sulfur - university of florida · 2 learning objectives identify the forms of s in wetlands sulfur...

45
1 Biogeochemistry of Wetlands Si dA li ti Si dA li ti Institute of Food and Agricultural Sciences (IFAS) Science and Applications Science and Applications Wetland Biogeochemistry Laboratory Soil and Water Science Department SULFUR 6/22/2008 P.W. Inglett 1 6/22/2008 WBL 1 6/22/2008 1 6/22/2008 WBL 1 Instructor : Patrick Inglett [email protected] Soil and Water Science Department University of Florida Sulfur Introduction S Forms, Distribution, Importance Basic processes of S Cycles Examples of current research Examples of applications 6/22/2008 P.W. Inglett 2 Key points learned

Upload: vukhanh

Post on 12-May-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

1

Biogeochemistry of WetlandsS i d A li tiS i d A li ti

Institute of Food and Agricultural Sciences (IFAS)

Science and ApplicationsScience and Applications

Wetland Biogeochemistry LaboratorySoil and Water Science Department

SULFUR

6/22/2008 P.W. Inglett 16/22/2008 WBL 16/22/2008 16/22/2008 WBL 1

Instructor :Patrick [email protected]

Soil and Water Science DepartmentUniversity of Florida

Sulfur

IntroductionS Forms, Distribution, Importance

Basic processes of S CyclesExamples of current researchExamples of applications

6/22/2008 P.W. Inglett 2

Key points learned

2

Learning ObjectivesIdentify the forms of S in wetlands

Sulfur

yUnderstand the importance of S in

wetlands/global processesDefine the major S processes/transformationsUnderstand the importance of microbial activity

in S transformations Understand the potential regulators of S

6/22/2008 P.W. Inglett 3

processesSee the application of S cycle principles to

understanding natural and man-made ecosystems

Sources of SulfurSources of Sulfur

• Sulfur is a ubiquitous elementSulfur is a ubiquitous element.• Various sulfur compounds are present in:

– The atmosphere– Minerals– Soils– Plant tissue

6/22/2008 P.W. Inglett 4

– Animal tissue– Microbial biomass– Sediment

3

Reservoirs of Sulfur Reservoirs of Sulfur

•Atmosphere 4.8 x 109 kg•Lithosphere 24.3 x 1018 kg•Hydrosphere

– Sea 1.3 x 1018 kg– Freshwater 3.0 x 1012 kg

•PedosphereS il 2 6 1014 k

6/22/2008 P.W. Inglett 5

– Soil 2.6 x 1014 kg– Soil Organic matter 0.1 x 1014 kg

•Biosphere 8.0 x 1012 kg

General Forms of Sulfur in the Environment

General Forms of Sulfur in the Environment

• Organic S in plant, animal, and microbial tissue (as i l f i id d i )essential components of amino acids and proteins)

CysteineH3C-S-CH2-CH2-

Methionine

HS-CH2-

OR1-C~S-R2

Thioester

6/22/2008 P.W. Inglett 6

– Organic sulfur primarily in soil and sediments as humic material (naturally occurring soil and sediment organic matter)

4

General Forms of Sulfur in the Environment

General Forms of Sulfur in the Environment

• Gaseous S compounds (SO2, H2S, DMSO, DMS)

• Oxidized Inorganic S (sulfate, SO42-, is the primary

compound). Seawater contains about 2,700 mg/L (ppm) of sulfate

6/22/2008 P.W. Inglett 7

• Reduced Inorganic S (elemental sulfur, So, and sulfide, S2-)

General Forms of Sulfur in the Environment

General Forms of Sulfur in the Environment

• MineralsGalena (PbS2) Gypsum (CaSO4)

Jarosite(Fe2S) Barite (BaSO4)

Pyrite (FeS2)

F il F l

6/22/2008 P.W. Inglett 8

• Fossil Fuels– Petroleum (0.1-10%)

– Coal (1-20%)

