supercritical fluid extraction of vegetable matrices

62
J. of Supercritical Fluids 92 (2014) 115–176 Contents lists available at ScienceDirect The Journal of Supercritical Fluids j our na l ho me page: www.elsevier.com/locate/supflu Review Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology M.M.R. de Melo, A.J.D. Silvestre, C.M. Silva CICECO, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal a r t i c l e i n f o Article history: Received 20 January 2014 Received in revised form 31 March 2014 Accepted 1 April 2014 Available online 24 April 2014 Keywords: Supercritical fluid extraction Optimization Modeling Scale-up Economic analysis Biomass Trends a b s t r a c t Along more than a decade, R&D on supercritical fluid extraction (SFE) of vegetable matrices has been increasingly reported in the literature. Aiming at portraying the current state of this field and its evo- lution in terms of raw materials, products, modes of operation, optimization, modeling techniques, and closeness to industrial application, a large compilation of almost 600 essays from 2000 to 2013 has been deeply analyzed in order to unveil those indicators and their trends. Furthermore, strengths and weaknesses are identified, and some remarks that may drive upcoming research are provided. Globally, more than 300 species are reported in the literature, with prevalence of the extraction of seeds (28% of works) and leaves (17%). The main families of extracted compounds, cosolvents and operating conditions adopted are critically examined, being possible to conclude that researchers investigate many times working regions far from the optimum due to practical limitations or absence of experimental optimization. Current phenomenological, statistical and semi-empirical approaches are reviewed, along with scale-up studies, and economic analysis. In the whole, the most comprehensive picture over SFE of vegetable matrices is provided in this review, highlighting pertinent aspects and opportunities that may further consolidate the convincing route of this technology for the next years. © 2014 Elsevier B.V. All rights reserved. Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 2. Biomass matrices and naturally occurring molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 3. Focuses of SFE works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4. Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4.1. Pressure and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4.2. Solvent power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 4.3. Cosolvent addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 4.4. Flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5. Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.1. Subsidiary relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.2. Extraction models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.3. Statistical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 6. Scale-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7. Economic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 8. Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Corresponding author. Tel.: +351 234 401549; fax: +351 234 370084. E-mail address: [email protected] (C.M. Silva). http://dx.doi.org/10.1016/j.supflu.2014.04.007 0896-8446/© 2014 Elsevier B.V. All rights reserved.

Upload: alexrivera

Post on 20-Jul-2016

211 views

Category:

Documents


4 download

TRANSCRIPT

  • J. of Supercritical Fluids 92 (2014) 115176

    Contents lists available at ScienceDirect

    The Journal of Supercritical Fluids

    j our na l ho me page: www.elsev ier .com/ locate /supf lu

    Review

    Supercritical uid extraction of vegetable matrices: Applications,trends

    M.M.R. dCICECO, Depar

    a r t i c l

    Article history:Received 20 JaReceived in reAccepted 1 ApAvailable onlin

    Keywords:Supercritical OptimizationModelingScale-upEconomic anaBiomassTrends

    with scale-up studies, and economic analysis. In the whole, the most comprehensive picture over SFE ofvegetable matrices is provided in this review, highlighting pertinent aspects and opportunities that mayfurther consolidate the convincing route of this technology for the next years.

    2014 Elsevier B.V. All rights reserved.

    Contents

    1. Introd2. Bioma3. Focus4. Opera

    4.1. 4.2. 4.3. 4.4.

    5. Mode5.1. 5.2. 5.3.

    6. Scale-7. Econo8. Final r

    NomeAcknoRefer

    CorresponE-mail add

    http://dx.doi.o0896-8446/ uction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116ss matrices and naturally occurring molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116es of SFE works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139ting conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Pressure and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Solvent power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141Cosolvent addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    ling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144Subsidiary relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144Extraction models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147Statistical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154mic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157emarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161nclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162wledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

    ences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

    ding author. Tel.: +351 234 401549; fax: +351 234 370084.ress: [email protected] (C.M. Silva).

    rg/10.1016/j.supu.2014.04.0072014 Elsevier B.V. All rights reserved.and future perspectives of a convincing green technology

    e Melo, A.J.D. Silvestre, C.M. Silva

    tment of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal

    e i n f o

    nuary 2014vised form 31 March 2014ril 2014e 24 April 2014

    uid extraction

    lysis

    a b s t r a c t

    Along more than a decade, R&D on supercritical uid extraction (SFE) of vegetable matrices has beenincreasingly reported in the literature. Aiming at portraying the current state of this eld and its evo-lution in terms of raw materials, products, modes of operation, optimization, modeling techniques, andcloseness to industrial application, a large compilation of almost 600 essays from 2000 to 2013 hasbeen deeply analyzed in order to unveil those indicators and their trends. Furthermore, strengths andweaknesses are identied, and some remarks that may drive upcoming research are provided.

    Globally, more than 300 species are reported in the literature, with prevalence of the extraction of seeds(28% of works) and leaves (17%). The main families of extracted compounds, cosolvents and operatingconditions adopted are critically examined, being possible to conclude that researchers investigate manytimes working regions far from the optimum due to practical limitations or absence of experimentaloptimization. Current phenomenological, statistical and semi-empirical approaches are reviewed, along

  • 116 M.M.R. de Melo et al. / J. of Supercritical Fluids 92 (2014) 115176

    1. Introduction

    In the last 13 years (20002013), the extracts of more than 300plant species have been studied using supercritical uid extraction(SFE) techncovers vegeponents of and health pinvolving pempirically

    The remnology has the most usbe tuned in(selectivityinnocuous environmenobject of redioxide, andcritical carb

    Among tthe scope oature sincetomato (SolL.) [3644],[5462], sutatissimum)red pepper[9197].

    In whatof nutraceucomprisingeases [98], food industas a sustaiof plant extin which, ater of the pthose requas a pretrerice), otherment of prcooking timexplored th[100,101].

    As a resuobject of SFarmeniaca cashew (Ancacao) [115(Zingiber oflaurel (Lau[136140], bita spp.) [1L.) [15716

    Followinof integratifor centurielems, extracontexts haare still to health authseen their calamus [16[170173], mum gratis

    baccata L. [180]. Its application has been directed by the inter-est to isolate and quantify phytopharmaceuticals existing in thoseextracts so that further pharmacological studies can then be carriedout in order to conrm the respective bioactivities. An elucidat-

    rspecse oftion acti

    s revs of ts, wion, rial a000 ors a

    prodiffelogiel lev

    revd toing mh. Inpact

    intred, s hign 7).

    mass

    en ov largeearcriticaks inmesble semped fohniq

    side, it is

    direteriscordbles es clextraplant fracrootshandify inher

    partsn, pr544 Sviewes, vne at stuing cble mology. It is worth noting the major share of SFE researchtable biomass [1,2]. While many extracts and pure com-these species are already in use for human nutritionurposes, others represent potentially new applications

    lants whose knowledge, in most of the cases, has been established or still lacks scientic coverage.arkable interest of scientic community on this tech-been driven by the great versatility of carbon dioxide,ed solvent in supercritical state, whose properties can

    order to provide extracts with desirable compositions enhancements), while at the same time it ensures anseparation process both to human health and to thet. Other solvents (e.g. ethane, propane) have also beensearch but their use is not as widespread as carbon

    for this reason the emphasis of this review is on super-on dioxide (SC-CO2).he vast group of species that have been studied underf SFE, some have appeared in great number in liter-

    2000. It is the case of grape (Vitis vinifera L.) [325]anum lycopersicum L.) [2635], thyme (Thymus vulgaris

    eucalypt (Eucalyptus spp.) [4553], coffee (Coffea spp.)nower (Heliantus annuus L.) [6369], ax (Linum usi-

    [7075], rosemary (Rosmarinus ofcinalis L.) [7683], (Capsicum anuum L.) [8490], and rice (Oryza variety)

    concerns food related species, the great expansionticals market in recent years, as an emerging sector

    the use of dietary substances for prevention of dis-has been attracting the attention of researchers andry. In this context, SFE is advantageously positionednable and safe extraction option for the preparationracts for supplements and nutrient enriched productss Perrut anticipated in 2000 [99], the natural charac-reparation mode has a high marketing value. Besidesisites, when SFE is applied to eatable raw materialsatment for removal of compounds (e.g. cleaning of

    advantages are also observed, such as the enhance-oduct shelf life and, eventually, the shortening of thee [1]. In addition, research on this eld has also

    e valorization of residues from main stream processes

    lt, a substantial number of dairy plant products has beenE technology, such as, among others, apricot (PrunusL.) [102106], carrot (Daucus carota L.) [107110],acardium occidentale L.) [111114], cocoa (Theobroma117], garlic (Allium sativum L.) [118121], gingercinale) [122126], ginseng (Panax spp.) [127130],rus nobilis L.) [131135], orange (Citrus sinensis L.)oregano (Origanum spp.) [141145], pumpkin (Cucur-46150], soybean [151156], turmeric (Curcuma longa1], and wheat germ (Triticum spp.) [162167].g a major trend of western pharmaceutical industryng oriental folk medicine species that have been useds in natural formulations for a myriad of health prob-cts of a signicant number of species used in thoseve been prepared using SFE. Although many speciesbe recognized for their health/nutrition benets byorities such as World Health Organization, others havebioactivity conrmed, such as on the cases of Acorus8], Andrographis paniculata [169], Azadirachta indicaCurcuma longa [157161], Cyperus rotundus [174], Oci-simum [175,178,179], Panax ginseng [127,129], Taxus

    ing pethe caextracing bio[182].

    Thigresseextracoperatindustfrom 2indicatcussionto the technomercia

    Thedevoteoccurrresearcthe imeling issimplisection(Sectio

    2. Bio

    WhperiodSFE ressupercof wortic navegetasure, tprovidical tecwork.

    Conreviewing thecharacied. Acvegetabecomto the of the bigges(10%), other to justcases waerial additioof the

    In matricthan oponenoccurrvegetative on this research path was recently published for triterpenoid compounds, either with respect to theirwith SC-CO2 [181], either in terms of the correspond-vity studies that support their therapeutic potential

    iew intends to document and systematize the pro-supercritical CO2 extraction research upon naturalith emphasis on raw materials, products, modes ofoptimization, modeling techniques, and closeness topplication. A large compilation of almost 600 essaysto 2013 has been deeply analyzed in order to unveilnd trends. It is expected that this compilation and dis-vide hints and suggestions to researchers with respectrent aspects that contribute to the nal viability of SFEs and, thus, to its widespread implementation at com-el.iew is structured in the following way: Section 2 is

    the presentation of biomass matrices and naturallyolecules, followed, in Section 3, by the focuses of SFE

    Section 4, aspects related to the operation of SFE units,and optimization of process variables are covered. Mod-oduced in Section 5, and discussed in terms of empirical,comprehensive and statistical approaches. The next twohlight the scale-up (Section 6) and economic analysis

    Final remarks conclude the review in Section 8.

    matrices and naturally occurring molecules

    erviewing the eld of vegetable matrices extracts for ar than a decade, a vast group of species arises as issue ofh, hence revealing the strong interest and attention thatl uids have conquered. A wide-ranging compilation

    this eld is presented in Table 1, sorted by the scien- of plant species substrates. Information regarding thepecies, target molecules and operating conditions (pres-erature, solvent ow rate, and cosolvent content) arer each SFE publication, as well as the respective analyt-ues employed and complementary features about each

    ring the representative number of works covered in this possible to depict some structural tendencies regard-ctions research has followed in this eld, such as the

    tics of the biomass matrices that have been most stud-ingly, Fig. 1 presents a statistical distribution of thematrices types mostly found on SFE publications. Itear that supercritical uids have been mainly appliedction of seeds and leaves. Together, they represent 45%t fractions of all the works considered, being seeds thetion (28%), and leaves (17%). They are followed by fruits

    (7%), owers (5%), rhizomes (3%) and bark (2%). On the, parts such as stems, branches, and woods seem notdividual studies of SFE, being instead included only ine matrices comprise mixtures of components, such as, which account for 9% of the researched matrices. Inocessed vegetables like pomace or husks represent 5%FE publications considered.

    of the vast diversity of molecules found in naturalegetables are typically matter of research for morepplication. Depending on the species and plant com-died, SFE processes can be devoted to many naturallyompounds. Furthermore, SFE extracts obtained fromatrices are typically mixtures of the following family

  • M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176

    117

    Table 1Publications comprising SFE vegetable raw materials from 2000 to 2013, and their respective features.

