-7/31/2012 Kubelova et al. (2015)

Mt. Cimone, Italy rural/remote 6/11/2012-7/11/2012 Rinaldi et al. (2015)

Crete, Greece rural/remote 8/16/2012-9/31/2012 Bougiatioti et al. (2014)

Patras, Greece urban downwind 6/8/2012-6/27/2012 Kostenidou et al. (2015)

Athens, Greece urban downwind 7/12/2012-7/26/2012 Kostenidou et al. (2015)

Hyytiälä, Finland rural/remote 7/12/2012-8/12/2010 Corrigan et al. (2013)

34

Page 7: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

7

Table S3-2. Summary of the average mass concentrations of aerosol species in submicron particles during the summer observations 35

discussed in this study (unit: μg m-3). 36

Dataset Name PM type PM Conc. Org Conc. SO4 Conc. NO3 Conc. NH4 Conc. Chl Conc. BC Conc.

Beijing, 2006 NR-PM1 80.0 28.0 20.0 17.6 12.8 1.1

Beijing, 2008 PM1 63.1 23.9 16.8 10.0 10.0 0.5 1.9

Beijing, 2011 NR-PM1 50.0 20.0 9.0 12.5 8.0 0.5

Beijing, 2012 PM1 37.5 12.5 9.7 6.3 5.4 0.3 3.2

Beijing, 2015 PM1 35.0 12.2 6.3 8.4 4.3 0.4 3.1

Beijing, China NR-PM1 26.2 9.8 7.8 2.7 5.2 0.5

Xinxiang, China PM1 64.2 18.0 14.4 16.5 12.2 0.6 2.3

Xinzhou, China PM1 35.4 11.7 11.5 5.1 4.2 0.5 2.4

Xianghe, China PM1 73.0 28.5 13.1 14.6 8.8 2.9 5.1

Nanjing, China PM1 38.5 15.0 4.6 8.9 6.2 0.4 3.1

Shanghai, China PM1 29.2 8.4 9.7 4.8 3.9 0.5 2.0

Jiaxing, China PM1 32.9 10.6 5.9 8.3 4.1 1.0 3.0

Back Garden, China NR-PM1 30.0 13.2 11.4 1.5 3.6 0.3

Hongkong, China NR-PM1 15.6 4.1 8.7 0.4 2.4 0.01

Tokyo, Japan, 2003 NR-PM1 12.7 5.7 3.2 1.0 1.8 0.09

Tokyo, Japan, 2004 PM1 33.0 14.5 9.1 1.5 4.0 0.3 3.6

Tokyo, Japan, 2008 NR-PM1 10.6 5.6 3.4 0.2 1.4 0.05

Wakayama, Japan NR-PM1 4.0 1.8 1.6 0.04 0.5 0.01

Gwangju, Korea NR-PM1 8.7 4.9 2.4 0.4 0.9 0.06

Page 8: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

8

BNL, NY PM1 12.6 8.1 3.0 0.2 1.0 0.01 0.1

Queens, NY, 2001 NR-PM1 10.6 2.7 3.9 0.8 1.4 0.03

Queens, NY, 2009 PM1 11.7 6.3 2.8 0.5 1.3 0.03 0.7

Pinnacle State Park, NY NR-PM1 12.3 5.7 4.9 0.4 1.3 0.01

Look Rock, TN NR-PM1 8.4 5.3 2.1 0.3 0.7 0.01

Centreville, AL NR-PM1 7.4 5.0 1.9 0.1 0.4 0.01

Yorkville, GA NR-PM1 16.1 11.2 3.5 0.3 1.1 0.03

Atlanta, GA NR-PM1 8.8 6.1 1.5 0.4 0.7 0.01

Rocky Park, CO NR-PM1 5.1 3.8 0.8 0.2 0.2 0.05

Sacramento, CA PM1 3.0 2.4 0.3 0.1 0.1 0.003 0.05

Riverside, CA PM1 20.5 9.1 3.5 4.4 2.5 0.09 0.9

London, UK NR-PM1 5.4 2.5 1.7 0.5 0.7 0.04

Paris, France PM1 4.5 2.2 1.3 0.2 0.3 0.02 0.6

Zurich, Switzerland NR-PM1 9.6 6.5 1.4 0.8 0.1

Melpitz, Germany PM1 11.6 6.8 2.5 0.6 0.9 0.02 0.6

Prague, Czech Republic NR-PM1 8.3 4.2 2.0 0.8 1.2 0.1

Mt. Cimone, Italy NR-PM1 4.5 2.8 0.9 0.3 0.4 0.05

Crete, Greece PM1 9.2 3.2 4.0 0.2 1.3 0.6

Patras, Greece PM1 8.6 3.8 3.3 0.1 0.9 0.5

Athens, Greece PM1 14.2 6.6 5.3 0.2 1.4 0.7

Hyytiälä, Finland PM1 6.7 4.4 1.3 0.2 0.4 0.3

37

Page 9: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

9

38

Figure S1. Scatter plots of (a) the mass concentrations of NR-PM1 plus BC vs. total PM1 measured 39

