subtraction of infrared singularities in perturbative qcd...

42
Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup Subtraction of Infrared Singularities in Perturbative QCD: a new scheme Chiara Signorile-Signorile Università degli Studi di Torino II year seminar, 20 September 2019 in collaboration with: L. Magnea, E. Maina, G. Pelliccioli, P. Torrielli and S. Uccirati based on: Magnea, Maina, Pelliccioli, CS, Torrielli, Uccirati JHEP1812(2018)062, arXiv:1809.05444[hep-ph] Magnea, Maina, Pelliccioli, CS, Torrielli, Uccirati JHEP1812(2018)107, arXiv:1806.09570[hep-ph] Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 1 / 20

Upload: others

Post on 21-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Subtraction of Infrared Singularities in Perturbative QCD:a new scheme

    Chiara Signorile-Signorile

    Università degli Studi di Torino

    II year seminar, 20 September 2019

    in collaboration with:L. Magnea, E. Maina, G. Pelliccioli, P. Torrielli and S. Uccirati

    based on:Magnea, Maina, Pelliccioli, CS, Torrielli, Uccirati JHEP1812(2018)062, arXiv:1809.05444[hep-ph]Magnea, Maina, Pelliccioli, CS, Torrielli, Uccirati JHEP1812(2018)107, arXiv:1806.09570[hep-ph]

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 1 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Environment

    Natural environment:

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 2 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Environmentp-p collision:

    DO NOT PANIC! General theorems ensure the factorisation of short-distancessubprocess from long-distances ones.

    → short distances described in Perturbative QCD.

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 3 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Environmentp-p collision:

    DO NOT PANIC! General theorems ensure the factorisation of short-distancessubprocess from long-distances ones.

    → short distances described in Perturbative QCD.Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 3 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Introduction

    Framework: QCD

    quantum field theory with unbroken SU(3) non-abelian gauge invariance.strong interactions between quarks and gluonasymptotically free in the ultraviolet regime → Perturbation Theory

    At hight energy quarks masses are negligible and two kinds of divergences ariseTEXT

    Mpp + k

    k

    µ, a

    hp: m = 0

    −igs ū(p) /�(k) tai(/p + /k)

    (p + k)2 + iηM

    (p + k)2 = p0 k0(1− cos θpk) = 0 →{k0 = 0 Softcos θpk = 1 Collinear

    Covariant ApproachSoft and Collinear configurations produce on-shell intermediated states thatpropagate indefinitely before emission

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 4 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    IR singularities cancellation

    KLN Theorem

    IR divergences from real radiation phase space and from virtual corrections.order-by-order cancellation in perturbation theory for a generic IR-safeobservable.

    At NLO, the cancellation occurs between the following diagram sample

    ex. e+e− → qq̄

    2e−

    e+

    q

    +

    2

    e+

    e− q

    g +

    e−

    e+ q̄

    q

    g

    e−

    e+

    q

    LO : α2 [born] NLO : α2αs [real] NLO : α2αs [virtual]

    Real and Virtual contributions

    hp: d = 4− 2� , � < 0{Real contr.→ implicit poles in �→ unresolved radiation PS.Virtual contr.→ explicit poles in �.

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 5 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Outline

    2

    e+

    e− q

    g +

    e−

    e+ q̄

    q

    g

    e−

    e+

    q

    Real contributioncomplicated phase space integration

    Subtraction

    counterterm

    Virtual contributiondivide singularities according to their nature

    Factorisation

    completeness

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 6 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Subtraction Pattern

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 7 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Subtraction pattern

    Given a generic amplitude with n massless particles in the final state [e+e− → jets]

    An(pi ) = A(0)n (pi ) +A(1)n (pi ) +A

    (2)n (pi ) + . . .

    An IR-safe observable X receives contribution at NLO according to

    dσNLO

    dX= lim

    d→4

    {∫dΦn Vn δn +

    ∫dΦn+1 Rn+1 δn+1

    }where δi = δ(X − Xi ), Xi the i-particle configuration, and

    Vn = 2Re[A(0)†n A

    (1)n]

    Rn+1 =∣∣A(0)n+1∣∣2.

    ProblemNumerical implementation requires to handle finite quantities → radiation IR poleshave to be subtracted before performing the phase space integration.