    Scientic name Common name Plant part Target Extractionyield (wt%)

    P (bar) T (C) CO2 & co-solvent Analytical technique Other Features Ref.

    Berries Fruit Phenolic 1.45.20 80300 60 EtOH GCMS Antioxidant activity [242]

    Tea Seed 730 300400 6080 1020 LCO2 kg1

    sample015% EtOH

    Gravimetric Soxhlet extractionSonicationANOVA

    [243]

    Cuphea Seed 28.1 270 50 15 kgCO2 kg1

    sample GC Acid valueGardner colorFAME

    [244]

    Abutilon hybridumMalvaviscus drummondii,Pavonia hastata,Pavonia. lasiopetalaSida spinoza

    Hibiscus Seed 11.4 534 80 20 LCO2 kg1

    sample FAMEGC-FID

    Soxhlet extraction [245]

    Achyrocline satureioides Macela Flower 8796 200300 3035 416 kgCO2 kg1

    sample GCMS Modeling [246]

    Acori graminei Rhizome -Asarone 2.53.0 80140 3555 960 LCO2 kg1

    sample GCMS Hydrodistillation [247]

    Agrimonia eupatoriaAgrimonia procera

    Leaf 04.3 150350 3542 1% EtOH HPLC [248]

    Alkanna tinctoria Alkannin 50300 3080 30 kgCO2 kg1

    sample HPLC RSMDoE

    [249]

    Allium cepa L. Onion Bulb Sulphur 0.62.5 100300 4565 2941 kgCO2 kg1

    sample GCMS Pilot scaleTwo-step decompressionsystemSteam distillationSoxhlet extraction

    [250]

    Allium cepa L. Onion Bulb 0.0050.025 103287 30950 200800 LCO2 kg1

    sample Gravimetric AnalysisGCMS

    Adsorbent bed [251]

    Allium cepa L. Onion Bulb 0.2954.68 160240 3545 66220 LCO2 kg1

    sample GCMS RSMDoE

    [252]

    Allium sativum L. Garlic Bulb 3-Vinyl-4H-1,2-dithiin 0.81 100 4555 3 LCO2 kg1

    sample GCGCMS

    DoERSM

    [119]

    Allium sativum L. Garlic Flake Allicin 0.42.3 150450 3565 97 kgCO2 kg1

    sample HPLC Modeling [121]

    Allium sativum L. Garlic Flake 0.61.0 140400 3560 1.8 kgCO2 kg1

    sample HPLC [120]

    Allium sativum L. Garlic Clove Allicin 240 35 HPLC [118]Alnus glutinosa (L.) Gaertn Bark Betulin,

    betulinic acid,lupeol

    1.53.8 300450 4060 010% EtOH545 kgCO2 kg

    1sample

    TLCGCMSLCMSRP-HPLC

    Soxhlet extraction [253]

    Aloe barbadensis Miller Aloe vera Leaf 0.131.5 350450 3250 020% (v/w) MeOH Gravimetric analysis DoEAntioxidant activity

    [254]

    Alpinia oxyphylla Seed 1.362.80 2040 4565 RSMDoE

    [255]

    Amaranthus caudatus Amaranth Seed Tocopherols, fatty acids,sterols

    3.48.3 200400 40 5600 LCO2 kg1

    sample HPLCGCGCMS

    Ultrasound extractions [222]

    Amaranthus caudatus Amaranth Seed 46 200400 40 5.6 LCO2 kg1

    sample HPLCGC-FID

    Organic solvent extractionUltrasound extraction

    [256]

    Amaranthus caudatus Amaranth Seed Squalene 06 150250 4070 4000 LCO2 kg1

    sample HPLC Particle size effect [198]

    Amaranthus cruentus Amaranthus Bract 0.54.8 100300 4070 100 kgCO2 kg1

    sample Gravimetric analysis Soxhlet extractionSolubilityFlow rate effectModeling

    [257]

    Amaranthus paniculatus Amaranth Seed Squalene 110280 60100 1200600 LCO2 kg1

    sample HPTLC ModelingDoE

    [199]

    Ammi majus Seed Furocoumarins 250550 4080 10% EtOH20160 kgCO2 kg

    1sample

    1H NMR SC chromatography [232]

    Anacardium occidentale L. Cashew Anacardic acid 060 300 4060 HPLC Modeling [111]Anacardium occidentale L. Cashew Fruit Cardanol 225300 50 845 kgCO2 kg

    1sample GCMS Cost optimization [113]

    Anacardium occidentale L. Cashew Fruit 123 200300 4060 GCMS ModelingFlow rates effectThermal method comparison

    [112]

  • 118

    M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176Table 1 (Continued)

    Scientic name Common name Plant part Target Extractionyield (wt%)

    P (bar) T (C) CO2 & co-solvent Analytical technique Other Features Ref.

    Anacardium occidentale L. Cashew Shell 1.14.0 147294 4060 411 LCO2 kg1

    sample Gravimetric analysis Fractionation [114]

    Andrographis paniculata Hempedu bumi Leaf Andrographolide 80240 4070 015% EtOH015% H2O015% Acetic acid

    X-ray diffractionHPLC

    Purication objectiveSEM

    [169]

    Andrographis paniculata Hempedu Bumi Leaf Andrographolide 100 40 HPLCTLC

    ModelingParticle sizes effect

    [258]

    Anemopsis californica Yerba mansa Leaf 56 355 100 28 LCO2 kg1

    sample GCMS Steam distillation [259]

    Angelica archangelica L. Angelica Root 90120 4060 GCMS Hydrodistillation [260]Angelica dahurica 24 250350 4450 21,81843,636 LCO2 kg

    1sample

    (75% EtOH/25% H2O)

    GCMS DoE [261]

    Angelica gigas NakaiAngelica sinensisAngelica acutiloba

    Angelica Rhizome 0.48 296 80 60 LCO2 kg1

    sample GCMS Solid-phase microextraction [262]

    Angelica sinensis (Oliv.) Diels(Umbelliferae)

    Root Ferulic acid 0.84.0 300500 4565 040 kgCO2 kg1

    sampleEtOH

    HPLC Particle sizes effect [263]

    Anoectochilus roxburghii Herb Phytosterols-Sitosterol, stigmasterol

    250 45 50 LCO2 kg1

    sampleH2O

    HPLCAPCIMS

    Soxhlet extractionDoE

    [221]

    Apium graveolens L. Celery Seed 023 100200 45 10150 kgCO2 kg1

    sample Modeling [264]

    Arbutus unedo L. Strawberry Fruit Phenols150300

    4080 30 kgCO2 kg1

    sample020% (w/w) EtOH

    RSMDoEAntioxidant activity

    [265]

    Arrabidaea chica (Humb.Bonpl.)

    Leaf Anthocyanins 03.6 300 40 020% EtOH0140 kgCO2 kg

    1sample

    HPLC FractionationOrganic solvent extraction

    [266]

    Artemisia absinthium L. Wormwood Leaf + ower 0.753.66 90180 4050 88447 kgCO2 kg1

    sampleEtOH

    [267]

    Artemisia annua L. Wormwood Leaf Artemisinin 07 75400 3050 0400 kgCO2 kg1

    sample GC-FID DoEHydrodistillationSoxhlet extractionModeling

    [196]

    Artemisia arborescens L.Helichrysum splendidum(Thunb.) Less

    Leaf 0.10.4 90 50 14 kgCO2 kg1

    sample GCMS Hydrodistillation [268]

    Artemisia capillaris T. Whole plant Capillarisin 173 50 7.5 (wt)% ethyl-acetate Bioactivity testDoERSM

    [269]

    Artemisia sieberi Wormwood Aerial parts Camphor 1.714.9 101304 3565 1.84.2 LCO2 kg1

    sample GCGCMS

    HydrodistillationDoE

    [211]

    Atractylode lancea Root 2.310.3 150250 4060 2262 LCO2 kg1

    sample GCMS DoE [270]

    Atractylodis macrocephalae Baizhu Rhizome 3.676.76 150450 4060 54 LCO2 kg1

    sample [271]

    Azadirachta indica A. Juss Neem Seed 585 100260 3055 4.726 LCO2 kg1

    sample010% MeOH

    HPLC dp, Q effects [171]

    Azadirachta indica A. Juss Neem Seed 570 100260 3560 02.7 LCO2 kg1

    sample Gravimetric dp effectModelingQ effects

    [173]

    Azadirachta indica A. Juss Neem Seed 085 100260 3560 2186 LCO2 kg1

    sample Gravimetric analysis ModelingEffect of particle size

    [172]

    Azadirachta indica A. Juss Neem Seed Nimbin 00.02 100260 3560 1253 kgCO2 kg1

    sample HPLC [170]

    Baccharis dracunculifolia Baccharis Leaf DHCA, PHCA, p-coumaricacid, kaempferide

    2.44.7 200400 4060 85 kgCO2 kg1

    sample HPLC Soxhlet extraction [272]

    Baccharis dracunculifolia, Baccharis Branch and leaf (E)-nerolidol; spathulenol 0.38 90120 4060 340 LCO2 kg1

    sample GCGCMS

    ODS trap (n-hexane)Hydrodistillation

    [273]

    Baccharis trimera Baccharis Branch and leaf 1.72.3 90 4070 80 LCO2 kg1

    sample GCGCMS

    Modeling [274]

    Baccharis trimera Baccharis Stem and leaf 0.32.0 100300 3040 GCMS ModelingSolvent extraction

    [275]

    Betula pendula Roth Birch Leaf Amino acids 100400 35100 MeOHH2Oacetonitrile HPLC-FLD Soxhlet extraction [276]Bixa orelana L. Annatto Seed Carotenoid bixin 145 200300 5060 100 kgCO2 kg

    1sample

    5% EtOHGravimetric analysis Modeling

    Flow rates effectParticle sizes effect

    [277]

    Bixa orelana L. Annatto Seed Bixin 100350 3050 GC-FID Modeling [278]Bixa orelana L. Annatto Seed Bixin 1.43.5 200400 4060 35482 kgCO2 kg

    1sample UVvis

    spectrophotometerHPLC

    Economic analysisScale-upModeling

    [279]

  • M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176

    119

    Borage ofcinalis L. Borage Seed -Linolenic acid 00.18 0350 3060 375015,000 LCO2 kg1

    sample GC Soxhlet extraction [280]

    Borage ofcinalis L. Borage Seed Fatty acids 030 200300 4060 0130 kgCO2 kg1

    sample GC ModelingSoxhlet extraction

    [185]

    Borago ofcinalis L. Borage Seed Caprylic acid methyl ester 0.124.3 100350 40 120 kgCO2 kg1

    sample02% EtOH

    GC [281]

    Borago ofcinalis L. Borage Seed 030 200300 55 060 kgCO2 kg1

    sample Bed length effectFlow rate effectSEM

    [691]

    Borago ofcinalis L. Borage Seed 957 150250 3060 1000 LCO2 kg1

    sample HPLCGCMS

    Soxhlet extraction [282]

    Brassica napus L. Rapeseed Seed 512 300 40 10130 kgCO2 kg1

    sample Gravimetric analysis Modeling [283]

    Brassica napus L. Rapeseed Seed 7.728.1 200300 4060 626 kgCO2 kg1

    sample GCMS RSMModelingSoxhlet extraction

    [284]

    Brassica napus L. Rapeseed Seed 1847 517 100 Gravimetric analysis Solvent extractionVortex extraction

    [156]

    Brassica napus L. Canola Press cake Phenolics 2.110.3 300500 4060 10% EtOH61 kgCO2 kg

    1sample

    HPLC [285]

    Brassica oleracea Broccoli Leaf Amino acids 1 100250 5080 2035% (v/v) MeOH GCMS Solvent extraction [286]Bunium persicum Boiss.