by PM-714 in Beijing, and (b) the mass concentrations of NR-PM1 plus BC vs. total PM2.5 40

measured by TEOM in Xinxiang. 41

250

200

150

100

50

0

NR

-PM

1+

BC

g/m

3)

250200150100500

TEOM PM2.5 (µg/m3)

r2 = 0.85

Slope = 0.835 ± 0.01

(b)120

100

80

60

40

20

0

NR

-PM

1+

BC

g/m

3)

806040200

PM-714 PM1 (µg/m3)

r2 = 0.59

Slope = 1.276 ± 0.02

(a)

Page 10: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

10

42

43

Figure S2. Summary of the key diagnostic plots of the chosen 4-factor solution from PMF analysis 44

of the Beijing measurements. 45

46

1.1

1.0

0.9

0.8

0.7

Q/Q

exp

ecte

d

87654321

P

Q for fPeak 0 Current Solution

(a) 0.72

0.70

0.68

0.66

0.64

0.62

0.60

Q/Q

exp

ecte

d

-1.0 -0.5 0.0 0.5 1.0

fPeak or seed

Q for p 4 Current Solution

(b)

1.0

0.8

0.6

0.4

0.2

0.0

R,

tse

rie

s

1.00.80.60.40.20.0

R, profiles

1_2

1_3

2_3

1_42_4

3_4

(c)

20

15

10

5

0To

tal M

ass (

µg

m-3

)

7/2/2015 7/7/2015 7/12/2015 7/17/2015 7/22/2015 7/27/2015

Measured Total Signal Reconst Total Signal

(d)

-1.5

-1.0

-0.5

0.0

0.5

1.0

R

esid

7/2/2015 7/7/2015 7/12/2015 7/17/2015 7/22/2015 7/27/2015

(e)

12

8

4

0 (

Re

sid

2/

2)/

Qe

xp

7/2/2015 7/7/2015 7/12/2015 7/17/2015 7/22/2015 7/27/2015

(f)

2

1

0

-1

-2Sca

led

Re

sid

ua

l

1201101009080706050403020

m/z

Boxes are +/- 25% of pointsWhiskers are +/- 5% of points

(g)

Page 11: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

11

47

48

Figure S3. Summary of the key diagnostic plots of the chosen 3-factor solution from PMF analysis 49

of the Xinxiang measurements. 50

1.3

1.2

1.1

1.0

0.9

0.8

Q/Q

exp

ecte

d

87654321

P

Q for fPeak 0 Current Solution

(a) 1.10

1.05

1.00

0.95

0.90

0.85

0.80

Q/Q

exp

ecte

d

-1.0 -0.5 0.0 0.5 1.0

fPeak or seed

Q for p 3 Current Solution

(b)

1.0

0.8

0.6

0.4

0.2

0.0

R,

tse

rie

s

1.00.80.60.40.20.0

R, profiles

1_2

1_3

2_3

(c)

60

40

20

0To

tal M

ass (

µg

m-3

)

6/10/2017 6/12/2017 6/14/2017 6/16/2017 6/18/2017 6/20/2017 6/22/2017 6/24/2017

Measured Total Signal Reconst Total Signal

(d)

3

2

1

0

-1

-2

R

esid

6/10/2017 6/12/2017 6/14/2017 6/16/2017 6/18/2017 6/20/2017 6/22/2017 6/24/2017

(e)

12

8

4

0 (

Re

sid

2/

2)/

Qe

xp

6/11/2017 6/16/2017 6/21/2017

(f)

-2

-1

0

1

2

Sca

led

Re

sid

ua

l

1201101009080706050403020

m/z

Boxes are +/- 25% of pointsWhiskers are +/- 5% of points

(g)

