submission doc.: ieee 11-14/0136r2 january 2014 gal basson, wilocityslide 1 beyond 802.11ad –...

19
Submission doc.: IEEE 11-14/0136r2 January 2014 Gal Basson, Wilocity Slide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN 2 nd presentation N am e A ffiliations A ddress Phone em ail G alBasson W ilocity G al.basson@ w ilocity.com Cordeiro Carlos Intel carlos.cordeiro@ intel.com Payam Torab Jahrom i Broadcom ptorab@ broadcom .com H ui-Ling Lou M arvell hlou@ m arvell.com LeiH uang Panasonic Lei.H uang@ sg.panasonic.com Sven M esecke N itero Sven.m esecke@ nitero.com Ism ailLakkis Tensorcom ilakkis@ tensorcom .com SaiN andagopalan A deptence nsai@ adeptence.com Brad Lynch Peraso Technologies brad@ perasotech.com U riParker W ilocity U ri.parker@ w ilocity.com G aiusY ao H uang Wee Panasonic Y aoH uang.W ee@ sg.panasonic.com LeiW ang M arvell leileiw@ m arvell.com SangH yun Chang Sam sung s29.chang@ sam sung.com

Upload: arthur-shelton

Post on 18-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Submission

doc.: IEEE 11-14/0136r2January 2014

Gal Basson, WilocitySlide 1

Beyond 802.11ad – Ultra High Capacity and Throughput WLAN 2nd presentation

Name Affiliations Address Phone email

Gal Basson Wilocity [email protected]

Cordeiro Carlos Intel [email protected]

Payam Torab Jahromi Broadcom [email protected]

Hui-Ling Lou Marvell [email protected]

Lei Huang Panasonic [email protected]

Sven Mesecke Nitero [email protected]

Ismail Lakkis Tensorcom [email protected]

Sai Nandagopalan Adeptence [email protected]

Brad Lynch Peraso Technologies

[email protected]

Uri Parker Wilocity [email protected]

Gaius Yao Huang Wee

Panasonic [email protected]

Lei Wang Marvell [email protected]

SangHyun Chang Samsung [email protected]

Submission

doc.: IEEE 11-14/0136r2January 2014

Gal Basson, WilocitySlide 2

Abstract

We would like to continue the discussion about creating a new Study Group to explore modifications to the IEEE 802.11ad-2012 PHY and MAC layers, so that modes of operation in the 60 GHz band (57-66 GHz) can be enabled that are capable of a maximum throughput of at least 30 Gbps as measured at the MAC data service access point (SAP), while maintaining the excellent capacity attribute of the 60GHz band.

Submission

doc.: IEEE 11-14/0136r2

Gal Basson, Wilocity

Agenda

• 802.11ad attributes• Small antenna footprint

• Antenna arrays at 60GHz

• Low operating SNR

• Capacity at 60GHz

• Next generation (NG) 802.11ad• High data rates usages reminder

• Methods for increasing the TPT

• Further innovation for next generation 802.11ad

Slide 3

January 2014

Submission

doc.: IEEE 11-14/0136r2

Gal Basson, Wilocity

802.11ad attributes (1)

• 60GHz has very small antenna footprint• mm compared to cm

• Due to the low footprint, 60GHz communication can use antenna arrays

• Many advantages of using antenna array in 60GHz• Increases link margin• Increases directivity• Implementation wise: higher efficiency when trying to

get high EIRP numbersSlide 4

January 2014

Submission

doc.: IEEE 11-14/0136r2

Gal Basson, Wilocity

802.11ad attributes (2)

• 802.11ad high rate is a result of using high BW (1.76 GHz)