5

Oxidation states of selected sulfur compounds

Oxidation states of selected sulfur compounds

• Organic S (R-SH) -2• Sulfide (S2-) -2• Elemental S (S0) 0• Sulfur dioxide (SO2) +4• Sulfite (SO3

-2) +4

6/22/2008 P.W. Inglett 9

Sulfite (SO3 ) +4• Sulfate (SO4

2-) +6

Global Sulfur CycleGlobal Sulfur Cycle

6/22/2008 P.W. Inglett 10

6

1. Dissimilatory sulfate reduction

Sulfur Cycling ProcessesSulfur Cycling Processes

2. Assimilatory sulfate reduction

3. Desulfurylation

4. Sulfide oxidation

5. Sulfur oxidation

6/22/2008 P.W. Inglett 11

6. Dissimilatory So reduction

So

Sulfur CycleSulfur Cycle

45

SO42- S2-

SH groupsof protein

SH groups

AerobicAerobic

Anaerobic1

2 3

2 3

5

AerobicAerobic

Anaerobic

6/22/2008 P.W. Inglett 12

So

SH groupsof protein 45

6

Anaerobic

7

Distribution of sulfur in soilsDistribution of sulfur in soils

Organic sulfur [93%]Organic sulfur [93%]– Carbon-bonded sulfur (cysteine and methionine) 41%

– Non-carbon-bonded sulfur (ester sulfates) 52%

Inorganic sulfur [7%]– Adsorbed + soluble sulfates 6%

6/22/2008 P.W. Inglett 13

Adsorbed + soluble sulfates 6%

– Inorganic compounds less oxidized than sulfates and reduced sulfur compounds (e.g. sulfides) 1%

20Freshwater

Organic Sulfur FormsOrganic Sulfur Forms

15

10

5Sulfu

r, g/

kg

Freshwater

Brackish

Salt

6/22/2008 P.W. Inglett 14

0

S

Ester C-S Total

Organic Geochemistry vol. 18, no. 4, pp. 489-500, 1992

8

Freshwater400 4

Inorganic Sulfur FormsInorganic Sulfur Forms

Freshwater

Brackish

Salt

300

200

100

3

2

1ulfu

r, m

g/kg

Sulfu

r, g/

kgSu

lfur,

g/kg

6/22/2008 P.W. Inglett 15

0 0FeS So FeS2 HCl

Su

SS

Krairapanond et al. 1992. Organic Geochemistry 18: 489-500.

Organic S HydrolysisOrganic S Hydrolysis

R - S-H2 + H2O R-OH + H2S

6/22/2008 P.W. Inglett 16

SulfohydrolaseR S H2 + H2O R OH + H2SThiol

9

Assimilatory Sulfate Reduction• Bacteria fungi algae and plants

Sulfur – Organism GroupsSulfur – Organism Groups

• Bacteria, fungi, algae, and plants

Dissimilatory Sulfate Reduction• Hetrerotrophs

Desulfovibrio, Desulfotomaculum, Desulfobacter, Desulfuromonas

Sulfide Oxidation

6/22/2008 P.W. Inglett 17

Sulfide Oxidation• Phototrophs: Chlorobium, Chromatium

• Chemolithoautotrophs: Thiobacillus, Beggiatoa

Sulfate Reducing Bacteria: SRB(habitats)

Sulfate Reducing Bacteria: SRB(habitats)

Desulfovibrio - found in water-logged soils.

Desulfotomaculum - spoilage of canned foods.

Desulfomonas - found in intestines.

Archaeglobus - a thermophilic Archea whose optimal growth temperature is 83oC

6/22/2008 P.W. Inglett 18

growth temperature is 83 C.