Page 12: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

12

51

Figure S4. (a) The mass spectra, (b) time series, and (c) diurnal variations of the four-factor PMF 52

solution of the Beijing measurements. 53

54

15

10

5

0

12

8

4

0

10

8

6

4

2

0

16

12

8

4

0

7/2 7/7 7/12 7/17 7/22 7/27

Month/Day

Conc. (µ

g m

-3)

15%

19%

22%

44%

(a) (b)

(c)

0.08

0.06

0.04

0.02

0.00

0.12

0.08

0.04

0.00

Fra

ction o

f to

tal sig

nal

0.16

0.12

0.08

0.04

0.00

0.3

0.2

0.1

0.0

1201101009080706050403020

amus (m/z)

HOA

COA

SV-OOA

LV-OOA

5

4

3

2

1

0

Co

nc (

µg

m-3

)

201612840

Hour of Day

HOA8

6

4

2

0

201612840

Hour of Day

COA6

5

4

3

2

1

0

201612840

Hour of Day

SV-OOA12

10

8

6

4

2

0

201612840

Hour of Day

LV-OOA

Page 13: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

13

55

Figure S5. (a) The mass spectra, (b) time series, and (c) diurnal variations of the four-factor PMF 56

solution of the Xinxiang measurements. 57

58

0.08

0.06

0.04

0.02

0.00Fra

ctio

n o

f sig

na

l

HOA

0.20

0.15

0.10

0.05

0.00Fra

ctio

n o

f sig

na

l

SV-OOA

0.25

0.20

0.15

0.10

0.05

0.00Fra

ctio

n o

f sig

na

l

1201101009080706050403020

amus (m/z)

LV-OOA

16

12

8

4

0

Co

nc.

(µg

m-3

)

25

20

15

10

5

0

Co

nc.

(µg

m-3

)

30

20

10

0

Co

nc.

(µg

m-3

)

6/8/2017 6/12/2017 6/16/2017 6/20/2017 6/24/2017

24% 23%

52%

12

10

8

6

4

2

0

Co

nc.

(µg

m-3

)

201612840

Hour of Day

SV-OOA12

10

8

6

4

2

0

Co

nc.

(µg

m-3

)

201612840

Hour of Day

HOA 16

12

8

4

0

Co

nc.

(µg

m-3

)

201612840

Hour of Day

LV-OOA

(a) (b)

(c)

Page 14: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

14

59

Figure S6. Scatter plots of (a) HOA vs. BC, (b) HOA vs NOx, (c) SV-OOA vs. sulfate, (d) SV-60

OOA vs nitrate, (e) LV-OOA vs. sulfate, and (f) LV-OOA vs. nitrate of the Beijing measurements. 61

62

25

20

15

10

5

0

BC

g/m

3)

12840

HOA (µg/m3)

r = 0.55Slope = 1.753 ± 0.04

7/1/2015

7/11/2015

7/21/2015 Da

te

(a)

200

150

100

50

0

NO

x (

ppb

)

12840

HOA (µg/m3)

r = 0.57Slope = 15.044 ± 0.31

7/1/2015

7/11/2015

7/21/2015 Da

te

(b)25

20

15

10

5

0

SO

4 (

µg

/m3)

86420

SV-OOA (µg/m3)

r = 0.59Slope = 2.975 ± 0.06

7/1/2015

7/11/2015

7/21/2015 Da

te(c)

50

40

30

20

10

0

NO

3 (

µg

/m3)

86420

SV-OOA (µg/m3)

r = 0.37Slope = 5.147 ± 0.17

7/1/2015

7/11/2015

7/21/2015 Da

te

(d) 25

20

15

10

5

0

SO

4 (

µg

/m3)

1612840

LV-OOA (µg/m3)

r2 = 0.63

Slope = 1.369 ± 0.02

7/1/2015

7/11/2015

7/21/2015 Da

te

(e) 50

40

30

20

10

0

NO

3 (

µg

/m3)

1612840

LV-OOA (µg/m3)

r = 0.71Slope = 2.189 ± 0.05

7/1/2015

7/11/2015

7/21/2015 Da

te

(f)

Page 15: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

15

63

Figure S7. Scatter plots of (a) HOA vs. BC, (b) HOA vs NOx, (c) SV-OOA vs. sulfate, (d) SV-64

OOA vs nitrate, (e) LV-OOA vs. sulfate, and (f) LV-OOA vs. nitrate of the Xinxiang 65

measurements. 66

67

8

6

4

2

0

BC

g/m

3)