    Subtraction ideamake the real contribution finite before performing the PS integration by adding andsubtracting a counterterm. [Magnea, Maina, Pelliccioli, CS, Torrielli, Uccirati 1806.09570]

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 8 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Subtraction pattern

    Given a generic amplitude with n massless particles in the final state [e+e− → jets]

    An(pi ) = A(0)n (pi ) +A(1)n (pi ) +A

    (2)n (pi ) + . . .

    An IR-safe observable X receives contribution at NLO according to

    dσNLO

    dX= lim

    d→4

    {∫dΦn Vn δn +

    ∫dΦn+1 Rn+1 δn+1

    }where δi = δ(X − Xi ), Xi the i-particle configuration, and

    Vn = 2Re[A(0)†n A

    (1)n]

    Rn+1 =∣∣A(0)n+1∣∣2.

    ProblemNumerical implementation requires to handle finite quantities → radiation IR poleshave to be subtracted before performing the phase space integration.

    Subtraction ideamake the real contribution finite before performing the PS integration by adding andsubtracting a counterterm. [Magnea, Maina, Pelliccioli, CS, Torrielli, Uccirati 1806.09570]

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 8 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Subtraction pattern

    Given a generic amplitude with n massless particles in the final state [e+e− → jets]

    An(pi ) = A(0)n (pi ) +A(1)n (pi ) +A

    (2)n (pi ) + . . .

    An IR-safe observable X receives contribution at NLO according to

    dσNLO

    dX= lim

    d→4

    {∫dΦn Vn δn +

    ∫dΦn+1 Rn+1 δn+1

    }where δi = δ(X − Xi ), Xi the i-particle configuration, and

    Vn = 2Re[A(0)†n A

    (1)n]

    Rn+1 =∣∣A(0)n+1∣∣2.

    ProblemNumerical implementation requires to handle finite quantities → radiation IR poleshave to be subtracted before performing the phase space integration.

    Subtraction ideamake the real contribution finite before performing the PS integration by adding andsubtracting a counterterm. [Magnea, Maina, Pelliccioli, CS, Torrielli, Uccirati 1806.09570]

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 8 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Subtraction pattern

    Counterterms and Subtraction at NLO

    Counterterm properties{same singular limits as the realanalytically integrable in d dim

    dσNLOctdX

    =∫

    Φn+1 Kn+1 , In =∫

    dΦrad Kn+1

    dσNLO

    dX=∫

    dΦn(Vn + In

    )δn︸ ︷︷ ︸

    finite in d=4

    +∫

    dΦn+1(Rn+1 δn+1−Kn+1 δn

    )︸ ︷︷ ︸

    finite in d=4

    → Several different schemes are available:Antenna, Nested soft-collinear, ColorfulNNLO, N-jettiness, Unsubtraction, Q⊥scheme, Projection to Born, . . .

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 9 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Counterterms construction at NLO

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 10 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Practical implementation of the Subtraction methodIngredients

    fundamental limits Si , Cijsingular structure of R

    partition of the phase space Wijmomentum mapping {k} → {k̄}

    Sector Wij → Si ,Cij

    Goal: RWij − K ij → finite

    Counterterm: K ij =[Si + Cij (1− Si )

    ]RWij

    S̄i

    C̄ij

    S̄i C̄ij

    The IR limits of R in the mapped kinematics featureuniversal kernelBorn matrix element

    SiR({k}) = −N∑c,d

    δfi gscd

    sic sidBcd ({k̄}(icd))

    CijR({k}) = N1sij

    Pµνij (sir , sjr )Bµν({k̄}(ijr))

    SiCijR({k}) = 2N Cfj δfi gsjr

    sij sirB({k̄}(ijr))

    Born kinematics: mass-shell condition+momenta conservationChiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 11 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Factorisation approach

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 12 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Factorised virtual amplitude

    Factorisation ideamake the virtual contribution finite by adding and subtracting a counterterm,identified through completeness relations. [Magnea, Maina, Pelliccioli, CS, Torrielli, Uccirati 1809.05444]

    Factorisation formula for massless virtual amplitude [Sterman 9606312] [Gardi, Magnea 0908.3273]

    An(piµ

    )=

    n∏i=1

    [Ji(

    (pi · ni )2/(n2i µ2))

    Ji,E(

    (βi · ni )2/n2i) ] Sn(βi · βj ) Hn(pi · pj

    µ2,

    (pi · ni )2

    n2i µ2

    )where pµi = Qβ

    µi , β

    2i = 0, and n2i 6= 0 auxiliary vector, µ renormalisation scale.