    Mespilus germanica L.Black cumimMedlar

    SeedSeed

    Benzaldehyde-Terpinene

    200 45 2 LCO2 kg1

    sample GCMS Hydrodistillation [287]

    Bupleurum falcatum Root Saikosaponins 918 300400 4050 2400 LCO2 kg1

    sample9% (v/v) EtOH

    HPLC DoE [288]

    Cajanus cajan Pigeonpea Leaf Cajaninstilbene acidpinostrobin

    0.21.3 200400 4070 EtOH HPLC Antioxidant activityDoESEMRSM

    [289]

    Calendula ofcinalis L. Marigold Flower Faradiol 5 500 50 105 kgCO2 kg1

    sample LPLCHPLC

    Preparative HPLC [290]

    Calendula ofcinalis L. Marigold Flower 02.6 120200 2040 030 kgCO2 kg1

    sample Gravimetric analysis Modeling [291]

    Calendula ofcinalis L.Matricaria recutita

    MarigoldChamomile

    Flower 01.8 90100 4050 035 kgCO2 kg1

    sample Soxhlet extractionHydrodistillationModelingSEMParticle sizes effect

    [292]

    Calendula ofcinalis L. Marigold Flower 3.8 100200 2040 50 kgCO2 kg1

    sample GCGCMS

    ModelingSolvent extraction

    [293]

    Calendulae osCrataegus ssp.Matricaria recutita L.

    MarigoldHawthornChamomile

    Flower Phenolic 0.55.5 300689 50 016 LCO2 kg1

    sample0.520% (v/v) EtOH

    HPLCHPLC-PAD-MSGC

    [294]

    Camellia sinensis L. Tea (green) Seed 14.829% 5090 3545 4001800 LCO2 kg1

    sample HPLC RSMDoEAntioxidant activity

    [295]

    Camellia sinensis L. Tea (green) Leaf Caffeine 150300 4560 62.5625 LCO2 kg1

    sample HPLC Ultrasonic assistedMoisture effectDoE

    [296]

    Camellia sinensis L. Tea (green) Leaf Epigallocatechin gallate 100300 4060 30240 LCO2 kg1

    sample HPLC ModelingSoxhlet extraction

    [297]

    Cannabis sativa L. Hemp Seed 17.322.1 300400 4080 3060 kgCO2 kg1

    sample GCMS Soxhlet [298]

    Cannabis sativa L. Hemp Seed 1021 250350 4060 19 kgCO2 kg1

    sample GC-FID RSMDoEParticle sizes effect

    [299]

    Capsicum annuum L. Red pepper Seed, fruit, stem Vitamin A and E 200300 45100 100133 LCO2 kg1

    sampleEtOH (13% v/v)

    Microencapsulation [86]

    Capsicum annuum L. Paprika Fruit Carotenoid 8185 300500 6080 270 kgCO2 kg1

    sample Spectrophotometry Fractionation [88]

    Capsicum annuum L. Paprika Fruit 450 50 1547 kgCO2 kg1

    sample Soxhlet extractionParticle sizes studyModeling

    [85]

  • 120

    M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176

    Table 1 (Continued)

    Scientic name Common name Plant part Target Extractionyield (wt%)

    P (bar) T (C) CO2 & co-solvent Analytical technique Other Features Ref.

    Capsicum annuum L. Paprika Seed 010 200400 40 GCMSHPLC

    Solvent extractionSoxhlet extraction

    [89]

    Capsicum annuum L. Jalapeno Flake 00.11 120320 40 HPLC Modeling [84]Capsicum annuum L. Red pepper Flake 155 320540 40 0160 kgCO2 kg

    1sample HPLC Soxhlet extraction

    MicrographFractal analysisPelletizationModeling

    [87]

    Capsicum annuum L. Red pepper Fruit 0.72.2 100500 4060 0370 kgCO2 kg1

    sample GCMSGC-FID

    SEMUse of biotic elicitor

    [90]

    Capsicum frutescens L. Red pepper Fruit 16 162230 40 Gravimetric analysis DoERSMRancimat testDSCVelocity effect

    [300]

    Capsicum frutescens L. Red pepper Seed Capsaicinoids 1590 162218 40 7168 kgCO2 kg1

    sample HPLC Soxhlet extractionDoERSM

    [301]

    Capsicum spp.Piper nigrumZingiber ofcinale

    ChiliBlack PepperGinger

    Piperine 4.112.0 300 40 030 kgCO2 kg1

    sample1H NMR spectroscopy Soxhlet extraction [124]

    Carthamus tinctorius Safower Seed 1040 220280 3540 7243 kgCO2 kg1

    sample GC-FID Particle size effectModelingPilot scale

    [302]

    Carum carvi L. Caraway Fruit Limonenecarvone

    19 70400 80 03% MeOH03% EtOH03% Acetone03% Acetonitrile03% Hexane03% Dichloromethane03% Chloroform03% Toluene

    GCMSGC-FIDHPLC

    Harvest time effectParticle sizes effect

    [207]

    Carum carvi L. Caraway Seed Carvonelimonene

    5080 2860 FT-IRGC-FID

    Analytical technique study [303]

    Carum carvi L. Caraway Seed 90 50 GCMS Hydrodistillation [304]Carum copticum Carum Seed 1.05.8 101304 3555 13.5 LCO2 kg

    1sample GC

    GCMSHydrodistillationANOVA

    [305]

    Cassia tora Juemingzi Seed 0.27 250 45 GC-FIDGCMS

    [306]

    Catharanthus roseus Leaf Terpenoid indole alkaloids(Vindoline, catharanthine)

    200400 4080 0.30.9 LCO2 kg1

    sampleMeOH 2.26.6% v/v

    HPLC DoESoxhlet extractionUltrasonic solidliquidextractionWater extraction

    [307]

    Ceratonia siliqua L. Carob tree 00.45 (%) 150220 4160 HPLC Antioxidant activityDoE

    [308]

    Chamomilla recutita L. Chamomile Flower 0.54.3 100200 3040 3 kgCO2 kg1

    sample GCMSGC

    Modeling [309]

    Chamomilla recutita L.Rauschert

    Chamomile Flower 1.9 90 40 92 kgCO2 kg1

    sample HPLCGC

    In-line inclusion [310]

    Chrysobalanus icaco Abajeru Leaf Lupenol 0.95 105200 4080 58148 LCO2 kg1

    sample GC-DICGCMS

    Soxhlet extractionHydrodistillation

    [311]

    Cinnamomum zeylanicum Cinnamon Bark Tyrosinasemelanin

    90120 4050 GCMS Soxhlet extractionHydrodistillation

    [312]

    Cistus ladanifer L. Roc Rose Leaf Labdanum 0.10.5 80100 3070 28 kgCO2 kg1

    sample GC Two-step decompressionsystem

    [216]

    Citrullus lanatus Watermelon Fruit Lycopene 0.0010.004 207414 7090 90 LCO2 kg1

    sample1015% EtOH

    HPLC [205]

    Citrullus lanatusHibiscus sabdarriffa Lin

    Kalahari melonRoselle

    Seed Tocopherols 200400 4080 HPLC RSMDoE

    [224]

    Citrullus lanatus Kalahari melon Seed Phytosterol 59.578.5 200400 4080 72 LCO2 kg1

    sample GC-FID RSMDoE

    [313]

  • M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176

    121

    Citrus depressa Fruit Nobiletin, tangeretin 0.41.6 200400 4080 32 LCO2 kg1

    sampleEtOH

    HPLC Particle size effect [314]

    Citrus grandis L. Osbeck Pomelo Fruit Flavonoids 1.72.4 280420 6080 515 LCO2 kg1

    sample Gravimetric Analysis Antioxidant activityRSMDoEConventional solventextraction

    [241]

    Citrus junos Yuzu Seed 1028 200500 4070 GC-FID Soxhlet extraction [315]Citrus latifolia

    TanakaLime Fruit Limonene 1.63.6 90110 4060 60320 LCO2 kg

    1sample GC

    GCMSHydrodistillation [316]

    Citrus maxima Merr Peel 276345 4050 3600 LCO2 kg1

    sample HPLC [317]

    Citrus paradisi L. (variety RubyRed)

    Citrus plants Peel Naringin 78108 4095 515% EtOH HPLC Maceration extractionReux extraction

    [318]

    Citrus paradisi Macf. Grapefruit Seed Limonoidsnaringin

    0.10.6 345483 4060 1030% EtOH8.6 LCO2 kg

    1sample

    HPLC DoERSMMultistep extraction

    [319]

    Citrus sinensis Korean orange Peel Perillyl alcohol 00.9 150200 3060 GC [137]Citrus sinensis Korean orange Peel Perillyl alcohol 04.4 200 50 84 kgCO2 kg

    1sample GC Pilot plant [136]

    Citrus sinensis Orange Fruit 613 200 40 20100 kgCO2 kg1

    sample Gravimetric analysis ModelingDiatomaceous earthScale-up

    [138]

    Citrus sinensis,C.limonC. reticulata

    Cytrus Seed 02.41 85490 40 GC-FIDGC-EM

    Organic solvent extractionExtractors effectFractionation

    [140]

    Citrus sinensis. L. Osbeck Orange Pomace L-limonenepalmitic and oleic acidsn-Butyl benzenesulfonamide-sitosterol

    0.853 100300 4050 0340 kgCO2 kg1

    sample28% (wt.) EtOH

    GCMS Antioxidant capacityUltrasoundSoxhlet extraction

    [139]

    Citrus unshiu Press cake Carotenoids 172448 70 020% EtOH RSMDoE

    [320]

    Cocos nucifera L. Coconut Kernel 9.864.7 517 120 410 LCO2 kg1

    sample Soxhlet extractionDiatomaceous earth

    [321]

    Coffea arabica Coffee Husk/spent 0.59.7 100300 4060 101189 kgCO2 kg1

    sample415% (wt.) EtOH

    HPLC ModelingSoxhlet extractionAntioxidant activity

    [54]

    Coffea arabicaCoffea robusta

    Coffee Residue Kahweolcafestol16-O-methylcafestol

    012 140190 4070 91 kgCO2 kg1

    sample GC-FID DoERSMSoxhlet extraction

    [62]

    Coffea arabicaCoffea robusta

    Coffee Residue 15 190 4055 85 kgCO2 kg1

    sample Gravimetric analysis Economic analysisTryacylglicerides prole

    [61]

    Coffea arabica Coffee Bean Cafestol, kahweol 235380 6090 62.5 LCO2 kg1

    sample HPLC Soxhlet extractionDoE

    [55]

    Coffea arabica Coffee Bean Caffeine 017 152352 5070 0200 kgCO2 kg1

    sample HPLC [58]

    Coffea arabica Coffee Bean 250300 5090 RSMDoE

    [59]

    Coffea arabica variety MundoNovo

    Coffee Bean 152352 5060 05% (wt.) EtOH05% (wt.) isopropyl alcohol

    HPLC [56]

    Coffea canephora var. Robusta Robusta coffee Husks Caffeine 2459 200300 60100 35197 kgCO2 kg1

    sample HPLC [60]

    Coffea spp. Coffee Seed 4.219.4 150350 4060 90 kgCO2 kg1

    sample HRGC Soxhlet extractionModeling

    [57]

    Coix lachrymal-jobi Adlay Seed 8097 100300 3055 7.5200 LCO2 kg1

    sample Gravimetric analysis Ultrasound assisted SFEFlow rate effect

    [322]

    Coix lachrymal-jobi L. var.Adlay

    Adlay Seed 11.682.6 100250 3550 180 LCO2 kg1

    sample GCMS Ultrassound assisted SFEParticle size effect

    [323]

    Colchicum autumnale L. Seed Colchicine 247 2540 07% MeOH HPLC Organic solvent extractionSoxhlet extractionSonication

    [324]

    Commiphora myrrhaAcorus calamus

    CommiphoraAcorus

    Exudatesrhizomes

    Furanogermacranes 3.23.5 90 4550 GCMS HydrodistillationSteam distillation

    [168]

    Coptis chinensis Coptis chinensis Rhizome Berberine 0.157.53 200600 60 EtOHMeOH1,2-Propanediol

    HPLC Soxhlet [325]

  • 122

    M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176

    Table 1 (Continued)

    Scientic name Common name Plant part Target Extractionyield (wt%)

    P (bar) T (C) CO2 & co-solvent Analytical technique Other Features Ref.