10

6/22/2008 P.W. Inglett 19

Sulfate ReductionSulfate Reduction

DepositionSO4

2-

AEROBICAEROBIC

Adsorbed SO 2ReductionReduction

Tidal Exchange

SO42-

SO42-

6/22/2008 P.W. Inglett 20

ANAEROBIC

SO42-

MicrobialBiomass-S

S2-ReductionReduction

SO42-So

11

Glucose OxidationGlucose Oxidation

Oxidation – Reduction ReactionkJ/mol

GlucoseGlucose

C6H12O6 + 6O2 = 6CO2 + 6H2O 2,880

5C6H12O6 + 24NO3- + 24H+ = 30CO2 + 12N2 +42H2O 2, 712

C6H12O6 + 12MnO2 + 24H+ = 6CO2 + 12Mn2+ + 18H2O 1,920

6/22/2008 P.W. Inglett 21

C6H12O6 + 24Fe(OH)3 + 48H+ = 6CO2 + 24 Fe2+ +66H2O 432

C6H12O6 + 3SO42- = 6CO2 + 3S2- + 6H2O 381

120

Oxygen Equivalents-Energy Yield from Glucose

Oxygen Equivalents-Energy Yield from Glucose

40

60

80

100

erob

ic E

nerg

y Yi

eld

6/22/2008 P.W. Inglett 22

0

20

O2 NO3- MnO2 Fe(OH)3 SO4

2-SO42-

% o

f Ae

Electron Acceptors

12

SO42- S2-SO42- S2- Mn4+ Mn2+ O2 H2O

Oxidation-ReductionOxidation-Reduction

CO2 CH4 Fe3+ Fe2+ NO3- N2

6/22/2008 P.W. Inglett 23

-200 -100 0 +100 +200 +300 +400Redox Potential, mV (at pH 7)Redox Potential, mV (at pH 7)

Sequential Reduction of Sequential Reduction of Electron Acceptors Electron Acceptors

Sequential Reduction of Sequential Reduction of Electron Acceptors Electron Acceptors

6/22/2008 P.W. Inglett 24

13

WATERWATER

SOILSOIL

Redox Zones With DepthRedox Zones With DepthRedox Zones With DepthRedox Zones With Depth

Oxygen Reduction Zone AerobicAerobicSOILSOIL Oxygen Reduction ZoneEh = > 300 mV

Nitrate Reduction ZoneMn4+ Reduction ZoneEh = 100 to 300 mVFe3+ Reduction ZoneEh = -100 to 100 mV

I

II

III

FacultativeFacultative

Dep

thD

epth

6/22/2008 P.W. Inglett 25

Sulfate Reduction ZoneEh = -200 to -100 mV

MethanogenesisEh = < -200 mV

IV

V

AnaerobicAnaerobic

DD

1000

800

Redox Potential and pHRedox Potential and pHRedox Potential and pHRedox Potential and pH

600

400200

0

-200

E h[m

V]

6/22/2008 P.W. Inglett 26

0 2 4 6 8 10 12

-200

-400

-600

pHBaas Becking et al.

14

Microbial Activity[Site: Water Conservation 2A]

Microbial Activity[Site: Water Conservation 2A]

50

60on

s on

s y = 0.33x + 1.3r2 = 0 88; n = 24

20

30

40

50

e re

duci

ng c

ondi

tie

redu

cing

con

diti

[mg

kg[m

g kg

--11ho

urho

ur--11

]]r 0.88; n 24

6/22/2008 P.W. Inglett 27

0

10

10 20 30 40 50 60

Sul

fate

Sul

fate

AerobicAerobic [mg kg[mg kg--11 hourhour--11]]

0

Detrital MatterEnzymeHydrolysisComplex Polymers

Cellulose, Hemicellulose,Monomers

Sugars, Amino AcidsF tt A id

Sulfate RespirationSulfate Respiration

Glucose

PyruvateGlycolysis

Substrate level TCA Cycle

Oxidative phosphorylation

CO

Proteins, Lipids, Waxes, Lignin Fatty Acids

Uptake

6/22/2008 P.W. Inglett 28

Products:CO2, H2O, S2-, Nutrients

phosphorylation AcetateCO2

ATP

SO42- + e- Organic Acids

[acetate, propionate, butyrate, lactate, alcohols, H2, and CO2]