1612840

HOA (µg/m3)

r = 0.76Slope = 0.490 ± 0.01

6/11/2017

6/16/2017

6/21/2017 Date

(a) 160

140

120

100

80

60

40

20

0

NO

x (

ppb)

1612840

HOA (µg/m3)

r = 0.64Slope = 5.334 ± 0.15

6/11/2017

6/16/2017

6/21/2017 Date

(b) 60

50

40

30

20

10

0

SO

4 (

µg/m

3)

2520151050

SV-OOA (µg/m3)

r = 0.40Slope = 3.691 ± 0.12

6/11/2017

6/16/2017

6/21/2017 Date

(c)

100

80

60

40

20

0

NO

3 (

µg/m

3)

2520151050

SV-OOA (µg/m3)

r = 0.43Slope = 5.015 ± 0.18

6/11/2017

6/16/2017

6/21/2017 Date

(d) 60

50

40

30

20

10

0

SO

4 (

µg/m

3)

3020100

LV-OOA (µg/m3)

r = 0.87Slope = 1.571 ± 0.02

6/11/2017

6/16/2017

6/21/2017 Date

(e) 80

60

40

20

0

NO

3 (

µg/m

3)

3020100

LV-OOA (µg/m3)

r = 0.69Slope = 2.137 ± 0.05

6/11/2017

6/16/2017

6/21/2017 Date

(f)

Page 16: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

16

68

Figure S8. Back trajectories of air masses arriving in Beijing every hour, with the four clusters 69

determined using the inbuilt function in the HYSPLIT model. 70

71

Page 17: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

17

72

Figure S9. Diurnal variations of (a) organics, (b) sulfate, (c) nitrate, (d) ammonium, (e) chloride, 73

and (f) BC in Beijing and Xinxiang. 74

75

Beijing Xinxiang

16

12

8

4

0

Co

nc (

µg

m-3

)

2220181614121086420

Hour of Day

Org

(a)

10

8

6

4

2

0C

on

c (

µg

m-3

)2220181614121086420

Hour of Day

SO4

(b)

16

12

8

4

0

Co

nc (

µg

m-3

)

2220181614121086420

Hour of Day

NO3

(c)8

6

4

2

0

Co

nc (

µg

m-3

)

2220181614121086420

Hour of Day

NH4

(d)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Co

nc (

µg

m-3

)

2220181614121086420

Hour of Day

Chl

(e)5

4

3

2

1

0

Co

nc (

µg

m-3

)

2220181614121086420

Hour of Day

BC

(f)

35

30

25

20

15

10

5

0

Co

nc (

µg

m-3

)

2220181614121086420

Hour of Day

(a)

Org30

25

20

15

10

5

0

Co

nc (

µg

m-3

)

2220181614121086420

Hour of Day

(b)

SO4

40

30

20

10

0

Co

nc (

µg

m-3

)

2220181614121086420

Hour of Day

(c)

NO3

25

20

15

10

5

0

Co

nc (

µg

m-3

)

2220181614121086420

Hour of Day

(d)

NH4

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Co

nc (

µg

m-3

)

2220181614121086420

Hour of Day

(e)

Chl6

5

4

3

2

1

0

Co

nc (

µg

m-3

)

2220181614121086420

Hour of Day

(f)

BC

Page 18: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

18

76

Figure S10. Scatterplots of nitrate vs. SV-OOA and nitrate vs. LV-OOA colored by the hour of 77

the day, in (a) Beijing and (b) Xinxiang. 78

79

50

40

30

20

10

0

NO

3 (

µg

/m3)

1086420

SV-OOA (µg/m3)

r2 = 0.13

Slope = 5.147 ± 0.17

20

16

12

8

4

0

Ho

ur

(a) 50

40

30

20

10

0

NO

3 (

µg

/m3)

1614121086420

LV-OOA (µg/m3)

r2 = 0.50

Slope = 2.189 ± 0.05

20

16

12

8

4

0

Ho

ur

100

80

60

40

20

0

NO

3 (

µg/m

3)

2520151050

SV-OOA (µg/m3)

r2 = 0.18

Slope = 5.015 ± 0.18

20

16

12

8

4

0

Hour

(b) 100

80

60

40

20

0

NO

3 (

µg/m

3)

35302520151050

LV-OOA (µg/m3)

r2 = 0.48

Slope = 2.137 ± 0.05

20

16

12

8

4

0

Hour

Page 19: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

19

80

Figure S11. Variations in the mass fractions of aerosol species and nitrate/sulfate mass ratio as a 81

function of total PM1 mass loadings for the periods (a) 0:00 – 11:00 and (b) 12:00 -23:00 in Beijing. 82