    Cordia verbenacea D.C. Leaf -Caryophyllene 34 80300 60 177 kgCO2 kg1

    sample GCMS FractionationSoxhlet extractionHydrodistillationModeling

    [326]

    Cordia verbenacea D.C. Leaf 100300 3050 20100 kgCO2 kg1

    sample Antitumor activity [327]

    Coriandrum sativum L. Coriander Seed 0.82.0 116280 3858 Spectrophotometry Hydrodistillation [328]Coriandrum sativum L. Coriander Seed 0.050.6 90150 4050 47 kgCO2 kg

    1sample GC

    GCMSParticle size effectHydrodistillationSEM

    [329]

    Coriandrum sativum L. Coriander Seed 016.4 200300 35 040 kgCO2 kg1

    sample GC Organic solvent extraction [330]

    Corylus avellana L.Juglans regia

    HazelWalnut

    Fruit 0.050.6 180234 3548 501500 kgCO2 kg1

    sample Gravimetric analysis Modeling [331]

    Corylus avellana L. Hazel Fruit 6080 180234 3548 Rancimat methodHPLCGC

    Solvent extractionDoERSM

    [332]

    Corylus avellana L. Hazel Fruit 150600 4060 0127 kgCO2 kg1

    sample GC Solubility measurementsModeling

    [333]

    Corylus avellana L. Hazel Fruit 117 300450 4060 218 kgCO2 kg1

    sample Gravimetric Analysis RSMDoE

    [334]

    Cratoxylum prunifolium Dyer Leaf Catechins 125250 4080 4.8 LCO2 kg1

    sample HPLC DoE [335]

    Croton zehntneri Pax et Hoff Leaf 00.9 6779 1028 3 kgCO2 kg1

    sample GC Modeling [336]

    Cucumis meloCantalupensisCucumis melo var.reticulatus

    Cantaloupe Seed Linoleic acid 22.730.4 600 40 270 kgCO2 kg1

    sample GC Antioxidant activitySoxhlet

    [337]

    Cucurbita cifolia Fig leaf gourd Seed 4043 180200 3545 GC Modeling [338]Cucurbita cifolia Pumpkin Seed 8693 180200 3545 Soxhlet extraction [146]Cucurbita maxima Pumpkin Seed 630 151344 3575 3001500 LCO2 kg

    1sample GC DoE

    RSM[148]

    Cucurbita moschataCucurbita cifolia

    Pumpkin Seed 1098 250300 55 GCMS Solvent extractionFlow rates efffect

    [150]

    Cucurbita moschata Pumpkin Fruit -Carotene,-carotenelutein ester

    250371 4076 150 LCO2 kg1

    sample HPLC Solvent extractionDoERSM

    [149]

    Cucurbita pepo convar.citrullina

    Pumpkin Seed Spinasterol7,22,25-stigmastatrienol

    36.1 400 40 30 kgCO2 kg1

    sample GCMS Solvent extraction [147]

    Cuminum cyminum L. Cumin Seed Cuminaldehyde 1.73.5 550 100 513 kgCO2 kg1

    sample GC-FID [339]

    Curcuma longa L. Turmeric Rhizome 57 125325 3555 1.76.7 LCO2 kg1

    sample GCMS RSMDoE

    [161]

    Curcuma longa L. Turmeric Rhizome Turmeronear-turmerone

    25 200400 4060 6130 kgCO2 kg1

    sample GCMS Steam distillation [157]

    Curcuma longa L. Turmeric Rhizome 07 300 30 01 kgCO2 kg1

    sample6.916.1% EtOH/Isopropyl

    GC-FID Organic solvent extractionSoxhlet extractionHydrodistillation

    [160]

    Curcuma longa L. Turmeric Rhizome Curcuminoids 4.56.5 250300 45105 Spectrophotometry ModelingPilot plantDrying pretreatment

    [159]

    Curcuma longa L. Turmeric Rhizome Curcuminoids 4.522.6 250300 45 EtOH SpectrophotometryHPLCGC

    Soxhlet extractionModelingDrying pretreatment

    [158]

    Cydonia oblonga Miller Quince Seed 100345 3065 24 LCO2 kg1

    sample0.81.1% (v/v) MEtOH

    GCMS DoERSMUltrasound assistedextraction

    [340]

    Cymbopogon citratus Lemongrass 80 50 19144 LCO2 kg1

    sample030% Hexane030% Dichloromethane

    GC-FID Solvent extractionSteam distillationAccelerated solventextraction

    [341]

  • M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176

    123

    Cymbopogon citratus Lemongrass Leaf 0.41.7 80120 2350 2.83.7 kgCO2 kg1

    sample GCMS [342]

    Cynanchum paniculatum(Bge.) Kitag

    Root Paenol 0.16.0 100200 4555 02000 LCO2 kg1

    sample HPLC-PDAHSCCC

    Particle size efffectDoEUltrasonic extractionSteam distillationSoxhlet extractionMicrowave-assistedextraction

    [343]

    Cynara cardunculus L. Cardoon Seed 4.724 150300 3555 180 kgCO2 kg1

    sample TLCGCHPLC

    Soxhlet extractionBiodiesel production

    [183]

    Cyperus rotundus Rhizome -Cyperone 2.6 200 40 HPLCMS

    Purication [174]

    Daucus carota L. Carrot Root Carotenes 0.25 330 40 24 kgCO2 kg1

    sampleEtOH

    NMRHPLCGC

    Pilot scale [108]

    Daucus carota L. Carrot Root Carotenoids 1.52.5 276551 4070 2.55.0% (w/w) Canola oil HPLC Particle sizes effectSolvent extractionANOVA

    [107]

    Daucus carota L. subsp. carota Carrot Umbels 90 40 GCMS Antifungal activityHydrodistillation

    [110]

    Daucus carrota L., cultivarChanteney

    Carrot Root Carotol 90100 4050 016 kgCO2 kg1

    sample GC-FIDGCMS

    Antimicrobial activityHydrodistillationParticle size study

    [109]

    Diospyros kaki Thunb. Persimmon Fruit Carotenoids 36 300 4080 520% EtOH280000 LCO2 kg

    1sample

    HPLC [344]

    Diplotaenia cachrydifolia Aerial parts 0.32.5 101304 3575 GCMS RSMDoE

    [345]

    Diplotaenia cachrydifolia Aerial parts Dillapiolelimonene-calacorene

    0.02.4 101304 3575 315 LCO2 kg1

    sample03.8% (v/v) MeOH

    GCGCMS

    Articial neural network [346]

    Dracocephalum moldavica L. Moldavian dragonhead Herb Geraniol 1.3 450 40 518 kgCO2 kg1

    sample GCMS HydrodistillationSoxhlet extractionSolvent extractionTwo-step decompressionsystem

    [193]

    Drosera intermedia Plant Plumbagin 0.6 200 40 87 kgCO2 kg1

    sample HPLCDAD [347]

    Echinacea purpurea Kava Aerial parts 23 250300 4060 020 kgCO2 kg1

    sample HPLC [348]

    Saw Palmetto Fruit 212St. Johns wort Flower/stem 1012

    Root 38Ekebergia capensis Wood 405 80 2% (mol) H20 NMR Uterotonic activity [349]Elaeis guineensis Palm Kernel Triglycerides 80 207483 4080 GC Fractionation

    Solubility analysisMicrograph

    [350]

    Elaeis guineensis Palm Kernel cake 09.26 275413 4070 6.6610 LCO2 kg1

    sample Particle sized effectANOVA

    [351]

    Elaeis guineensis Palm Fruit Oil 77.8 140300 4080 GC-FID Soxhlet extraction [352]Elaes guineensis Palm Fiber Fatty acids

    Carotene, Lipids2.95.3 200300 4555 317 kgCO2 kg

    1sample Spectrophotometry Modeling [187]

    Elettaria cardamomum L. Elettaria Seed 25 90110 4050 218 kgCO2 kg1

    sample GCMS HydrodistillationParticle size effect

    [353]

    Elettaria cardamomum Maton Cardamom Seed 100300 3555 25% (w/w) EtOH HPLCGCMS

    Subcritical propane extractionSolvent extraction

    [354]

    Ephedra sinica Aerial parts 136340 4080 010% H2O010% MeOH

    GC Organic solvent extraction [355]

    Equisetum giganteum L. Horsetail Aerial parts 00.9 120300 3040 053 kgCO2 kg1

    sample GCGCMS

    Organic solvent extraction [356]

  • 124

    M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176Table 1 (Continued)

    Scientic name Common name Plant part Target Extractionyield (wt%)

    P (bar) T (C) CO2 & co-solvent Analytical technique Other Features Ref.

    Erythroxylum coca var. coca Coca Leaf Cocaine 150250 40100 515% (v/v) MeOH/H2O (29:71) GC-FIDGCMS

    DoERSM

    [357]

    Eucalyptus camaldulensis Eucalypt Leaf 1,8-Cineole 1.42.0 80250 4060 2500 LCO2 kg1

    sample GCMS Hidrodistillation [51]

    Eucalyptus camaldulensisvar.brevirostris

    Eucalypt Leaf Gallic acid 12.016.6 400 70 15% EtOH200 LCO2 kg

    1sample

    RP-HPLC Antioxidant activityHydrodistillation

    [50]

    Eucalyptus citriodoraMelissa ofcinalisMonarda citriodoraCymbopogon citratus

    Lemon eucalyptLemon balm

    Leaf 138414 4060 100240 LCO2 kg1

    sample GCGCMS

    HydrodistillationMANOVA

    [358]

    Eucalyptus globulus Eucalypt Bark Betulinic acidbetulonic acidoleanolic acidursolic acid3-acetyloleanolic acid3-acetylursolic acid-sitosterol

    0.01.3 100200 4060 80 kgCO2 kg1

    sample GCMS Soxhlet extractionKinetic and equilibriumproperties calculation

    [46]

    Eucalyptus globulus Eucalypt Bark Phenolic 0.280.51 300 5070 45 LCO2 kg1

    sampleEtOH (1520% w/w)

    HPLC-UVESI-MS

    Antioxidant activityDoERSM

    [53]

    Eucalyptus globulus Eucalypt Bark Betulinic acidbetulonic,acidoleanolic acidursolic acid3-acetyloleanolic acid3-acetylursolic acid-sitosterol

    120200 4060 551 kgCO2 kg1

    sample05% (wt.) EtOH

    GCMS Modeling [47]

    Eucalyptus globulus Eucalypt Bark Betulinic acidbetulonic,acidoleanolic acidursolic acid3-acetyloleanolic acid3-acetylursolic acid-sitosterol

    0.51.7 100200 40 8110 kgCO2 kg1

    sample08% (wt.) EtOH

    GCMS Soxhlet extractionFractionation

    [49]

    Eucalyptus globulus Eucalypt Bark Betulinic acidbetulonic,acidoleanolic acidursolic acid3-acetyloleanolic acid3-acetylursolic acid-sitosterol

    0.041.2 100200 4060 31 kgCO2 kg1

    sample05% (wt.) EtOH

    GCMS DoE [48]

    Eucalyptus grandisEucalyptus globulus

    Eucalypt Bark Methyl morolate 200 60 551 kgCO2 kg1

    sample GCMSNMR

    Soxhlet extraction [52]

    Eucalyptus spathulataEucalyptus microtheca

    Eucalyptus Leaf 100300 4555 MeOH GC-FID Hydrodistillation [45]