LactateUptake

[Sulfate Reducing Bacterial Cell] [Fermenting Bacterial Cell]

Substrate level phosphorylation

15

Electron donors used during sulfate reduction

Electron donors used during sulfate reduction

• SRB lack enzymes necessary for complex carbon assimilation

6/22/2008 P.W. Inglett 29

Electron donors used during sulfate reduction

Electron donors used during sulfate reduction

6/22/2008 P.W. Inglett 30

16

6/22/2008 P.W. Inglett 31

Decreasing energy

yield

Electron DonorsElectron Donors

6/22/2008 P.W. Inglett 32

Capone and Kiene. 1988. Limnol Oceanogr, 33: 725-749.

17

Activity [nmol/g per day]

Sulfate Reduction RatesSulfate Reduction Rates

[ g p y]

Low carbon wetland 23

Peaty wetland 130

Oligotrophic lake 707

Eutrophic lake 1,224

6/22/2008 P.W. Inglett 33

Marine and salt-marsh 744-24,000

Respiration [g C/m2 year] Sapelo Island Sippewissett Sapelo Island

[GA] [MA] (199 )

Salt MarshesSalt Marshes

[GA] [MA] (1997)

Aerobic respiration 390 390Denitrification 10 3Mn and Fe reduction ND NDSulfate reduction 850 1,800 2,000Methanogenesis 40 1-8

6/22/2008 P.W. Inglett 34

Methanogenesis 40 1 8

~65%~65% ~82%~82% ~69-87%~69-87%S Respiration

18

Sulfate RespirationSulfate Respiration

6/22/2008 P.W. Inglett 35

Capone and Kiene. 1988. Limnol Oceanogr, 33: 725-749.

6/22/2008 P.W. Inglett 36

Capone and Kiene. 1988. Limnol Oceanogr, 33: 725-749.

19

Seasonal EffectsSeasonal Effects

6/22/2008 P.W. Inglett 37

Jorgensen, 1977. Marine Biology 41:7-17.

Seasonal EffectsSpartina alterniflora marshSeasonal EffectsSpartina alterniflora marsh

Great Sippewissett Marsh

0 50.5

0.4

0.3

0.2

Mol

es S

O42-

m-2

d-1

6/22/2008 P.W. Inglett 38

J J JMF MA A S O N D

0.1

0.0

M

MonthsHowarth and Giblin, 1983. Limnol and Oceanogr, 28:70-82.

20

Seasonal EffectsSpartina alterniflora marshSeasonal EffectsSpartina alterniflora marsh

0 50.5

0.4

0.3

0.2

Mol

es S

O42-

m-2

d-1

Mol

es O

2m

-2d-

1

0.01

0.03

0.02

6/22/2008 P.W. Inglett 39

0.1

0.0

M M-5 20 2550 1510 30

Temp (C)-5 20 2550 1510 30

Temp (C)

Howarth and Teal. 1979. Limnol and Oceanogr, 24: 999-1013.

Regulators of Sulfate ReductionRegulators of Sulfate Reduction

P f l t t ith hi h• Presence of electron acceptor with higher reduction potentials

• Oxygen is toxic to sulfate reducers• Sulfate concentration

– Freshwater (< 0.1 mM)– Marine (20-30 mM)

6/22/2008 P.W. Inglett 40

• Substrate/Electron Donor• Temperature• Microbial populations

21

6/22/2008 P.W. Inglett 41

Decreasing energy

yield

Sulfidogenic aggregate Sulfidogenic/Methanogenic aggregate

Anaerobic Sludge Reactor(FISH)

Anaerobic Sludge Reactor(FISH)