83

3.0

2.0

1.0

0.0

Ra

tio

NO3/SO4

(a)

3.0

2.0

1.0

0.0

Ra

tio

NO3/SO4

(b)

0:00-11:00 12:00-23:00

1.0

0.8

0.6

0.4

0.2

0.0

Mass F

ractio

n6050403020100

PM1 Conc. (µg m-3

)

1.0

0.8

0.6

0.4

0.2

0.0

Mass F

ractio

n

100806040200

PM1 Conc. (µg m-3

)

BCHOACOASV-OOALV-OOAChlNH4

SO4

NO3

Page 20: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

20

84

Figure S12. Simulated ε(NO3-) by the ISORROPIA-Ⅱ model at 0 ℃, 10 ℃, 20 ℃, and 30 ℃ with 85

varying RH conditions. 86

87

1.0

0.8

0.6

0.4

0.2

0.0

0.90.80.70.60.50.40.3

RH

T = 30°C T = 20°C T = 10°C T = 0°Cε

(NO

3- )

Page 21: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

21

88

Figure S13. Variations in [NO2][O3] at 0:00 as a proxy for the nighttime formation of HNO3 for 89

different PM1 concentration bins. 90

1000

800

600

400

[NO

2][O

3](

ppb

2)

0-10 10-20 20-30 30-40 >40

PM1 Conc. (µg m-3

)

Page 22: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

22

91

Figure S14. Distribution of the four clusters resolved in this study as a function of PM1 92

concentration. 93

94

1.0

0.8

0.6

0.4

0.2

0.0

Fra

ction

1009080706050403020100

PM1 (µg m-3

)

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Page 23: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

23

References 95

Bae, M. S., Schwab, J. J., Zhang, Q., Hogrefe, O., Demerjian, K. L., Weimer, S., Rhoads, K., 96

Orsini, D., Venkatachari, P., and Hopke, P. K.: Interference of organic signals in highly time 97

resolved nitrate measurements by low mass resolution aerosol mass spectrometry, J Geophys 98

Res-Atmos, 112, Artn D22305 10.1029/2007jd008614, 2007. 99

Bougiatioti, A., Stavroulas, I., Kostenidou, E., Zarmpas, P., Theodosi, C., Kouvarakis, G., 100

Canonaco, F., Prévôt, A. S. H., Nenes, A., Pandis, S. N., and Mihalopoulos, N.: Processing 101

of biomass-burning aerosol in the eastern Mediterranean during summertime, Atmos. Chem. 102

Phys., 14, 4793-4807, https://doi.org/10.5194/acp-14-4793-2014, 2014. 103

Budisulistiorini, S. H., Baumann, K., Edgerton, E. S., Bairai, S. T., Mueller, S., Shaw, S. L., 104

Knipping, E. M., Gold, A., and Surratt, J. D.: Seasonal characterization of submicron aerosol 105

chemical composition and organic aerosol sources in the southeastern United States: Atlanta, 106

Georgia,and Look Rock, Tennessee, Atmos. Chem. Phys., 16, 5171-5189, 107

https://doi.org/10.5194/acp-16-5171-2016, 2016. 108

Corrigan, A. L., Russell, L. M., Takahama, S., Äijälä, M., Ehn, M., Junninen, H., Rinne, J., Petäjä, 109

T., Kulmala, M., Vogel, A. L., Hoffmann, T., Ebben, C. J., Geiger, F. M., Chhabra, P., 110

Seinfeld, J. H., Worsnop, D. R., Song, W., Auld, J., and Williams, J.: Biogenic and biomass 111

burning organic aerosol in a boreal forest at Hyytiälä, Finland, during HUMPPA-COPEC 112

2010, Atmos. Chem. Phys., 13, 12233-12256, https://doi.org/10.5194/acp-13-12233-2013, 113

2013. 114

Crippa, M., El Haddad, I., Slowik, J. G., DeCarlo, P. F., Mohr, C., Heringa, M. F., Chirico, R., 115

Marchand, N., Sciare, J., Baltensperger, U., and Prevot, A. S. H.: Identification of marine and 116

continental aerosol sources in Paris using high resolution aerosol mass spectrometry, J 117