    Ji Collinear functionJi,E Soft-Collinear functionSn Soft functionHn Hard region

    Functions’ properties:universalitygauge invariancesimple operator definition

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 13 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Factorised virtual amplitude

    Factorisation ideamake the virtual contribution finite by adding and subtracting a counterterm,identified through completeness relations. [Magnea, Maina, Pelliccioli, CS, Torrielli, Uccirati 1809.05444]

    Factorisation formula for massless virtual amplitude [Sterman 9606312] [Gardi, Magnea 0908.3273]

    An(piµ

    )=

    n∏i=1

    [Ji(

    (pi · ni )2/(n2i µ2))

    Ji,E(

    (βi · ni )2/n2i) ] Sn(βi · βj ) Hn(pi · pj

    µ2,

    (pi · ni )2

    n2i µ2

    )where pµi = Qβ

    µi , β

    2i = 0, and n2i 6= 0 auxiliary vector, µ renormalisation scale.

    Ji Collinear functionJi,E Soft-Collinear functionSn Soft functionHn Hard region

    Functions’ properties:universalitygauge invariancesimple operator definition

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 13 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Radiative functions at cross-section level

    Goal1 build cross sections quantities2 find a relation between radiative quantities and virtual functions

    Taking inspiration from the virtual functions we define cross-section level operatorsincluding real radiations

    Sn,m({ki};βi ) ≡∑{λi}

    〈0|n∏

    i=1

    Φβi (0,∞)|k1, λ1...km, λm〉 〈k1, λ1...km, λm|n∏

    i=1

    Φβi (∞, 0) |0〉

    Jq,m({ki}; p, n) ≡∫

    ddx eil·x∑{λi}

    〈0|Φn(∞, x)ψ(x)|p, s; k1, λ1 . . . km, λm〉 ×

    ×〈p, s; k1, λ1 . . . km, λm|ψ̄(0)Φn(0,∞) |0〉

    m = 0 −→ virtual cross section functions

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 14 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Counterterms at NLO

    Recall:dσNLO

    dX=∫

    dΦn[Vn + In

    ]δn︸ ︷︷ ︸

    finite in d=4

    +∫

    dΦn+1[Rn+1 δn+1 − Kn+1 δn

    ]︸ ︷︷ ︸

    finite in d=4

    Factorisation → virtual contribution decomposed in functions

    Vn = H(0)†n (pi ) S(1)n,0 H

    (0)n (pi ) +

    ∑ni=1H(0)†n (pi )

    [J(1)i,0 (pi )− J

    (1)i,E,0(βi )

    ]H(0)n (pi ) .

    Completeness → virtual functions linked to real functions

    S(1)n,0(βi ) +∫

    dΦ1 S(0)n,1(k, βi ) = fin. = + = finite...

    ...

    ...

    ...

    β1

    βi

    βn

    k

    β1

    βi

    βn

    β1

    βi

    βn βn

    βi

    β1

    ...

    ......

    ... k

    J(1)i,0 (l , p, n) +∫

    dΦ1 J(0)i,1 (k; l , p, n) = fin. =+

    pi

    k

    pi

    k

    pi pi= finite

    =⇒ Starting from the virtual structure we can identify real emission counterterms.

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 15 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Subtraction at NNLO

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 16 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    NNLO Subtraction pattern@NNLO:

    more configurations contribute

    dσNNLO

    dX=∫

    dΦn VVn δn(X) +∫

    dΦn+1 RVn+1 δn+1(X)+∫

    dΦn+2 RRn+2 δn+2(X)

    RRn+2 =∣∣∣A(0)n+2∣∣∣2 VVn = ∣∣∣A(1)n ∣∣∣2 + 2Re[A(0)†n A(2)n ] RVn+1 = 2Re[A(0)†n+1A(1)n+1]

    more counterterms to add and subtract∫dΦn+2 K (1) δn+1 : K (1) → same 1-unr. singularities as RR∫dΦn+2

    (K (12) + K (2)

    )δn : K (12) + K (2) → same 2-unr. singularities as RR.