6/22/2008 P.W. Inglett 42

Appl Environ Microbiol. 1999 October; 65(10): 4618–4629. SRB Probe Archeal Probe

22

Competition With MethanogensCompetition With Methanogens

6/22/2008 P.W. Inglett 43

XXXX

Sulfate Reducers vs MethanogensSulfate Reducers vs Methanogens

Sulfate reducersVmax

V

6/22/2008 P.W. Inglett 44

Methanogens

Vmax

Km Km

[Substrate]

V = [Vmax S]/Km + S

23

0.6CH

Sulfate ReductionTypical Lake Sediments

Sulfate ReductionTypical Lake Sediments

0.2

0.4

mM

CH

4

mM

SO

42-

20

10

CH4

SO42-

6/22/2008 P.W. Inglett 45

1000 20 40 60 80

Daysfrom Jorgensen: in Microbial Geochemistry. Krumbein, ed: 1983 Blackwell.

Sulfate ReductionTypical Lake Sediments

Sulfate ReductionTypical Lake Sediments

12

8

mM SO42-

0.20.10

mM SO42-

2010

SO 28

4

0

8

cm

CH4

SO42-

4

0.5

1.0

1.5 CH4

SO42-

m

6/22/2008 P.W. Inglett 46from Jorgensen: in Microbial Geochemistry. Krumbein, ed: 1983 Blackwell.

12

1 2mM CH4

2.0

0.5 1.0mM CH4

FreshwaterFreshwater MarineMarine

24

Sulfate ReductionCattail Marsh – Sunnyhill Farm Wetland

Sulfate ReductionCattail Marsh – Sunnyhill Farm Wetland

0 5 10 1510

W t

CH4 (mg L-1)

0

-10

Dep

th (c

m)

Water

Soil

CH4

SO42-

6/22/2008 P.W. Inglett 47

0 20 40 60 80 100-30

-20

SO42- (mg L-1)

Sulfate ReductionSulfate Reduction

6/22/2008 P.W. Inglett 48

Iversen and Jorgensen. 1985. Limnol Oceanogr, 30: 944-955.

25

Sulfur EmissionsSulfur Emissions

H2S

AEROBICAEROBICOrg-SMineralization

SO 2

H2SDMS

O S S2

Mineralization ReductionReduction

2DMS

6/22/2008 P.W. Inglett 49

ANAEROBIC

SO42-Org-S S2- So

Gaseous S EmissionsGaseous S Emissions

6/22/2008 P.W. Inglett 50

26

SALT BRACKISH FRESH

Gaseous SpeciationGaseous SpeciationDeLaune et al. 2001

H2SH3C-S-CH3CO-S

6/22/2008 P.W. Inglett 51

ug S m-2 hr-1

Sulfide FormationSulfide Formation

H2S

AEROBICAEROBICOrg-SMineralization

SO 2

H2SDMS

O S S2

Mineralization ReductionReduction

2DMS

6/22/2008 P.W. Inglett 52

ANAEROBIC

SO42-Org-S S2- So

27

Sulfide SpeciationSulfide Speciation

6/22/2008 P.W. Inglett 53

Problems With Hydrogen SulfideProblems With Hydrogen Sulfide

• Malodorous (rotten egg smell)

• Acidic (corrosion/fouling)

• Toxic (reactive with metalloenzyme systems)

6/22/2008 P.W. Inglett 54

metalloenzyme systems)

28

Sulfide ToxicityTall vs. Short Spartina alterniflora

Sulfide ToxicityTall vs. Short Spartina alterniflora

Tall FormTall Form

Short FormShort Form

6/22/2008 P.W. Inglett 55

6/22/2008 P.W. Inglett 56

29

Sapelo Island MarshTall vs. Short Spartina alternifloraTall vs. Short Spartina alterniflora

6/22/2008 P.W. Inglett 57

CreekCreek TallTall ShortShortKostka et al., 2002. Biogeochemistry 60:49-76.