Geophys Res-Atmos, 118, 1950-1963, 10.1002/jgrd.50151, 2013. 118

Cubison, M. J., Alfarra, M. R., Allan, J., Bower, K. N., Coe, H., McFiggans, G. B., Whitehead, J. 119

D., Williams, P. I., Zhang, Q., Jimenez, J. L., Hopkins, J., and Lee, J.: The characterisation 120

of pollution aerosol in a changing photochemical environment, Atmos. Chem. Phys., 6, 5573-121

5588, https://doi.org/10.5194/acp-6-5573-2006, 2006. 122

Docherty, K. S., Aiken, A. C., Huffman, J. A., Ulbrich, I. M., DeCarlo, P. F., Sueper, D., Worsnop, 123

D. R., Snyder, D. C., Peltier, R. E., Weber, R. J., Grover, B. D., Eatough, D. J., Williams, B. 124

J., Goldstein, A. H., Ziemann, P. J., and Jimenez, J. L.: The 2005 Study of Organic Aerosols 125

at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition, Atmos. 126

Chem. Phys., 11, 12387-12420, https://doi.org/10.5194/acp-11-12387-2011, 2011. 127

Drewnick, F., Schwab, J. J., Jayne, J. T., Canagaratna, M., Worsnop, D. R., and Demerjian, K. L.: 128

Measurement of ambient aerosol composition during the PMTACS-NY 2001 using an 129

aerosol mass spectrometer. Part I: Mass concentrations, Aerosol Sci Tech, 38, 92-103, 130

10.1080/02786820390229507, 2004. 131

Gunthe, S. S., Rose, D., Su, H., Garland, R. M., Achtert, P., Nowak, A., Wiedensohler, A., Kuwata, 132

M., Takegawa, N., Kondo, Y., Hu, M., Shao, M., Zhu, T., Andreae, M. O., and Pöschl, U.: 133

Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region 134

of Beijing, Atmos. Chem. Phys., 11, 11023-11039, https://doi.org/10.5194/acp-11-11023-135

2011, 2011. 136

Han, Y. M., Iwamoto, Y., Nakayama, T., Kawamura, K., and Mochida, M.: Formation and 137

evolution of biogenic secondary organic aerosol over a forest site in Japan, J Geophys Res-138

Atmos, 119, 259-273, 10.1002/2013JD020390, 2014. 139

Page 24: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

24

Hu, W., Hu, M., Hu, W. W., Zheng, J., Chen, C., Wu, Y., and Guo, S.: Seasonal variations in high 140

time-resolved chemical compositions, sources, and evolution of atmospheric submicron 141

aerosols in the megacity Beijing, Atmos. Chem. Phys., 17, 9979-10000, 10.5194/acp-17-142

9979-2017, 2017. 143

Huang, X.-F., He, L.-Y., Hu, M., Canagaratna, M. R., Sun, Y., Zhang, Q., Zhu, T., Xue, L., Zeng, 144

L.-W., Liu, X.-G., Zhang, Y.-H., Jayne, J. T., Ng, N. L., and Worsnop, D. R.: Highly time-145

resolved chemical characterization of atmospheric submicron particles during 2008 Beijing 146

Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer, Atmos. 147

Chem. Phys., 10, 8933-8945, https://doi.org/10.5194/acp-10-8933-2010, 2010. 148

Huang, X. F., He, L. Y., Xue, L., Sun, T. L., Zeng, L. W., Gong, Z. H., Hu, M., and Zhu, T.: Highly 149

time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai 150

World Expo, Atmos Chem Phys, 12, 4897-4907, 10.5194/acp-12-4897-2012, 2012. 151

Huang, X. F., Xue, L., Tian, X. D., Shao, W. W., Sun, T. L., Gong, Z. H., Ju, W. W., Jiang, B., 152

Hu, M., and He, L. Y.: Highly time-resolved carbonaceous aerosol characterization in 153

Yangtze River Delta of China: Composition, mixing state and secondary formation, Atmos 154

Environ, 64, 200-207, 10.1016/j.atmosenv.2012.09.059, 2013. 155

Kostenidou, E., Florou, K., Kaltsonoudis, C., Tsiflikiotou, M., Vratolis, S., Eleftheriadis, K., and 156