    [1-unr.(2-unr.), pure 2-unr.]∫dΦn+1 K (RV) δn : K (RV) → same 1-unr. singularities as RV

    and integrate in the radiative phase space

    I(i) =∫

    dΦrad,i K (i) , I(12) =∫

    dΦrad,1 K (12) , I(RV) =∫

    dΦrad K (RV)

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 17 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Subtraction pattern at NNLO

    dσNNLO

    dX=∫

    dΦn[

    VVn︸︷︷︸singular in d=4 , finite in Φn

    ]δn

    +∫

    dΦn+1[ (

    RVn+1)︸ ︷︷ ︸

    singular in d=4, singular in Φn+1

    δn+1

    ]

    +∫

    dΦn+2[

    RRn+2︸ ︷︷ ︸finite in d=4, singular in Φn+2

    δn+2

    ]

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 18 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Subtraction pattern at NNLO

    dσNNLO

    dX=∫

    dΦn[

    VVn︸︷︷︸singular in d=4 , finite in Φn

    ]δn

    +∫

    dΦn+1[ (

    RVn+1)︸ ︷︷ ︸

    singular in d=4, singular in Φn+1

    δn+1

    ]

    +∫

    dΦn+2[RRn+2 δn+2 − K (1)δn+1 −

    (K (12) + K (2)

    )δn︸ ︷︷ ︸

    finite in d=4 and in Φn+2

    ]

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 18 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Subtraction pattern at NNLO

    dσNNLO

    dX=∫

    dΦn[

    VVn︸︷︷︸singular in d=4 , finite in Φn

    ]δn

    +∫

    dΦn+1[ (

    RVn+1)δn+1 −

    (K (RV )

    )δn︸ ︷︷ ︸

    singular in d=4, finite in Φn+1

    ]

    +∫

    dΦn+2[RRn+2 δn+2 − K (1)δn+1 −

    (K (12) + K (2)

    )δn︸ ︷︷ ︸

    finite in d=4 and in Φn+2

    ]

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 18 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Subtraction pattern at NNLO

    dσNNLO

    dX=∫

    dΦn[

    VVn︸︷︷︸singular in d=4 , finite in Φn

    ]δn

    +∫

    dΦn+1[ (

    RVn+1 + I(1))︸ ︷︷ ︸

    finite in d=4, singular in Φn+1

    δn+1 −(K (RV ) − I(12)

    )︸ ︷︷ ︸finite in d=4, singular in Φn+1

    δn

    ︸ ︷︷ ︸finite in d=4 and in Φn+1

    ]

    +∫

    dΦn+2[RRn+2 δn+2 − K (1)δn+1 −

    (K (12) + K (2)

    )δn︸ ︷︷ ︸

    finite in d=4 and in Φn+2

    ]

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 18 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Subtraction pattern at NNLO

    dσNNLO

    dX=∫

    dΦn[VVn + I(2) + I(RV)︸ ︷︷ ︸finite in d=4 and in Φn

    ]δn

    +∫

    dΦn+1[ (

    RVn+1 + I(1))︸ ︷︷ ︸

    finite in d=4, singular in Φn+1

    δn+1 −(K (RV ) − I(12)

    )︸ ︷︷ ︸finite in d=4, singular in Φn+1

    δn

    ︸ ︷︷ ︸finite in d=4 and in Φn+1

    ]

    +∫

    dΦn+2[RRn+2 δn+2 − K (1)δn+1 −

    (K (12) + K (2)

    )δn︸ ︷︷ ︸

    finite in d=4 and in Φn+2

    ]

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 18 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Check list

    DoneProvide a complete and efficient algorithm to subtract the IR poles at NLO.Investigate the factorisation properties of a virtual amplitude to definecounterterms at NLO.Find a map to link the two approached at NLO.Generalised the main aspects of the Subtraction procedure and theFactorisation analysis at NNLO.

    Factorisation and Subtraction beyond NLOMagnea, Maina, Pelliccioli, CS, Torrielli, Uccirati JHEP 1812(2018) 062, ArXiv 1809.05444[hep-ph].

    Local analytic sector subtraction at NNLOMagnea, Maina, Pelliccioli, CS, Torrielli, Uccirati JHEP 1812(2018) 107, ArXiv 1806.09570 [hep-ph].

    Factorisation and Local Subtraction of Infrared Divergences for QCD processesCS, to appear on JPCS.

    Analytic tools for IR subtraction beyond NLOMagnea, Maina, Pelliccioli, CS, Torrielli, Uccirati PoS LL2018 (2018) 013.