• The operating SNR for 4.6Gbps is lower than 14 dB

Slide 5

January 2014

MCS Rate[Mbps] Noise floor Antenna Gain NF Array Gain SNR Sensetivity0 CP -82 5 6.5 0 -12 -92.51 385 -82 5 6.5 12 -0.35 -92.852 770 -82 5 6.5 12 0.71 -91.793 962.5 -82 5 6.5 12 2 -90.54 1155 -82 5 6.5 12 3.3 -89.25 1251 -82 5 6.5 12 4 -88.56 1540 -82 5 6.5 12 3.64 -88.867 1920 -82 5 6.5 12 4.9 -87.68 2310 -82 5 6.5 12 6.35 -86.159 2502 -82 5 6.5 12 7 -85.510 3080 -82 5 6.5 12 11.1 -81.411 3850 -82 5 6.5 12 12 -80.512 4620 -82 5 6.5 12 13.3 -79.2

Submission

doc.: IEEE 11-14/0136r2

Gal Basson, Wilocity

802.11ad attributes: capacity (3)

• Directivity and low operating SNR are fantastic attributes to increase capacity

• 60GHz can significantly increase network capacity• Directivity in many situations dramatically reduces or eliminates

OBSS interference

• Low operating SNR means better resilience to interference

• We have shown amazing numbers of spatial reuse

• Simulation from 11-13 408r2

Slide 6

March 2013

48 pairsHall size 20x20x2.5 meters

Submission

doc.: IEEE 11-14/0136r2

Gal Basson, Wilocity

Next Generation 802.11ad

Slide 7

January 2014

Submission

doc.: IEEE 11-14/0136r2

Gal Basson, WilocitySlide 8

January 2014

Submission

doc.: IEEE 11-14/0136r2

Gal Basson, Wilocity

Methods for increasing the TPT

• Channel bonding [1]• We have suggested 2 additional BW

• Double channel-5.28GHz

• Quadruple channel-10.56GHz

• We have shown technology feasibility of such an analog FE today.• Marinating low power

• MIMO [1]• “Traditional MIMO”

• “Spatial orthogonal MIMO”• For receiver simplification

• Shown channel measurement• 11-13 408r2

Slide 9

January 2014

Secto

r #1

Sector #2

Sector #3Sector #4

Sector #N

Sector #1Sector #2

Sector #3Sector #4

Sector #N

RED – best ray and best pair of TX-RX sectorsGreen – second best pair of sectors

Blue – third best pair of sectors

TX RX

Submission

doc.: IEEE 11-14/0136r2

Gal Basson, Wilocity

Example: rate table

Slide 10

January 2014

π/2-BPSK 1 SC 1/2 0.77 1.54 3.1π/2-BPSK 1 SC 3/4 1.155 2.31 4.6π/2-QPSK 1 SC 1/2 1.54 3.08 6.2π/2-QPSK 1 SC 3/4 2.31 4.62 9.2

π/2-16QAM 1 SC 1/2 3.08 6.16 12.3π/2-16QAM 1 SC 3/4 4.62 9.24 18.5

64QAM 1 OFDM 3/4 6.2 12.4 24.8π/2-BPSK 2 SC 1/2 1.54 3.08 6.2π/2-BPSK 2 SC 3/4 2.31 4.62 9.2π/2-QPSK 2 SC 1/2 3.08 6.16 12.3π/2-QPSK 2 SC 3/4 4.62 9.24 18.5

π/2-16QAM 2 SC 1/2 6.16 12.32 24.6π/2-16QAM 2 SC 3/4 9.24 18.48 37

64QAM 2 OFDM 3/4 12.4 24.8 49.6π/2-BPSK 4 SC 1/2 3.08 6.16 12.3π/2-BPSK 4 SC 3/4 4.62 9.24 18.5π/2-QPSK 4 SC 1/2 6.16 12.32 24.6π/2-QPSK 4 SC 3/4 9.24 18.48 37

π/2-16QAM 4 SC 1/2 12.32 24.64 49.3π/2-16QAM 4 SC 3/4 18.48 36.96 73.9

64QAM 4 OFDM 3/4 24.8 49.6 99.2

Modulation NSS PHY Code RateData Rate (Gbps)

BW=1.76GHz BW=3.52GHz BW=7.04GHz

Submission

doc.: IEEE 11-14/0136r2

Gal Basson, Wilocity

Protocol overheads at high rates

• 802.11ad NG can introduce rates as high as 100Gbps

• 802.11ad introduced VERY low PHY overheads and low latency protocol• 3 uSec SIFS• PHY preambles including header <2usec

• Questions:• Will these parameters affect such high data rates?