Pandis, S. N.: Sources and chemical characterization of organic aerosol during the summer 157

in the eastern Mediterranean, Atmos. Chem. Phys., 15, 11355-11371, 158

https://doi.org/10.5194/acp-15-11355-2015, 2015. 159

Kubelova, L., Vodicka, P., Schwarz, J., Cusack, M., Makes, O., Ondracek, J., and Zdimal, V.: A 160

study of summer and winter highly time-resolved submicron aerosol composition measured 161

at a suburban site in Prague, Atmos Environ, 118, 45-57, 10.1016/j.atmosenv.2015.07.030, 162

2015. 163

Lanz, V. A., Prévôt, A. S. H., Alfarra, M. R., Weimer, S., Mohr, C., DeCarlo, P. F., Gianini, M. F. 164

D., Hueglin, C., Schneider, J., Favez, O., D'Anna, B., George, C., and Baltensperger, U.: 165

Characterization of aerosol chemical composition with aerosol mass spectrometry in Central 166

Europe: an overview, Atmos. Chem. Phys., 10, 10453-10471, https://doi.org/10.5194/acp-10-167

10453-2010, 2010. 168

Li, Y. J., Lee, B. P., Su, L., Fung, J. C. H., and Chan, C. K.: Seasonal characteristics of fine 169

particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric 170

(HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong, Atmos. Chem. Phys., 171

15, 37-53, https://doi.org/10.5194/acp-15-37-2015, 2015. 172

Miyakawa, T., Takegawa, N., and Kondo, Y.: Photochemical evolution of submicron aerosol 173

chemical composition in the Tokyo megacity region in summer, J Geophys Res-Atmos, 113, 174

Artn D14304 10.1029/2007jd009493, 2008. 175

Park, J., Lee, S., Kang, M., Cho, H. J., Lee, K., and Park, K.: Seasonal characteristics of 176

submicrometer organic aerosols in urban Gwangju, Korea using an aerosol mass spectrometer, 177

Atmos Environ, 80, 445-454, 10.1016/j.atmosenv.2013.08.013, 2013. 178

Poulain, L., Spindler, G., Birmili, W., Plass-Dülmer, C., Wiedensohler, A., and Herrmann, H.: 179

Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research 180

station Melpitz, Atmos. Chem. Phys., 11, 12579-12599, https://doi.org/10.5194/acp-11-181

12579-2011, 2011. 182

Rinaldi, M., Gilardoni, S., Paglione, M., Sandrini, S., Fuzzi, S., Massoli, P., Bonasoni, P., 183

Cristofanelli, P., Marinoni, A., Poluzzi, V., and Decesari, S.: Organic aerosol evolution and 184

Page 25: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

25

transport observed at Mt. Cimone (2165 m a.s.l.), Italy, during the PEGASOS campaign, 185

Atmos. Chem. Phys., 15, 11327-11340, https://doi.org/10.5194/acp-15-11327-2015, 2015. 186

Schurman, M. I., Lee, T., Sun, Y., Schichtel, B. A., Kreidenweis, S. M., and Collett Jr., J. L.: 187

Investigating types and sources of organic aerosol in Rocky Mountain National Park using 188

aerosol mass spectrometry, Atmos. Chem. Phys., 15, 737-752, https://doi.org/10.5194/acp-189

15-737-2015, 2015. 190

Setyan, A., Zhang, Q., Merkel, M., Knighton, W. B., Sun, Y., Song, C., Shilling, J. E., Onasch, T. 191

B., Herndon, S. C., Worsnop, D. R., Fast, J. D., Zaveri, R. A., Berg, L. K., Wiedensohler, A., 192

Flowers, B. A., Dubey, M. K., and Subramanian, R.: Characterization of submicron particles 193

influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol 194

mass spectrometry: results from CARES, Atmos Chem Phys, 12, 8131-8156, 10.5194/acp-195

12-8131-2012, 2012. 196

Sun, J. Y., Zhang, Q., Canagaratna, M. R., Zhang, Y. M., Ng, N. L., Sun, Y. L., Jayne, J. T., Zhang, 197

X. C., Zhang, X. Y., and Worsnop, D. R.: Highly time- and size-resolved characterization of 198

submicron aerosol particles in Beijing using an Aerodyne Aerosol Mass Spectrometer, Atmos 199

Environ, 44, 131-140, 10.1016/j.atmosenv.2009.03.020, 2010. 200

Sun, Y.-L., Zhang, Q., Schwab, J. J., Demerjian, K. L., Chen, W.-N., Bae, M.-S., Hung, H.-M., 201