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 19 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Wish list

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 20 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Backup

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 21 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Collinear splitting at NLO

    Single-radiative jet function at the lowest perturbative order in the coupling constant∑s

    Jq, 1 (k; l , p, n) =4παsCF

    (l2)2(2π)dδd (l − p − k)

    [−/l γµ/pγµ/l +

    l2

    k · n(/l /n/p + /p/n/l

    )]=⇒ Sudakov parametrisation for momenta pµ and kµ

    pµ = zlµ +O (l⊥) , kµ = (1− z)lµ +O (l⊥) , n2 = 0 .

    =⇒ Leading behaviour in the l⊥ → 0 limit∑s

    Jq, 1 (k; l , p, n) =8παsCF

    l2(2π)d δd (l − p − k)

    [1 + z2

    1− z− � (1− z)

    ],

    The leading order unpolarised DGLAP splitting function Pq→qg .

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 22 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Collinear counterterm

    Final-state collinear radiation is modelled by a gauge-invariant extension of the jetfunction, the radiative jet function (RJF). For outgoing quark

    ūs(p)Jq,m(k1 . . . km; p, n) ≡ 〈p, s; k1, λ1; . . . ; km, λm| ψ̄(0)Φn(0,∞) |0〉

    ≡ ūs(p)∑∞

    p=0J (p)q,m(k1, . . . , km; p, n)

    where Jq,0 is the virtual function, with J (0)q,0 = 1, and J(p)q,m proportional to g2p+ms .

    At cross-section level in the unpolarised case

    Jq,m(k1, . . . , km; p, n) ≡∑∞

    p=oJ(p)q,m(k1, . . . , km; p, n)

    ≡∫

    ddx eil·x∑

    {λi}〈0|Φn(∞, x)φ(x) |p, s; kj , λj 〉 〈p, s; kj , λj | ψ̄(0)Φn(0,∞) |0〉

    where lµ = pµi +∑m

    i kµi fixes the total momentum flowing in the final state.

    Completeness relation∞∑m=0

    ∫dΦm+1Jq,m(k; l , p, n) = Disc

    [∫ddxeil·x 〈0|Φn(∞, x)ψ(x)ψ̄(0)Φn(0,∞) |0〉

    ]

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 23 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Practical implementation of the Subtraction methodIngredients of our method:

    fundamental limits Si , Cij selecting only the leading behaviour in the specificconfiguration

    Si O({kn}

    )⇒ lim

    kµi →0(ei→0)

    O({kn}

    ) ∣∣∣∣leading terms

    Cij O({kn}

    )⇒ lim

    kµ⊥→0(ωij→0)

    O({kn}

    ) ∣∣∣∣leading terms

    k⊥ki

    kj

    Singular structure of R under the fundamental limits [9908523]- universal kernel- Born matrix element

    SiR({k}) = −N∑c,d

    δfi gscd

    sic sidBcd ({k}/i )

    CijR({k}) = N1sij

    Pµνij (sir , sjr )Bµν({k}/i /j , k)

    SiCijR({k}) = 2N Cfj δfi gsjr

    sij sidB({k}/i )

    Born kinem.: mass-shell condition and momenta conservation just in the limits

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 24 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Practical implementation of the Subtraction methodIngredients of our method:

    fundamental limits Si , Cij selecting only the leading behaviour in the specificconfiguration

    Si O({kn}

    )⇒ lim

    kµi →0(ei→0)

    O({kn}

    ) ∣∣∣∣leading terms

    Cij O({kn}

    )⇒ lim

    kµ⊥→0(ωij→0)

    O({kn}

    ) ∣∣∣∣leading terms

    k⊥ki

    kj

    Singular structure of R under the fundamental limits [9908523]- universal kernel- Born matrix element

    SiR({k}) = −N∑c,d

    δfi gscd

    sic sidBcd ({k}/i )

    CijR({k}) = N1sij

    Pµνij (sir , sjr )Bµν({k}/i /j , k)

    SiCijR({k}) = 2N Cfj δfi gsjr

    sij sidB({k}/i )

    Born kinem.: mass-shell condition and momenta conservation just in the limits

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 24 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Practical implementation of the Subtraction methodIngredients of our method:

    fundamental limits Si , Cij selecting only the leading behaviour in the specificconfiguration

    Si O({kn}

    )⇒ lim

    kµi →0(ei→0)

    O({kn}

    ) ∣∣∣∣leading terms

    Cij O({kn}

    )⇒ lim

    kµ⊥→0(ωij→0)