Sulfide ToxicityTall vs. Short Spartina alterniflora

Sulfide ToxicityTall vs. Short Spartina alterniflora

Lower VmaxHigher Vmax

NH4+ UptakeNH4+ Uptake

MHT

Higher KmLower Km

6/22/2008 P.W. Inglett 58

MLT

Inc. Flood Frequency, Pore Water Turnover

Inc. NH4+, S2-, and Salt Concentrations

30

Sulfide PrecipitationSulfide Precipitation

AEROBICAEROBIC

SO 2S2ReductionReduction

6/22/2008 P.W. Inglett 59

ANAEROBIC

SO42-S2- So

FeS2

Me+-S

Iron and Sulfide InteractionsIron and Sulfide Interactions

2F OOH H S S 2F 2+ 4OH2FeOOH + H2S = So + 2Fe2+ + 4OH-

Fe2+ + H2S = FeS + 2H+

FeS + So = FeS2

6/22/2008 P.W. Inglett 60

Acid Volatile S (AVS)

Chromium Reducible S (CRS)

31

Pyrite FramboidsPyrite Framboids

6/22/2008 P.W. Inglett 61

Pyrite FormationPyrite Formation

Fe Oxides

Monosulfides (AVS)

FeS

ΣH2SS0

Intermediate

6/22/2008 P.W. Inglett 62

FeS2Pyrite (CRS)

Redox S

Sulfate Reduction

32

SolidSolid--FeFe AVSAVS CRSCRS

Pyrite FormationSapelo Island Marsh

Pyrite FormationSapelo Island Marsh

CreekTallShort

6/22/2008 P.W. Inglett 63

Kostka et al., 2002. Biogeochemistry 60:49-76.

ZnSZnS

6/22/2008 P.W. Inglett 64

33

Metal Sulfide Solubility-Uptake by Rice Plant

Metal Sulfide Solubility-Uptake by Rice Plant

5

4d 35

S Na2S

4

3

2

1

% U

ptak

e of

add

e

MnSFeS ZnS C S H S

6/22/2008 P.W. Inglett 65Engler and Patrick, 1981

0

%

100 10-10 10-20 10-30 10-40 10-50

FeS ZnS CuS HgS

Solubility Product (Ksp)

Metal Sulfide SolubilityMetal Sulfide Solubility

6/22/2008 P.W. Inglett 66

Yu et al. 2001. Wat Res. 35:4086-4094.

34

Sulfur OxidationSulfur Oxidation

AEROBICAEROBICSO42-So

H2SDMS

S2

Oxidation Oxidation

Reduction

Tidal Exchange

SO42-

6/22/2008 P.W. Inglett 67

ANAEROBIC

S2- So

Sulfide OxidationSulfide Oxidation

2H2S + O2 = 2So + 2H2O204 kJ/ ti-204 kJ/reaction

2So + 3O2 + 2H2O = 2SO42- + 4H+

-583 kJ/reaction

H2S + 2O2 = SO42- + 2H+

-786 kJ/reaction

6/22/2008 P.W. Inglett 68

86 J/ eact o

H2S So SO32- SO4

2-

35

Sulfur Cycling Cyanobacterial Mat Sediments

Sulfur Cycling Cyanobacterial Mat Sediments

6/22/2008 P.W. Inglett 69

Sulfur Cycling Cyanobacterial Mat Sediments

Sulfur Cycling Cyanobacterial Mat Sediments

6/22/2008 P.W. Inglett 70

Aphanothece Diatoms

Phormidium, Lyngbya

Chromatium salexigens Thiocapsa halophila.

SurfaceSurface Green LayerGreen Layer Red LayerRed Layer

36

Oxidation-ReductionOxidation-ReductionSoil-floodwater InterfaceSoil-floodwater Interface

O2

SO42- H2S + O2

Floodwater

Aerobic soil

6/22/2008 P.W. Inglett 71

H2SAnaerobic soil

SO42-

Sulfur Cycling Salt Marsh Surface Sediments

Sulfur Cycling Salt Marsh Surface Sediments

6/22/2008 P.W. Inglett 72

37

Oxidation-ReductionOxidation-Reduction

Root- Soil InterfaceRoot- Soil Interface

AEROBICAEROBIC

6/22/2008 P.W. Inglett 73

ANAEROBIC

Oxidation-ReductionInfaunal Burrows

Oxidation-ReductionInfaunal Burrows

Uca spp.