    Eucalyptus tereticornis

    Zingiber ofcinale Roscoe

    EucalyptusCloveGinger

    Budleafrhizome

    0.811 67250 1540 2.5 kgCO2 kg1

    sample GCMS ModelingSolubility measurementFlow rate study

    [359]

    Eucommia ulmoides Seed Aucubin 0.62.0 180300 45330 400 LCO2 kg1

    sample03% (v/v) H2OEtOH03% (v/v) H2O03% (v/v) MeOH03% (v/v) EtOH03% (v/v) H2OMeOH03% (v/v) H2OEtOH

    HPLC Soxhlet extraction [360]

    Eugenia caryophillus Clove Bud 66150 1550 Gravimetric analysis ModelingScale-up

    [361]

    Eugenia caryophillusVetiveria zizanioides (L.)Nash ex Small

    CloveVetiver

    Budroot

    5.813.3 100200 3540 436 kgCO2 kg1

    sample Gravimetric ModelingExtractor geometry studyFlow rates effectScale-up

    [362]

    Eugenia caryophyllata Thunb. Bud Eugenol 17.1 300 50 HPLC SFC [363]Eugenia caryophyllata Thunb. Clove Bud Eugenol 1823 100300 3050 16,000 LCO2 kg

    1sample GC

    GCMSHidrodistillationSoxhlet extractionParticle sizes effectDoE

    [364]

  • M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176

    125

    Eugenia uniora L Brazilian cherry Fruit Sesquiterpenesketones

    0.420.56% 150250 4060 36 kgCO2 kg1

    sample GCMS ANOVAPCAFDA

    [365]

    Euphorbia rigida Euphorbia Leaf + stalk Hydrocarbons 8.6 400 50 0.6 kgCO2 kg1

    sample010% MEtOH

    GC-FIDGCMS

    Soxhlet extraction [366]

    Evodia rutaecarpa Fruit Evodiaminerutaecarpine

    0.66.5 200400 5070 180,000 LCO2 kg1

    sample16% (v/v) MeOH

    HPLC Soxhlet extraction [367]

    Ferula assa-foetida 0.85.5 101303 4565 1.54.7 LCO2 kg1

    sample4.8% (v/v) MeOH

    GCGCMS

    Hydrodistillation [368]

    Ferulago Angulata Aerial parts 0.050.82 90190 3555 [369]Foeniculum vulgare

    Thymus vulgarisFennelThyme

    Seedleaf

    120 40 GCMSGC-O

    Coupled distillation [37]

    Foeniculum vulgare Fennel Seed (E)-anethol 200350 4555 3.65.4 LCO2 kg1

    sample05% MEtOH

    GCMS Hydrodistillation [370]

    Foeniculum vulgare Fennel Seed 213 100300 3040 0449 kgCO2 kg1

    sample GCTLC

    HydrodistillationModeling

    [371]

    Foeniculum vulgare Fennel Fruit 098 90100 4050 35106 kgCO2 kg1

    sample GCGCMSGravimetric analysis

    Two-step decompressionHydrodistillation

    [372]

    Foeniculum vulgare Mill Fennel Seed 1.55.5 80150 4057 36285 kgCO2 kg1

    sample GCGCMS

    Hydrodistillation [373]

    Garcinia mangostana L. Mangosteen Fruit Xanthones 0.236.5 200300 4060 100300 kgCO2 kg1

    sample HPLC RSMDoEAntioxidant activity

    [374]

    Garcinia mangostana L. Mangosteen Fruit Xanthones 5.3715.14 180380 4060 EtOH (5% w/w) HPLCESI/MS Antioxidant activity [375]Ginkgo biloba Ginkgo biloba Leaf Flavonoids 00.24 100300 3565 616 LCO2 kg

    1sample

    60% (v/w) EtOH

    UVvisspectrophotometry

    SEM [239]

    Ginko biloba Ginko biloba Leaf Flavonoidsterpenoids

    0.02.3 100300 5080 110% EtOH HPLC DoEEtOH preextraction

    [376]

    Ginko biloba Ginko biloba Leaf Terpene lactoneavonoids

    4.511.4 242312 60120 524% (mol) EtOH HPLC Soxhlet extraction [377]

    Ginko biloba Ginko biloba Leaf Bilobalideginkolides

    204340 4080 520% (v/v) MeOH16/4% (v/v) MeOH/H2O

    HPLCESI-MS Organic solvent extraction [378]

    Glycine variety Soybean Distillate Fatty acids, tocopherols,sterols, squalene

    3265 241310 5090 RP-HPLC [152]

    Glycine variety Soybean Flakes Lecithin 655 80 6.7 LCO2 kg1

    sample15% EtOH

    HPLC SCFFractionation

    [155]

    Glycine variety Soybean Distillate Tocopherols 110318 5060 (14.7) 104 LCO2 L1sample GC ODS traps [151]Glycine variety Soybean Bean 219 300500 4060 1820 kgCO2 kg

    1sample Gravimetric analysis Particle sizes effect

    ModelingScale-up

    [153]

    Glycine variety Soybean Bean Triglycerides 07 100300 4050 814.5 LCO2 kg1

    sample HPLC RSMDoE

    [154]

    Glycyrrhiza uralensis Fisch Glycyrrhiza Root 1.22.8 150350 4060 614 kgCO2 kg1

    sample GCMS Antibacterial activity [379]

    Gossypium spp. Cotton Seed Gossypol 2.143.1 350550 6080 12003600 LCO2 kg1

    sample RSMDoE

    [380]

    Guaicum Bulnesia Wood 0.7 120 80 GCMS Hydrostillation [381]Guilielma speciosa Pupunha Fruit Fatty acids

    carotenes13 250300 5045 6593 kgCO2 kg

    1sample GC Modeling [189]

    Helianthus annuus L. Sunower Seed 090 250 40 0650 kgCO2 kg1

    sample HPLC ModelingTwo-step decompressionsystem

    [67]

    Helianthus annuus L. Sunower Distillate Polyphenol 20100 200700 4080 6119 kgCO2 kg1

    sample Gravimetric analysis Three-step SFE extractionSoxhlet extractionModeling

    [63]

    Helianthus annuus L. Sunower Distillate Tocopherolsphytosterols

    20100 150230 65 HPLCUV/VisHPLC-ELSDGC

    Pilot-scale [69]

    Helianthus annuus L. Sunower Leaf Allelopathic compounds 02 100500 3550 5% MeOH5% DSMO5% H2O

    DoECluster Analysis

    [66]

    Helianthus annuus L. Sunower Leaf Allelopathic compounds 0.21.6 380 50 42126 kgCO2 kg1

    sample3.84.7% H2O

    Pilot scaleFlow rates effectCluster AnalysisBiological activity

    [64]

  • 126

    M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176Table 1 (Continued)

    Scientic name Common name Plant part Target Extractionyield (wt%)

    P (bar) T (C) CO2 & co-solvent Analytical technique Other Features Ref.

    Helianthus annuus L. Sunower Leaf Allelopathic compounds 0.11.2 300500 50 2126 kgCO2 kg1

    sample Gravimetric analysis Cluster AnalysisPilot scale

    [65]

    Helianthus annuus L. Sunower Seed 095 200600 4080 425 kgCO2 kg1

    sample Gravimetric analysis ModelingFlow rates studyParticle sizes effect

    [68]

    Helichrysum italicum Flower 04.5 100200 4060 36 kgCO2 kg1

    sample GCMSGC-FID

    [382]

    Hemerocallis disticha Daylily owers Flower Luteinzeaxanthin

    4.868.12 300600 5095 HPLC Antioxidant activity [383]

    Hibiscus cannabinus L. Kenaf Seed 0.520 200600 4080 038 kgCO2 kg1

    sample Gravimetric analysis Soxhlet extractionUltra-sonic assisted solventextraction

    [384]

    Hibiscus cannabinus L Kenaf Seed 400600 4080 38 kgCO2 kg1

    sample [385]

    Hippophae rhamnoides L Seabuckthorn Fruit Tocopherolcarotene

    150350 3555 2.4 kgCO2 kg1

    sample030% (v/w) mEtOH030% (v/w) EtOH030% (v/w) 2-Propanol

    GCMSHPLC

    DoESoxhlet extractionAntioxidant activityRSM

    [202]

    Hippophae rhamnoides L. Sea buckthorn Fruit -Sitosterol 9.910.9 150600 4080 0137 kgCO2 kg1

    sample HPLC Solvent extractionSoxhlet extraction

    [226]

    Hippophae rhamnoides L. Sea buckthorn Seed 0.12.9 150300 3045 267 LCO2 kg1

    sample Gravimetric Analysis 2-Step decompressionParticle size effect

    [386]

    Hippophae rhamnoides L. Sea buckthorn Seed 16 200300 3540 GC Particle size effectOrganic solvent extraction

    [387]

    Hippophae rhamnoides L. Sea buckthorn Fruit -Sitosterol 111 150600 4080 0140 kgCO2 kg1

    sample HPLC Modeling [227]

    Hippophae rhamnoides L. Seabuckthorn Seed 2.489.287.609.68

    100400 4575 24 kgCO2 kg1

    sampleEtOH, MeOH, 2-propanol

    HPLC DoERSMAntioxidant activity

    [388]

    Hippophae rhamnoides L. Sea buckthorn Fruit Aliphatic hydrocarbons 81 138276 4065 MicrographANOVASensory evaluations

    [527]

    Hordeum vulgare L.Zea mays

    MaltCorn

    Seed 1.11.4 650 60100 Gravimetric Soxhlet extraction [389]

    Hordeum vulgare L. var. Robur Barley Tocochromanols 4.04.7 200450 40 30 LCO2 kg1

    sample TLCHPLC

    FractionationSoxhlet extractionFolch method

    [390]

    Hordeum vulgare L. Brewers Spent Grain Tocopherol 0.21.7 100350 4080 66400 LCO2 kg1

    sample HPLC Economic analysis [391]

    Hylocereus undatus White pitaya Seed 5.54 250 40 GCMS Soxhlet extractionMicrowave-assistantextractionAqueous enzymaticextraction

    [392]

    Hypericum carinatum: Flower Phloroglucinol,benzophenone derivatives

    1.053.04 90/120/150/200(sequence)

    4060 76 kgCO2 kg1

    sample HPLC ANOVA [393]

    Hypericum perforatum L.Ginkgo biloba

    St. Johns wortGinko biloba Leaf

    Hyperforin, dhyperforinbilobalide, ginkgolide A, B, Q

    80350

    30100

    EtOH/acetic acid (9:1) [394]

    Hypericum perforatum L. St. Johns Wort 14 100350 40 2675 LCO2 kg1

    sample GCMS Steam distillationParticle size effect

    [395]

    Hypericum perforatum L. St. Johns Wort 04.8 100200 4050 45 kgCO2 kg1

    sample ModelingOptimization

    [246]

    Hyssopus ofcinalis Hyssop Leaf + ower Terpinen-4-ol1,8-cineol

    1.02.3 90100 4050 0.28 kgCO2 kg1

    sample GC-FID HydrodistillationModelingSEM

    [396]

    Hyssopus ofcinalis Hyssop Root 0.12.9 100350 4575 0.06.0% (v/v) MeOH GCGCMS

    DoEHydrodistiilation

    [397]

    Ilex paraguariensis Yerba mate Leaf Methylxantines caffeine 03.79 120200 4070 HPLC [398]Illicium verum Chinese star anise Seed Fatty acids 6.8023.72 100300 3050 (015%) (v/v) EtOH HPLC RSM

    DoE[186]

    Inula viscosa (L.) AitonInula graveolens (L.) Desf

    Leaf Sesquiterpenelactones, sesquiterpene acidsand avonoids

    0.65 90 50 GCMS Hydrodistillation2-step decompression

    [399]

    Jatropha curcas L. Seed Triglycerides 14.448.9 250350 4060 GC RSMSoxhlet extraction

    [184]

    Juglans regia L. Walnut Fruit 095 180234 3548 0550 kgCO2 kg1

    sample HPLC Soxhlet extractionRancimat method

    [400]

    Juglans regia L. Walnut 68.2 689 85 70 LCO2 kg1

    sample Gravimetric Subcritical solvent extractions [401]