    O({kn}

    ) ∣∣∣∣leading terms

    k⊥ki

    kj

    Singular structure of R under the fundamental limits [9908523]- universal kernel- Born matrix element

    SiR({k}) = −N∑c,d

    δfi gscd

    sic sidBcd ({k}/i )

    CijR({k}) = N1sij

    Pµνij (sir , sjr )Bµν({k}/i /j , k)

    SiCijR({k}) = 2N Cfj δfi gsjr

    sij sidB({k}/i )

    Born kinem.: mass-shell condition and momenta conservation just in the limits

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 24 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Practical implementation of the Subtraction methodIngredients of our method:

    fundamental limits Si , Cij selecting only the leading behaviour in the specificconfiguration

    Si O({kn}

    )⇒ lim

    kµi →0(ei→0)

    O({kn}

    ) ∣∣∣∣leading terms

    Cij O({kn}

    )⇒ lim

    kµ⊥→0(ωij→0)

    O({kn}

    ) ∣∣∣∣leading terms

    k⊥ki

    kj

    Singular structure of R under the fundamental limits [9908523]- universal kernel- Born matrix element

    SiR({k}) = −N∑c,d

    δfi gscd

    sic sidBcd ({k}/i )

    CijR({k}) = N1sij

    Pµνij (sir , sjr )Bµν({k}/i /j , k)

    SiCijR({k}) = 2N Cfj δfi gsjr

    sij sidB({k}/i )

    Born kinem.: mass-shell condition and momenta conservation just in the limits

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 24 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Practical implementation of the Subtraction method

    partition of the phase space Φn+1 with sector functions Wij =∑

    k,l 6=kσijσkl

    ,where σij = 1/ei ωij (based on FKS subtraction):

    - minimum amount of singularities

    SiWij =1/wij∑j′ 6=i 1/wij′

    CijWij =ej

    ei + ej

    SiWab = 0 , ∀i 6= a CijWab = 0 , ∀a, b /∈ π(i , j)

    - sum to unity∑i,j 6=i

    Wij = 1 , Si∑j 6=i

    Wij = 1 , Cij∑

    a,b∈perm(ij)

    Wab = 1

    momentum mapping: {k1, . . . , kn+1} → {k̄1, . . . , k̄n} (based on CS subtraction):

    - phase space factorisation dΦn+1 = dΦ̄n dΦ̄rad- n on-shell particles conserving momentum.

    {k̄}(abc) ={{k}/a/b/c , k̄

    (abc)b , k̄

    (abc)c

    }k̄(abc)b + k̄

    (abc)c = ka + kb + kc

    ka

    kb

    kc

    k̄b

    k̄c

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 25 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Practical implementation of the Subtraction method

    partition of the phase space Φn+1 with sector functions Wij =∑

    k,l 6=kσijσkl

    ,where σij = 1/ei ωij (based on FKS subtraction):

    - minimum amount of singularities

    SiWij =1/wij∑j′ 6=i 1/wij′

    CijWij =ej

    ei + ej

    SiWab = 0 , ∀i 6= a CijWab = 0 , ∀a, b /∈ π(i , j)

    - sum to unity∑i,j 6=i

    Wij = 1 , Si∑j 6=i

    Wij = 1 , Cij∑

    a,b∈perm(ij)

    Wab = 1

    momentum mapping: {k1, . . . , kn+1} → {k̄1, . . . , k̄n} (based on CS subtraction):

    - phase space factorisation dΦn+1 = dΦ̄n dΦ̄rad- n on-shell particles conserving momentum.

    {k̄}(abc) ={{k}/a/b/c , k̄

    (abc)b , k̄

    (abc)c

    }k̄(abc)b + k̄

    (abc)c = ka + kb + kc

    ka

    kb

    kc

    k̄b

    k̄c

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 25 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Practical implementation of the Subtraction method

    partition of the phase space Φn+1 with sector functions Wij =∑

    k,l 6=kσijσkl

    ,where σij = 1/ei ωij (based on FKS subtraction):

    - minimum amount of singularities

    SiWij =1/wij∑j′ 6=i 1/wij′

    CijWij =ej

    ei + ej

    SiWab = 0 , ∀i 6= a CijWab = 0 , ∀a, b /∈ π(i , j)

    - sum to unity∑i,j 6=i

    Wij = 1 , Si∑j 6=i

    Wij = 1 , Cij∑

    a,b∈perm(ij)

    Wab = 1

    momentum mapping: {k1, . . . , kn+1} → {k̄1, . . . , k̄n} (based on CS subtraction):

    - phase space factorisation dΦn+1 = dΦ̄n dΦ̄rad- n on-shell particles conserving momentum.