Hogrefe, O., Frank, B., Rattigan, O. V., and Lin, Y.-C.: Characterization of the sources and 202

processes of organic and inorganic aerosols in New York city with a high-resolution time-of-203

flight aerosol mass spectrometer, Atmos. Chem. Phys., 11, 1581-1602, 204

https://doi.org/10.5194/acp-11-1581-2011, 2011. 205

Sun, Y. L., Wang, Z. F., Dong, H. B., Yang, T., Li, J., Pan, X. L., Chen, P., and Jayne, J. T.: 206

Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol 207

Chemical Speciation Monitor, Atmos Environ, 51, 250-259, 208

10.1016/j.atmosenv.2012.01.013, 2012. 209

Sun, Y. L., Jiang, Q., Xu, Y. S., Ma, Y., Zhang, Y. J., Liu, X. G., Li, W. J., Wang, F., Li, J., Wang, 210

P. C., and Li, Z. Q.: Aerosol characterization over the North China Plain: Haze life cycle and 211

biomass burning impacts in summer, J Geophys Res-Atmos, 121, 2508-2521, 212

10.1002/2015JD024261, 2016. 213

Takegawa, N., Miyakawa, T., Kondo, Y., Jimenez, J. L., Zhang, Q., Worsnop, D. R., and Fukuda, 214

M.: Seasonal and diurnal variations of submicron organic aerosol in Tokyo observed using 215

the Aerodyne aerosol mass spectrometer, J Geophys Res-Atmos, 111, Artn D11206 216

10.1029/2005jd006515, 2006. 217

Wang, Q. Q., Zhao, J., Du, W., Ana, G. S., Wang, Z. Z., Sun, L., Wang, Y. Y., Zhang, F., Li, Z. 218

Q., Ye, X. N., and Sun, Y. L.: Characterization of submicron aerosols at a suburban site in 219

central China, Atmos Environ, 131, 115-123, 10.1016/j.atmosenv.2016.01.054, 2016. 220

Xiao, R., Takegawa, N., Zheng, M., Kondo, Y., Miyazaki, Y., Miyakawa, T., Hu, M., Shao, M., 221

Zeng, L., Gong, Y., Lu, K., Deng, Z., Zhao, Y., and Zhang, Y. H.: Characterization and source 222

apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 223

2006 campaign, Atmos. Chem. Phys., 11, 6911-6929, https://doi.org/10.5194/acp-11-6911-224

2011, 2011. 225

Xing, J. H., Takahashi, K., Yabushita, A., Kinugawa, T., Nakayama, T., Matsumi, Y., Tonokura, 226

K., Takami, A., Imamura, T., Sato, K., Kawasaki, M., Hikida, T., and Shimono, A.: 227

Characterization of Aerosol Particles in the Tokyo Metropolitan Area using Two Different 228

Particle Mass Spectrometers, Aerosol Sci Tech, 45, 315-326, 229

10.1080/02786826.2010.533720, 2011. 230

Page 26: Supplement of - ACP...Beijing, 2015 urban 6/30/2015-7/27/2015 this study Beijing, China rural/remote 8/10/2006-9/9/2006 Gunthe et al. (2011) Xinxiang, China urban 8/8/2017-8/25/2017

26

Xu, L., Suresh, S., Guo, H., Weber, R. J., and Ng, N. L.: Aerosol characterization over the 231

southeastern United States using high-resolution aerosol mass spectrometry: spatial and 232

seasonal variation of aerosol composition and sources with a focus on organic nitrates, Atmos. 233

Chem. Phys., 15, 7307-7336, https://doi.org/10.5194/acp-15-7307-2015, 2015. 234

Zhang, Y. J., Tang, L. L., Wang, Z., Yu, H. X., Sun, Y. L., Liu, D., Qin, W., Canonaco, F., Prevot, 235

A. S. H., Zhang, H. L., and Zhou, H. C.: Insights into characteristics, sources, and evolution 236

of submicron aerosols during harvest seasons in the Yangtze River delta region, China, Atmos 237

Chem Phys, 15, 1331-1349, 10.5194/acp-15-1331-2015, 2015. 238

Zhou, S., Collier, S., Xu, J. Z., Mei, F., Wang, J., Lee, Y. N., Sedlacek, A. J., Springston, S. R., 239

Sun, Y. L., and Zhang, Q.: Influences of upwind emission sources and atmospheric processing 240

on aerosol chemistry and properties at a rural location in the Northeastern US, J Geophys 241

Res-Atmos, 121, 6049-6065, 10.1002/2015JD024568, 2016. 242

243