• What can be done in 802.11ad NG to accommodate this?

Slide 11

January 2014

Submission

doc.: IEEE 11-14/0136r2

Gal Basson, Wilocity

Protocol overheads at high rates

• The architecture assumes transmissions will have to be stored on chip due to transmission retry.

• On chip memory will grow bigger 5 years from now

Slide 12

January 2014

0 10 20 30 40 50 60 70 80 90 10040

50

60

70

80

90

100

Speed [Gbps]

PH

Y O

verH

ead

PHY Overhead high speed

Memory size 100KBMemory size 200KB

Memory size 400KB

Memory size 1MB

Memory size 2MB

Memory size 4MBMemory size 10MB

Submission

doc.: IEEE 11-14/0136r2

Gal Basson, Wilocity

Possible additions to 802.11ad NG: backhaul support

• There is a lot of industry interest in backhaul communication using 60 GHz• ISM band

• Small antenna footprint

• Phased array

• Commodity Si is available (Price is lower)

• Usages are targeting up to 1Km range

• Need to explore the requirements and accommodate through 802.11ad NG

Slide 13

January 2014

Submission

doc.: IEEE 11-14/0136r2

Gal Basson, Wilocity

Summary

• 802.11ad-based products are shipping in the market today; more are expected to come in the near future

• Increasing demand for capacity and new applications are driving the desire to enhance 11ad to support these needs

• Technical feasibility to enhance 11ad with MIMO and channel bonding have been widely demonstrated

• Suggest that 802.11 start a new SG on next generation 11ad

Slide 14

January 2014

Submission

doc.: IEEE 11-14/0136r2

Gal Basson, Wilocity

Straw polls

1. Would you agree to form a new 802.11 SG on this topic at the May/14 802.11 meeting?

Slide 15

January 2014

Submission

doc.: IEEE 11-14/0136r2

References

1. https://mentor.ieee.org/802.11/dcn/13/11-13-1408-01-0wng-beyond-802-11ad-ultra-high-capacity-and-tpt-wlan.pptx

Slide 16

January 2014

Carlos Cordeiro, Intel

Submission

doc.: IEEE 11-14/0136r2

Gal Basson, Wilocity

Backup

Slide 17

January 2014

Submission

doc.: IEEE 11-14/0136r2

Gal Basson, Wilocity

MIMO at 60 GHz: can we simplify?

• Reminder: 4.6 Gbps can be achieved at 13 dB SNR

• Can we create “spatial orthogonal streams”• A diagonal channel matrix on the receiver

• 60 GHz require 10 dB SNR for decoding 3Gbps

• Training should be done via BF mechanismSector sweep and BRP

• Low cost/complexity receiver• lower digital complexity

Slide 18

November 2013

Secto

r #1

Sector #2

Sector #3Sector #4

Sector #N

Sector #1Sector #2

Sector #3Sector #4

Sector #N

RED – best ray and best pair of TX-RX sectorsGreen – second best pair of sectors

Blue – third best pair of sectors

TX RX

Signal #1 Signa

l #2

Σ Σ

Antenna elements

RF signal Summators (RX)

or Multiplexors (TX)

Radio frequency to Baseband

transformation

RFToBB

RFToBB

Phase shiftersΦ Φ Φ Φ Φ Φ Φ Φ

Σ Interference cancellation block

Channel estimation and

weights calculation

Antenna array #1 Antenna array #2

Σ

Submission

doc.: IEEE 11-14/0136r2

Gal Basson, Wilocity

MIMO Channel measurement at 60GHz

• Planar array-16 elements

• Channel matrix was measured (16x16)• LOS and NLOS

• Antenna channel correlation-

• LOS-conductive 0.996-meaning all antennas see same channel

• LOS-0.724- not fully correlated

• Channel model D (IEEE 11n)- 0.4-0.5

Slide 19

November 2013

0 20 40 60 80 100 120 1400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LOS-planar array