  • M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176

    127

    Juniperus communis L. Juniper Fruit 0.20.4 90200 40 30 kgCO2 kg1

    sample GC-FIDGCMS

    Hydrodistillation [402]

    Juniperus communis L. Juniper Fruit 4.512.5 90125 4050 618 kgCO2 kg1

    sample GCGCMS

    Hydrodistillation [403]

    Juniperus communis L. Juniper Fruit 0.14 80100 40 180 kgCO2 kg1

    sample GCMSGC-FID

    Steam distillation [404]

    Juniperus communis L. Juniper Fruit 0.20.5 90200 40 30 kgCO2 kg1

    sample GC-FIDGCMS

    HydrodistillationParticle sizes effect

    [405]

    Juniperus communis L. Juniper Leaf 200350 4555 05% MeOH GCMSGC-FID

    Hydrodistillation [406]

    Juniperus oxycedrus L. Juniper Leaf + fruit 015 80100 50 GCMS 2-Step decompressionHydrodistillationAntiviral activity test

    [407]

    Juniperus virginiana L. Cedarwood Wood 4.510.4 103689 40100 20.8 LCO2 kg1

    sample GC Steam distillation [408]

    Juniperus Virginiana L. Cedarwood Wood Cedrolcedrene

    2.53.9 414 100 9097273 LCO2 kg1

    sample GC Water extraction [409]

    L. Stoechas subspecies C. Boiss Lavender Flower 1.2 80140 3550 1040 kgCO2 kg1

    sample GC Modeling [410]

    Laurus nobilis BayBasilCorianderDillSpearmintMarjoramPeppermintOreganoParsleyRosemarySageThyme

    Leaf Tocopherol 101405 40 HPLC Algae extraction [135]

    Laurus nobilis L. Laurel Leaf Monoterpenes, oxygenatedderivates

    1.37 100 40 17 kgCO2 kg1

    sample GC-FIDGC-M

    [132]

    Laurus nobilis L. Laurel Leaf 1,8-Cineole 0.82 90 50 21 kgCO2 kg1

    sample GCMS Hydrodistillation2-step decompression system

    [133]

    Laurus nobilis L. Daphne Seed 028 340 3575 015 LCO2 kg1

    sample HPLC [134]

    Laurus nobilis L. Fruit 0.9 90250 40 HPLC Hydrodistillation [131]Lavandula angustifolia Lavender Flower 5.59.8 73207 4653 112 LCO2 kg

    1sample GCMS RSM

    DoEAntioxidant activity

    [411]

    Lavandula angustifolia Lavender Flower Linalyl acetate 7795 80120 4555 GC-FID DoEPeriodic static-dynamicprocedure

    [412]

    Lavandula hybrida Lavandin Flower Linaloollinalyl acetatecamphor1,8-cineole

    79.499.0 10130 3595 0.10.93 LCO2 kg1

    sample GC-FID RSMDoESoxhlet extraction

    [413]

    Lavandula stoechas L. ssp.cariensis (Boiss.) Rozeira

    Flower RSMDoESolvent extraction

    [414]

    Lavandula viridis LHr Aerial parts Camphor 12.212.7 120180 40 GCFIDGCITMS

    HydrodistillationFractionationAntioxidant activity

    [212]

    Lepidium apetalum Seed 11.7935.56 200300 5070 375 LCO2 kg1

    sample GCMS DoERSMAntioxidant activity

    [415]

    Levisticum ofcinale Koch.Apium graveolens L.

    LovageCelery

    Seedleafroot

    1.62.2 200350 40 100200 kgCO2 kg1

    sample GCMS Extractor size study [416]

    Ligusticum chuanxiong Ligusticum Root 05 200350 5570 880 LCO2 kg1

    sample GCMS [417]

    Lingusticum chuanxiong Ligustilidebutylidenephalide

    03.85 350 70 16 LCO2 kg1

    sample GCMS (SIM) [418]

    Linum usitatissimum L. Flax Waste Policosanols 7.4 552 60 110% (v/v) EtOH60 LCO2 kg

    1sample

    GCMS Organic solvent extraction [74]

    Linum usitatissimum L. Flax Seed 35.741.0 413620 100 (0.61.2) 105 LCO2 kg1sample01 LEtOH kg

    1sample

    GC-FID RSMSoxhlet extractionParticle sizes effect

    [73]

  • 128

    M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176Table 1 (Continued)

    Scientic name Common name Plant part Target Extractionyield (wt%)

    P (bar) T (C) CO2 & co-solvent Analytical technique Other Features Ref.

    Linum usitatissimum L. Flax Seed 2125 210550 5070 10210 kgCO2 kg1

    sample HPLCGC-FID

    Soxhlet extraction [71]

    Linum usitatissimum L. Flax Seed Lignans 1.42.7 350450 4060 163 kgCO2 kg1

    sample HPLC RSMDoE

    [72]

    Linum usitatissimum L. Flax Straw Wax 0.521.23 200400 4070 GCMS RSMDoE

    [70]

    Linum usitatissimum L. Flax Seed 1040 300500 5070 272 kgCO2 kg1

    sample Gravimetric analysis Particle size effectFlow rate effectRSMDoE

    [75]

    Linum usitatissimum L. Linseed Seed 8.628.8 250 50 05% (v/v) EtOH Economic analysisModeling

    [419]

    Linum usitatissimumBrassica rapaBrassica napusBrassica junceaSinapis alba

    Flaxsolincanolamustard

    Seed 2149 517 100 7.5132 LCO2 kg1

    sample015% EtOH

    GC Reference method extraction [420]

    Lippia alba Mill. Lippia Leaf Limonenecarvone

    0.25.7 80120 4050 51654 kgCO2 kg1

    sample GC HydrodistillationSolvent extractionSoxhlet extractionSEM

    [210]

    Lippia alba Mill. Leaf/stem Carvone GCMS HydrodistillationSimultaneous distillationMicrowave-assistedHydrodistillationAntioxidant activity

    [421]

    Lippia dulcis Trev. Lippia Leaf + ower 1.63.2 100140 4550 23 kgCO2 kg1

    sample GCMS,LCMSHPLC

    Hydrodistillation [422]

    Lippia sidoides Lippia Leaf Thymol 1.21.8 6779 1025 2 kgCO2 kg1

    sample GCMS Steam distillationSolvent extractionModeling

    [423]

    Lycopersicum esculentumCorylus avellana

    TomatoHazelnut

    Pulp/fruit Lycopene 72.580.0 400 60 2151 kgCO2 kg1

    sample HPLC Mixture of raw materials [203]

    Macadamia integrifolia Macadamia Fruit 00.65 100180 4080 53 LCO2 kg1

    sample GC Modeling [424]

    Majorana hortensis Moench Marjoram Leaf 1.4 200 50 80 LCO2 kg1

    sample GCMS Hydrodistillation [209]

    Mangifera indica L. Mango Leaf Mangiferinquercetin

    100400 3575 240 kgCO2 kg1

    sample020% EtOH020% MEtOH

    HPLC Antioxidant activityHydrodistillation

    [425]

    Marchantia convoluta 0.84.7 50200 3565 1.85.3 LCO2 kg1

    sample GCMS Organic solvent extraction [426]

    Marchantia convoluta Whole plant 0.74.7 50200 3565 6 LCO2 kg1

    sampleMeOH

    GCMS [427]

    Matricaria chamomilla Chamomile Flower Matricinechamazulene-bisabolol

    24 100250 3040 GCMSHPLC

    Soxhlet extractionSteam distillationScale-upFractionation

    [428]

    Matricaria recutita Chamomile Flower 240 40 GCMS Modeling [429]Maydis stigma Flower Flavonoids 250450 4060 EtOH

    4000 LCO2 kg1

    sample

    UVVisSpectrophotometry

    DoE [237]

    Maytenus aquifolium Martius(Celastraceae)

    Leaf 1.06.6 101 50 020% (v/v) pentane010% (v/v) EtOH010% (v/v) MeOH

    HRGCFID Soxhlet extractionMaceration/Sonicationextraction

    [430]

    Maytenus ilicifolia Leaf 100250 2040 GCMS Particle sizes study [431]Melaleuca cajuputi Leaf Sesquiterpenes,

    oxygenated derivatives1.64.2 83197 4486 GC-FID

    GC-MSOrganic solvent extractionANOVA

    [432]

    Melissa ofcinalis L. Lemon balm Aerial parts Gallic acid, protocatechuicacid,p-hydroxybenzoic acidvanillic acid, syringic acid

    100300 4080 MeOH HPLC Soxhlet extractionOrganic solvent extraction

    [433]

    Melissa ofcinalis, L. Lemon balm Leaf Phenols 230 100180 3540 Rancimat method [434]Mentha pulegium L. Pennyroyal Leaf + lower 1098 100 50 50100 kgCO2 kg

    1sample Gravimetric Steam distillation

    Modeling[435]

    Mentha pulegium L. Pennyroyal Aerial parts Pulegonementhone

    100200 3555 15 kgCO2 kg1

    sample053% MEtOH

    GCMS Hydrodistillation [436]

    Mentha spicataSalvia desoleana

    MintSage

    Leaf 90 50 GCMS FractionationHydrodistillation

    [437]

  • M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176

    129

    Mentha spicata L. Spearmint Leaf Carvonelimonene

    00.32 69103 3949 2288 kgCO2 kg1

    sample Gravimetric Analysis Modeling [438]

    Mentha spicata L. Spearmint Flake 1.32.9 100300 4050 1520% (w/w) EtOH60 kgCO2 kg

    1sample

    GCMS HydrodistillationSoxhlet extractionAntioxidant activity

    [439]

    Mentha spicata L. Spearmint Leaves 0.251.82 90170 3555 Gravimetric analysis DoEParticle size effect

    [440]

    Mentha spicata L. Spearmint Leaves Catechin, epicatechin,rutin, luteolin, myricetin,apigenin and naringenin

    3.06.9 100300 4060 30 kgCO2 kg1

    sample HPLC RSMDoE

    [441]

    Microula sikkimensis Seed 2735 210270 3555 6.818.4 LCO2 kg1

    sample GC DoE [442]

    Mikania glomerata Spreng Guaco Leaf Coumarin 100 70 HPLCUV MacerationUltrasoundInfusion

    [443]

    Momordica charantia L. Fruit Flavonoids 1.21.5 250350 3050 5551000 LCO2 kg1

    sampleEtOH

    DoERSMAntioxidant activity

    [238]

    Morinda citrifolia Noni Leaf + stem Phenolic compounds 0.22.0 103241 2550 Gravimetric Analysis Antioxidant activity [444]Moringa oleifera Kernel 6.7136.13 150300 3560 015% (w/w) EtOH GC RSM

    DoE[445]

    Morus alba Mulberry Leaf and bark -Sitosterol 0.32.0 200450 40 060 kgCO2 kg1

    sample GCFIDGCMS

    Organic Solvent ExtractionSoxhlet extraction

    [225]

    Myristica fragrans Nutmeg Seed Terpenes 24 150200 4050 GCMS ModelingParticle size effect

    [446]

    Myristica fragrans Nutmeg Fruit 2-Alkylcyclobutanones 151253 80 80 LCO2 kg1

    sample GCMSGC-HRMS

    [447]

    Myrtus communis L. Leaf 0.56.3 100350 0.24 LCO2 kg1

    sampleMeOH

    GCMSGC-FIDHPLC

    RSMDoEAnova

    [448]

    Nepatia cataria Catnip Leaf, stem, bud Nepetalactone 4.65.7 413 40 TLC [449]Nepeta persica Aerial parts Nepetalactone 0.228.9 100355 3575 12 LCO2 kg

    1sample

    06% (v/v) MeOH

    GC-FIDGCMS

    Steam distillationDoE

    [450]

    Nicotiana spp Tobacco Leaf Solanesol 80250 2560 GCMS [451]Nicotiana tabacum L. Tobacco Leaf Nicotine, neophytadiene 0.41.0 100300 40 GCMS [452]Nigella damascena Nigella Seed 10.650.0 150350 40 01% EtOH GC