6/22/2008 P.W. Inglett 74

38

Oxidation-ReductionInfaunal Burrows

Oxidation-ReductionInfaunal Burrows

ca. 12” Deepca. 12” Deep

6/22/2008 P.W. Inglett 75

6/22/2008 P.W. Inglett 76

39

Sulfur CycleSulfur Cycle

6/22/2008 P.W. Inglett 77

from Jorgensen: in Microbial Geochemistry. Krumbein, ed: 1983 Blackwell.

Rates = mmol/m2 day

FeS2 + 3.5O2 + H2O = Fe2+ + 2SO42- + 2H+

Fe2+ + 0.25O2 + H+ = Fe3+ + 0.5H2O

Pyrite OxidationPyrite Oxidation

(1) FeS2 + 3.75O2 + 0.5H2O = Fe3+ + 2SO42- + H+

(2) FeS2 + 14Fe3++ 8H2O = 15Fe2+ + 2SO42- + 16H+

Fe2+ SO42- + H+

6/22/2008 P.W. Inglett 78

Fe2+

Fe3+ FeS2

O2Slow (at low pH)

Biological[Thiobacillus ferrooxidans]

FastChemical/Biological

SO4 H

40

Drainage Effects on Acid Sulfate SoilsDrainage Effects on Acid Sulfate Soils

6/22/2008 P.W. Inglett 79

Acid Sulfate SoilsAcid Sulfate Soils

6/22/2008 P.W. Inglett 80

41

Acid Mine DrainageAcid Mine Drainage

6/22/2008 P.W. Inglett 81

Sulfur Cycling in WetlandsSulfur Cycling in WetlandsPlant Biomass-S

DepositionSO4

2-

AEROBICAEROBICOrg-S

Adsorbed SO4

2-

Litterfall

Mineralization .

SO 2

SO42-So

H2SDMS

S2

Mineralization

Oxidation Oxidation

ReductionReduction

Tidal ExchangeH2SDMS

SO42-

6/22/2008 P.W. Inglett 82

ANAEROBIC

4SO42-

MicrobialBiomass-S

Org-S S2- So

SO42-

FeS2

Me+-S

S2-

42

6/22/2008 P.W. Inglett 83

Hg MethylationHg Methylation

6/22/2008 P.W. Inglett 84

Gilmore et al., 1992. Env Sci Tech. 26:2281-2287.

43

Hg MethylationHg Methylation

6/22/2008 P.W. Inglett 85

Gilmore et al., 1992

Hg MethylationHg Methylation

Desulfobacteriaceae

Lactate

Acetate

6/22/2008 P.W. Inglett 86

King et al., 2000. Applied and Environmental Microbiology, June 2000, p. 2430-2437.

Control

44

Hg MethylationHg Methylation

6/22/2008 P.W. Inglett 87

Methylmercury in Floating Periphyton

All Cycles 1995-1996

Periphyton Delta 32S

September 1996

ug/kg

>6

4

6/22/2008 P.W. Inglett 88

2

0

Kendall et al., http://sofia.usgs.gov/publications/posters/

45

S2-

Hg MethylationHg Methylation

S0

HgS0HgS0

HgHg H3C-HgH3C-Hg

SRBSRB??

S0

6/22/2008 P.W. Inglett 89

SO42-

HgS2HgS2

Importance of Sulfur in WetlandsImportance of Sulfur in Wetlands

• Source of nutrient

• Source of energy

• Role in decomposition of organic matter

• Adverse effects of sulfide on plant growth

• Immobilization of toxic metals

6/22/2008 P.W. Inglett 90

• Contribution to acid development (oxidation)

• Role in methylation of Hg