    {k̄}(abc) ={{k}/a/b/c , k̄

    (abc)b , k̄

    (abc)c

    }k̄(abc)b + k̄

    (abc)c = ka + kb + kc

    ka

    kb

    kc

    k̄b

    k̄c

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 25 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Practical implementation of the Subtraction method

    partition of the phase space Φn+1 with sector functions Wij =∑

    k,l 6=kσijσkl

    ,where σij = 1/ei ωij (based on FKS subtraction):

    - minimum amount of singularities

    SiWij =1/wij∑j′ 6=i 1/wij′

    CijWij =ej

    ei + ej

    SiWab = 0 , ∀i 6= a CijWab = 0 , ∀a, b /∈ π(i , j)

    - sum to unity∑i,j 6=i

    Wij = 1 , Si∑j 6=i

    Wij = 1 , Cij∑

    a,b∈perm(ij)

    Wab = 1

    momentum mapping: {k1, . . . , kn+1} → {k̄1, . . . , k̄n} (based on CS subtraction):

    - phase space factorisation dΦn+1 = dΦ̄n dΦ̄rad- n on-shell particles conserving momentum.

    {k̄}(abc) ={{k}/a/b/c , k̄

    (abc)b , k̄

    (abc)c

    }k̄(abc)b + k̄

    (abc)c = ka + kb + kc

    ka

    kb

    kc

    k̄b

    k̄c

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 25 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    Practical implementation of the Subtraction method

    partition of the phase space Φn+1 with sector functions Wij =∑

    k,l 6=kσijσkl

    ,where σij = 1/ei ωij (based on FKS subtraction):

    - minimum amount of singularities

    SiWij =1/wij∑j′ 6=i 1/wij′

    CijWij =ej

    ei + ej

    SiWab = 0 , ∀i 6= a CijWab = 0 , ∀a, b /∈ π(i , j)

    - sum to unity∑i,j 6=i

    Wij = 1 , Si∑j 6=i

    Wij = 1 , Cij∑

    a,b∈perm(ij)

    Wab = 1

    momentum mapping: {k1, . . . , kn+1} → {k̄1, . . . , k̄n} (based on CS subtraction):

    - phase space factorisation dΦn+1 = dΦ̄n dΦ̄rad- n on-shell particles conserving momentum.

    {k̄}(abc) ={{k}/a/b/c , k̄

    (abc)b , k̄

    (abc)c

    }k̄(abc)b + k̄

    (abc)c = ka + kb + kc

    ka

    kb

    kc

    k̄b

    k̄c

    Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 25 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    IR divergences anatomyFramework: QCD’90s: experimental evidences pointed out the necessity to add some color in the theory.

    Ω−

    s = 3/23 strange quarkswave function symmetric inspace, space and flavour.

    Spin-Statistic Theorem: a newquantum number is needed, the color.

    Number of colors verified to be 3:

    R =σ(e+e− → h)

    σ(e+e− → µ+µ−)∗= 3

    [2(23

    )2+ 3(−13

    )2 ]=

    113

    *Ecm ≥ 10GeV [L. Montanet et al. Phys. Rev. D50, 1173 (1994)]Chiara Signorile-Signorile Subtraction of Infrared Singularities in Perturbative QCD: a new scheme 26 / 20

  • Introduction Subtraction NLO Factorisation NLO NNLO Conclusions Backup

    enviroment

    The new theory of colored particles describes the strong interactions between quarksand gluons. It is modelled by

    Lqcd = ψ̄i[i /D(A)ij −mδij

    ]ψj −

    14(F aµν)2−λ

    2(∂ · Aa)2 + ∂µη̄a

    [δab ∂

    µ + gs fabc Aµc]ηb

    (Dµ(A))ij≡δij ∂µ+ig(Aµ)ij

    F aµν =∂µAaν−∂νA

    aµ−gs f

    abc A

    bµA

    The QCD coupling constant runs with the energy scale: two opposite regimes

    αs(µ) =α(µ0)

    1− β02π α(µ0) logµµ0

    µ→∞β0