    GCMSSoxhlet extraction2-step decompression system

    [453]

    Nigella sativa L. Black Cumin Seed Thymoquinone 0.20.3 150200 3545 GCHPLC

    DoENeural networksModeling

    [234]

    Nigella sativa L. Black Cumin Seed 1428 200500 40 68 LCO2 kg1

    sample UVVisspectrophotometry

    Antioxidant activity [454]

    Nigella sativa L. Black Cumin Seed 0.831.7 200300 4070 60 LCO2 kg1

    sample HPLC Soxhlet extraction [455]

    Nigella sativa L. Black Cumin Seed Thymoquinone 150350 4050 90120 kgCO2 kg1

    sample0.3 LEtOH kg

    1CO2

    AntioxidantDoE

    [235]

    Ocimum basilicum Basil Seedling 523 100300 3050 0.30.5 kgCO2 kg1

    sample120% H2O

    GCMSESI-MS

    Economic analysis [177]

    Ocimum basilicum Basil Seed 1.081.95 99243.7 2550 36 kgCO2 kg1

    sample GCMS Oil characterization [176]

    Ocimum gratissimum L. Clove basil Leaf 0.911.79 100300 40 GC-FID Fertilizer dosage effectHarvesting time effect

    [178]

    Ocimum gratissimum L.Ocimum micranthum WilldOcimum selloi Benth

    Ocimum Leaf Eugenol 0.12.1 70 33 GCMS HydrodistillationSteam distillation

    [175]

    Oenothera biennis L. Primrose Seed Fatty acids 21 200300 4060 155 kgCO2 kg1

    sample GC Soxhlet extractionModeling

    [185]

    Olea europaea L. Olive Husk 475 100300 4060 60009000 LCO2 kg1

    sample Gravimetric Analysis Soxhlet extractionRSMDoE

    [230]

    Olea europaea L. Olive Husk 6480 75350 4060 840036,000 LCO2 kg1

    sample01% EtOH

    HPLC RSMDoEFractionation

    [456]

    Olea europaea L. Olive Leaf Tocopherol 438 250450 4060 200600 LCO2 kg1

    sample HPLC Soxhlet extraction [457]

    Olea europaea L. Olive Pomace Tocopherols 350 50 SFCGCMS

    Fractionation [229]

    Olea europaea L. Olive Pomace Squalene 03 75125 3343 517 kgCO2 kg1

    sample GC-FID DoERSMSolubility

    [200]

  • 130

    M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176Table 1 (Continued)

    Scientic name Common name Plant part Target Extractionyield (wt%)

    P (bar) T (C) CO2 & co-solvent Analytical technique Other Features Ref.

    Olea europaea L. Olive Leaf Oleuropein 100300 50100 72,000 LCO2 kg1

    sample020% (v/v) EtOH020% MeOH020% H2O

    HPLCLC-ESI

    [458]

    Ophiopogon japonicus Root 6-Aldehydo-isoophiopogonoA,6-formyl-isoophiopogonanoneA

    0.10.3 150350 5565 50 LCO2 kg1

    sampleMeOH

    HPLCESI-MSNMR

    DoE [459]

    Opuntia dillenii Pear bush Seed 4.26.0 250400 6550 13133 kgCO2 kg1

    sample GCMS Antioxidant activityDoERSM

    [460]

    Origanum majorana Marjoram Leaf and top 020 100400 4060 HPLC Organic solvent extractionRancimat methodDoERSM

    [461]

    Origanum majorana Marjoram Aerial parts 3.8 450 50 29 kgCO2 kg1

    sample GCGCMS

    Soxhlet extractionAntimicrobial tests

    [462]

    Origanum virens L. Oregano Flower 595 50300 2747 055 kgCO2 kg1

    sample GC Hydrodistillation [144]

    Origanum virens L. Oregano Bract 5080 70200 2747 33100 kgCO2 kg1

    sample Gravimetric analysis ModelingEffect of particle sizeSEM

    [145]

    Origanum vulgare L.Thymus zygis L.Salvia ofcinalisRosmarinus ofcinalis L.

    OreganoThymeSageRosemary

    Leaf 0.93.2 300 40 20 kgCO2 kg1

    sample HPLCGCMS

    Pilot scaleTwo-step decompression

    [142]

    Origanum vulgare L. Oregano Leaf 0.115.3 150300 4060 07% EtOH LCMSLC-DAD

    Pilot scale [141]

    Origanum vulgare L. Oregano 150 40 7% EtOH GCMS Pilot scaleAntimicrobial activity

    [143]

    Oriza spp. Rice Bran 205320 4580 7854 LCO2 kg1

    sample HPLC FractionationDeacidicationLikensNickerson extraction

    [97]

    Oriza spp. Rice Bran Lipids, -oryzanol 680 3075 2941 kgCO2 kg1

    sample HPLC Solvent extraction [96]

    Oriza spp. Rice Bran 025 345689 4080 018 kgCO2 kg1

    sample GravimetricHPLC

    Soxhlet extractionSolubility analysis

    [94]

    Oriza spp. Rice Bran -Oryzanols 18.1 300 40 78 kgCO2 kg1

    sample GC Soxhlet extraction [95]

    Oryza sativa L. Rice Bran Aroma 120 50 2040 LCO2 kg1

    sample GCMS Cooking stage [91]

    Oryza sativa L. Rice Bran 020 100400 5060 379 kgCO2 kg1

    sample GC-FID DeacidicationPilot scaleParticle size effectEconomic studySoxhlet extractionModeling

    [92]

    Oryza sativa L. Rice Bran Niosomes 11.2 200 40 1035% (w/v) EtOH HPLCTPC

    Biological activity [93]

    Panax ginseng Ginseng Root 1.110.7 104312 3560 6250 LCO2 kg1

    sample06% EtOH

    HPLC Soxhlet extractionUltrasonic extraction

    [129]

    Panax ginseng Ginseng Ginsenosides 240 45 1080 LCO2 kg1

    samplebis(2-ethylhexyl) sodiumsulfosuccinate/EtOH

    Gravimetric Ultra-sound assisted SFEReverse microemulsion

    [130]

    Panax quinquefolium American ginseng Root Ginsenoside 300 50 3% (v/v) EtOH HPLC Ultra High pressure extractionSoxhlet extractionUltrasound-assistedextractionMicrowave-assistedextraction

    [127]

    Panax quinquefolius Ginseng Root Ginsenosides 2040 207483 110 1131% (mol) MetOHDMSO

    HPLCLCMS

    Soxhlet extraction [128]

    Pandanus amaryllifolius Roxb. Pandan Leaf 2-Acetyl-1-pyrroline 01 200 50 7200 LCO2 kg1

    sample GCMSGC-FID

    SEM [214]

    Pandanus amaryllifolius Roxb. Pandanus Leaf 2-Acetyl-1-pyrroline 120455 4080 2040 LCO2 kg1

    sample GCMS Organic solvent extractionSteam distillation

    [215]

    Panicum miliaceum (L.) Millet Bran 300500 4060 444 kgCO2 kg1

    sample HPTLCGCHPLCICP-MS

    Soxhlet extractionThree-step decompression

    [463]

  • M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176

    131

    Papaver Somniferum L. Poppy Seed 15.838.7 210550 5070 5105 kgCO2 kg1

    sample GC [464]

    Patrinia villosa Juss 0.32.0 150350 4565 MEtOH 1020% v/v GCMS DoE [465]Paullinia cupana Guaran Seed Caffeine 04 100400 4070 0400 kgCO2 kg

    1sample HPLC [466]

    Pelargonium graveolens Geranium Root Geraniol 0.23.8 100300 4070 35 kgCO2 kg1

    sample GCMS Steam distillation [194]

    Pelargonium graveolens Geranium Root Citronellol 80160 40100 140 kgCO2 kg1

    sample GCMS Particle sizes effectHydrodistillationSolvent Extraction

    [195]

    Perovskia atriplicifolia Benth. Perovskia Aerial parts 100300 4565 05% MEtOH05% EtOH05% Dicloromethane05% n-hexane

    GCGCMS

    Steam distillation [208]

    Persea americana Avocado Fruit 59.5662.87 420450 4045 78 102 LCO2 kg1sample [467]Persea indica Branch Ryanodanes 0.41.13 100200 4050 HPLC

    GCMSModelingOrganic solvent extraction

    [468]

    Petroselinum sativum Hoffm. Parsley Seed 131 100150 3545 1300 kgCO2 kg1

    sample GC HydrodistillationModeling

    [469]

    Peumus boldus M. BoldoOregano

    Leafbranch

    0.43.1 100 40 6 kgCO2 kg1

    sample Matrix pretreatment [470]

    Peumus boldus M. Boldo Bark Boldine 1.62.9 400600 4060 113 kgCO2 kg1

    sample HPLC Antioxidant activitySolvent extraction

    [471]

    Peumus boldus M. Boldo Leaf 0.52.9 60450 3060 15634 kgCO2 kg1

    sample010% EtOH

    HPLCGC-FIDGCMS

    Hot pressurized waterextractionSoxhlet extraction

    [472]

    Pfafa glomerata Brazilian Ginseng Root -Ecdysone 0.180.56 100300 3050 19 kgCO2 kg1

    sampleEtOH

    TLCHPLC

    Antioxidant activity [473]

    Phyllanthus emblica Emblica Fruit Phenolic compounds 1.12.5 150250 555 211% (v/v)MeOH GCMS Organic solvent extractionDoEAntimicrobial activityAntioxidant activity

    [474]

    Physalis peruviana Physalis Leaf Flavonoidsphenols

    3.615.5 400 60 05% EtOH HydrodistillationSolvent extraction

    [240]

    Picea abies Spruce Bark 2.53.3 260 70 16 kgCO2 kg1

    sample NMRHPLC-DAD-MS/MS

    Solvent extraction [475]

    Pimpinella anisum L Aniseed Seed 3.110.7 80180 30 0.00.4 kgCO2 kg1

    sample GCMSTLC

    Modeling [476]

    Pimpinella anisum L Aniseed Seed 80180 30 0.22.9 kgCO2 kg1 Gravimetric Analysis Neural networks [477]

    Pinus brutia Pine Bark Catechinsepicatechin

    200800 2780 03% (w/w) EtOH HPLC Pilot scaleSonication

    [478]

    Pinus pinaster Wood Phenolics 0.32.1 100250 3050 020% (wt.) EtOH GC-FID [479]Pinus sylvestris L. Pine Sawdust Fatty and resin acids 0.11.6 74250 4060 010% (w/w) EtOH GCMS Soxhlet extractions [188]Piper amalago Root 125250 4060 2300 LCO2 kg

    1sample HPLC Compressed gas extraction [480]

    Piper nigrum Pepper Seed 160260 3550 Gravimetric analysis Particle sizes effectFlow rates effect

    [481]

    Piper nigrum L. Black pepper Fruit 012 90150 4050 0340 kgCO2 kg1

    sample GCMS Modeling [482]

    Pistachia vera Pistachio Seed Phenolic 100350 4565 015% MeOH Gravimetric Analysis Organic solvent extractionUltrasonic aided extractionAntioxidant activity

    [483]

    Pistacia lentiscus L. Pistachio Berry + leaf 0.45 90200 50 GCMS HydrodistillationTwo-step decompressionsystem

    [484]

    Pistacia vera L. Pistachio Seed 10150 4080 EtOHn-hexane

    GC-FID DoERSMSoxhlet extractionSolvent extraction

    [485]

    Plukenetia volubilis Sacha inchi Seed Omega-3 41.950.1 300400 4060 130 kgCO2 kg1

    sample GC ModelingParticle size effectSoxhlet extractionCold Pressing

    [486]

    Prunus amygdalus Almond Seed + kernel 1565 330 50 1573 kgCO2 kg1

    sample HPLC Multifactor analysis ofvarianceMicrograph

    [487]

    Prunus armeniaca L Apricot Bagasse -Carotene 36 304507 4060 887 LCO2 kg1

    sample Spectrophotometry Modeling [106]

  • 132

    M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176Table 1 (Continued)

    Scientic name Common name Plant part Target Extractionyield (wt%)

    P (bar) T (C) CO2 & co-solvent Analytical technique Other Features Ref.

    Prunus armeniaca L. Apricot Pomace -Carotene 18 304507 4060 5150 LCO2 kg1

    sample SpectrophotometryHPLC

    Solvent extractionParticle size effectFlow rate effect

    [102]

    Prunus armeniaca L. Apricot Kernel 542 300600 4070 050 kgCO2 kg1

    sample03% EtOH

    SEMGravimetric Analysis

    Particle size effectModeling

    [104]

    Prunus armeniaca L. Apricot Kernel 422 300450 4060 612 kgCO2 kg1

    sample03% EtOH

    GC RSM [103]

    Prunus armeniaca L. Apricot Pomace -Carotene 39 133473 4377 1090 LCO2 kg1

    sample228% EtOH

    HPLC RSMStatic extraction

    [105]

    Prunus avium L. Cherry Pomace 50200 2060 2040 LCO2 kg1

    sample020% (wt.) EtOH

    Antioxidant activityRSMDoESolvent extraction

    [488]

    Prunus avium L. Cherry Fruit 0.5 250 50 TLCHPLC

    FractionationSolvent extraction

    [489]

    Prunus avium L. Cherry Seed 28 180220 4060 GC Hexane extractionRSM

    [490]

    Prunus persica Peach Kernel 118 150250 40 123386 kgCO2 kg1

    sample Gravimetric Analysis ModelingParticle size effectScale-up

    [491]

    Prunus persica Peach Seed 030 150198 4051 0140 kgCO2 kg1

    sample2.55.0% (mol/mol) EtOH

    GCMS Flow rate effectExtractor geometry effect

    [492]

    Prunus persica Peach Kernel 3.824 100300 5070 25% (w/w) EtOH [493]Prunus spp. Almond Seed 298 350550 3550 1060 kgCO2 kg

    1sample HPLC Particle size effect

    Solvent extractionThree-step decompressionsystem

    [494]

    Prunus spp. Almond Seed 017 200320 4060 2335 kgCO2 kg1

    sample Ultrasound assisted [495]

    Psidium guajava Guava Leaf 1.33.9 100300 8654 06 kgCO2 kg1

    sample TLCGCMS

    ModelingSoxhlet extractionUltrassound extractionHydrodistillation

    [496]

    Psoralea corylitolia L. Fructus Psoraleae Seed Psoralenisopsoralen

    5.09.8 260340 4060 1200 LCO2 kg1

    sample HPLC DoEParticle sizes effect

    [497]

    Pteris semipinnata L. Aerial parts Ent-11a-hydroxy-15-oxo-kaur-16-en-19-oic-acid

    0.000.05 300 55 53266 kgCO2 kg1

    sample015% EtOH

    HPLC Pilot scale [498]

    Pueraria lobata Root Puerarindaidzeinrutin

    0.22.0 150250 4060 750 LCO2 kg1

    sample0.30.6% (v/v) EtOH

    Gravimetric Analysis RSMDoE

    [499]

    Pueraria lobata Root Puerarin 0.40.6 100300 4060 12.3 kgCO2 kg1

    sample4663 (w/w) EtOH

    HPLC [500]

    Punica granatum Pomegranate Seed 0.712.8 132468 3370 80192 LCO2 kg1

    sample HPLC RSMDoEFlow rates effectSoxhlet extraction

    [501]

    Quercus urfassea L.Quercus suber L.

    Oak Fruit 180 40 FAMEHPLCTLC

    Soxhlet extraction [502]

    Quercus suber L. Oak Cork Triterpenes 6 200250 50 96 kgCO2 kg1

    sample13C NMR Organic solvent extraction [503]

    Rhodiola rosea Herb Rosavin 1821 200 7080 324540 kgCO2 kg1

    sample10% H2O

    HPLC [504]

    Rosa aff. Rubiginosa Rose hip Seed 4.77.1 300500 4060 3 kgCO2 kg1

    sample SpectrophotometryGravimetric

    Soxhlet extractionRSMDoE

    [505]

    Rosa aff. Rubiginosa Rose hip Seed 00.35 300 40 060 kgCO2 kg1

    sample Gravimetric Micrograph [506]

    Rosa aff. Rubiginosa Rosehip Seed 07.5 300400 4050 9.283 kgCO2 kg1

    sample Gravimetric Modeling [507]

    Rosa canina L. Rose hip Seed 5.72 250 30 0.41.6 kgCO2 kg1

    sample Gravimetric Soxhlet extractionUltrasound water bathMicrowave extractionSubcritical uid extractionANOVA

    [508]

    Rosa mosqueta; Rosa aff.Rubiginosa

    Rose hip Seed 300700 60 2754 kgCO2 kg1

    sample Matrix pretreatment effect [509]

    Rosa spp. Hiprose Seed 07.4 103689 4070 220 kgCO2 kg1

    sample Gravimetric SEMModeling

    [510]

  • M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176

    133

    Rosmarinus ofcinalis L. Rosemary Leaf 90400 4060 2.5 LCO2 kg1

    sample SFC-FID [82]

    Rosmarinus ofcinalis L. Rosemary Leaf 15 100300 3040 245 kgCO2 kg1

    sample GCSpectrophotometryTLC

    HydrodistillationSolvent extractionModeling

    [77]

    Rosmarinus ofcinalis L. Rosemary Leaf 100180 4060 03% (wt.) EtOH025 kgCO2 kg

    1sample

    Gravimetric Analysis Particle size effectFlow rate effect2-stage separationModeling

    [76]

    Rosmarinus ofcinalis L.Foeniculum vulgarePimpinella anisum

    Rosemaryfennelanise

    Leafseedleaf

    0.13.5 100350 3040 Gravimetric Analysis Steam distillationEconomic analysis

    [81]

    Rosmarinus ofcinalis L. Rosemary Leaf Phenols 0.53.1 100400 40 36 kgCO2 kg1

    sample07% EtOH

    UPLCMS Antioxidant activity [78]

    Rosmarinus ofcinalis L. Rosemary Leaf 1 100205 4055 05% EtOH GCMS Antioxidant activityThree steps sequential

    [79]

    Rosmarinus ofcinalis L. Rosemary Leaf Carnosic acid, rosmanol,carnosol

    300350 4060 02% EtOH RP-HPLC Two-step decompression [83]

    Rosmarinus ofcinalis L. Rosemary Leaf 1,8-Cineole 250 60 3 LCO2 kg1

    sample GC-FIDGCMS

    Organic solvent extractionMicrowave assistedHydrodistillation

    [80]

    Salvia lavandulifolia Spanish sage Leaf/ower 1.21.8 90100 4050 4165 kgCO2 kg1

    sample GCMS HydrodistillationModelingFlow rate effectParticle size effect

    [511]

    Salvia miltiorrhiza Danshen Root Tanshinones 05 200400 4060 1375 LCO2 kg1

    sample HPLC DoE [512]

    Salvia ofcinalis L. Sage 1246 250350 40 20 kgCO2 kg1

    sample02% EtOH

    Gravimetric Analysis 3-Step decompressionAntioxidant activity test

    [513]

    Salvia offcinalis L.Ocimum basilicumOriganum vulgareLevisticum offcinale

    SageBasilOreganoLovage

    Leaf + ower 0.21.5 172255 55 07.5% EtOH GC Antimicrobial activityHydrodistillation

    [179]

    Santalum albumBoswellia carterii

    Wood (resin) 1.36.5 90120 4560 120 kgCO2 kg1

    sample GCMS Hydrodistillation [514]

    Santolina chamaecyparissus Flower 0.11.4 8090 4050 21 kgCO2 kg1

    sample GCGCMS

    HydrodistillationSEMParticle size effectFlow rate effect

    [515]

    Santolina insularis Aerial parts 2 80120 4570 GCMS 2-Step decompressionHidrodistillationCytotoxic and antimicrobialactivity

    [516]

    Satureja hortensis L. Savory Aerial parts Terpinenethymolcarvacrol

    5.98.7 303405 5575 510% (v/v) EtOH GCMSGC-FID

    Two steps of DoERSMHydrodistillation

    [517]

    Satureja hortensis L. Savory Carnosolcarnosic acidrosmarinic acid

    0.876.42 300450 40 7 kgCO2 kg1

    sample515% (w/w) EtOH

    GC-FIDHPLC

    Antioxidant activityOrganic solvent extraction

    [518]

    Satureja montana Savory Aerial parts 0.91.4 90250 40 40 kgCO2 kg1

    sample GC HydrodistillationSoxhlet extractionAntioxidant activity

    [519]

    Satureja montana Savory Herb Thymoquinone 0.91.6 90100 4050 44 kgCO2 kg1

    sample GCGCMS

    HydrodistillationSEMParticle size effectFlow rate effect

    [236]

    Schinus molle L. Leaf 0.40.7 90 50 GCMS HydrodistillationSteam distillation2-step decompression

    [520]

    Schisandra chinensis Fruit 18.5 250 50 250 LCO2 kg1

    sample GCMS Steam distillationSoxhlet extractionUltrasonic extraction

    [521]

    Schisandra chinensis Stem + leaf Lignancinnamic acid

    0.21.3 200270 4060 1074 kgCO2 kg1

    sample RP-HPLC Modeling [233]

  • 134

    M.M

    .R.

    de M

    elo et

    al. /

    J. of

    Supercritical Fluids

    92 (2014)

    115176

    Table 1 (Continued)

    Scientic name Common name Plant part Target Extractionyield (wt%)

    P (bar) T (C) CO2 & co-solvent Analytical technique Other Features Ref.

    Scutellaria baicalensis Root Baicalin 0.18.3 200400 4060 0.4% (v/v) MeOH0.4% (v/v)EtOH0.4% (v/v)1,2-Propanediol

    HPLC DoESoxhlet extraction

    [522]

    Sesamum indicum L. Black Sesame Seed 4152 200400 3585 225300 LCO2 kg1

    sample Spectrophotometry Solvent extraction [523]

    Seseli bocconi Guss Seseli bocconi Guss Leaf 0.130.60 90 50 GCMS Hydrodistillation [524]Silybum marianum Silybum Seed Vitamin E 525 100300 580 6582 kgCO2 kg

    1sample HPLC Soxhlet extraction

    Acid value testModeling

    [525]

    Simmondsia chinensis Jojoba Seed 1052 300600 7090 249 kgCO2 kg1

    sample010% Hexane

    Gravimetric Analysis Solvent extractionFlow rate effectParticle size effect

    [526]

    Sinomenium acutum (Thunb.)Rehd et Wils

    Stem Sinomenine 0.010.70 200600 4060 15,000 LCO2 kg1

    sampleMeOH

    HPLC [528]

    Solanum lycopersicum L. Tomato Skin Lycopene 335450 4570 340 kgCO2 kg1

    sample020% Hazelnut oil

    HPLCSpectrophotometry

    Particle size effect [27]

    Solanum lycopersicum L. Tomato Fruit 0.030.07 250350 4575 515% EtOH/H2O/Canola Oil HPLC Cluster analysis [30]Solanum lycopersicum L. Tomato Fruit Lycopene 0.0010.002 250450 4070 21 LCO2 kg

    1sample HPLC DoE

    RSM[35]

    Solanum lycopersicum L. Tomato Fruit Lycopene 200400 40100 HPLC DoEANOVARSM

    [26]

    Solanum lycopersicum L. Tomato Waste Trans-Lycopene 00.03 300 4080 220 kgCO2 kg1

    sample HPLC Particle size studyFlow rate study

    [33]

    Solanum lycopersicum L. Tomato Waste Lycopene 0.0010.004 300460 4080 HPLC Solvent ExtractionRSMDoEModeling

    [28]

    Solanum lycopersicum L. Tomato Fruit Lycopene 200500 40100 HPLCUVVis

    ModelingSoxhlet extraction

    [29]

    Solanum lycopersicum L. Tomato Waste LipidsLy