study on normalization method for hev - unece

48
2016/XX/XX Japan Automobile Research Institute 1 Study on Normalization method for HEV < preliminary report > EV-SG, WLTP-IWG 25 April 2016 Prepared by JAPAN

Upload: others

Post on 16-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

2016/XX/XX

Japan Automobile Research Institute 1

Study on Normalization method

for HEV

< preliminary report >

EV-SG, WLTP-IWG

25 April 2016

Prepared by JAPAN

2016/XX/XX

Japan Automobile Research Institute 2

Table of contents

1. Background

2. The applicability for HEV vehicle 2.1. Test condition & Test procedure

2.2. Test Results (CS condition)

2.3. Summary (CS condition)

2.4. Test Results (CD condition)

2.5. Summary (CD condition)

3. Next Actions

Reference

R1. Previous study by TUG

R2. Detailed data (CS testing)

R3. Detailed data (CD testing)

2016/XX/XX

Japan Automobile Research Institute 3

1. Background

In order to run the efficient test, some tolerance and

flexibilities are allowed in all test procedure, such as

speed, road load, temperature and so on.

Some of these tolerance and flexibilities have an

impact on emissions and fuel consumption.

Technical University of Graz (TUG) have developed

the “Normalization method” for ICE vehicles to

compensate the deviations against the target values

(see reference R1).

The effects of Normalization method have reported

in the 8th WLTP-IWG as “WLTP-08-37e”

No further study is done for HEV(Hybrid Electric

Vehicles)

2016/XX/XX

Japan Automobile Research Institute

4

2.1 Test condition and Test Procedure

Test vehicle: OVC-HEV (Toyota PRIUS-PHV)

Driving style & # of Test:

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120

Time (s)

Vehic

le s

peed (

km

/h)

WLTC CL3 v5.3

Low limit

High limit

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120

Time (s)

Vehic

le s

peed (

km

/h)

WLTC CL3 v5.3

Low limit

High limit

Low acceleration Smoothness

High deceleration

less regeneration

Large fluctuation

High acceleration

Low deceleration

(high regeneration)

Smooth-Smooth driving Rough-Rough driving

Normal Smooth-

Smooth Rough-Rough Smooth-Rough Rough-Smooth

n = 2 n = 1 n = 1 n = 1 n = 1

2016/XX/XX

Japan Automobile Research Institute 5

day 1 day 2 (Normal driving)

CD test (3 cycles) Soak > 6 hr CS test Charge Charge

day 3 ~ (Normal/Smooth/Rough driving)

CD test (3 cycles) Soak > 6 hr CS test Charge

Pre-con

Charging

Add

RL quick check

and pre-con

driving for CS test

Add

RL quick check

and pre-con

driving for CS test

2.1 Test condition and Test Procedure

2016/XX/XX

Japan Automobile Research Institute 6

2.2. Test Results (CS condition)

98

.7

98

.4

93

.4

10

7.6

99

.6

99

.0

98

.7

98

.3

93

.5

10

8.2

10

0.2

99

.0

0.2 -0.2

-5.2

9.2

1.0 0.5

0.2 -0.2

-5.1

9.9

1.7 0.5

-25

-20

-15

-10

-5

0

5

10

15

70

75

80

85

90

95

100

105

110

115

120

Normal-1 Normal-2 Smooth-Smooth Rough-Rough Smooth-Rough Rough-Smooth

Ra

te o

f c

ha

ng

e to

No

rma

l d

riv

ing

(%

)

CO

2_

CS

[L

MH

xH

] (g

/km

)

CO2_CS_measured CO2_CS_corrected Rate of change_measured Rate of change_corrected

85

.2

84

.8

77

.8

95

.5

85

.7

85

.8

87

.8

87

.5

81

.4

99

.5

90

.1

88

.1

0.3 -0.3

-8.5

12.3

0.8 0.9

0.2 -0.2

-7.1

13.6

2.8 0.5

-25

-20

-15

-10

-5

0

5

10

15

70

75

80

85

90

95

100

105

110

115

120

Normal-1 Normal-2 Smooth-Smooth Rough-Rough Smooth-Rough Rough-Smooth

Ra

te o

f c

ha

ng

e to

No

rma

l d

riv

ing

(%

)

CO

2_

CS

[L

MH

] (g

/km

)

CO2_CS_measured CO2_CS_corrected Rate of change_measured Rate of change_corrected

4 phase [LMHxH]

3 phase [LMH]

CO2 values are varied in the range of -10% to +15%

2016/XX/XX

Japan Automobile Research Institute 7

Comparison of the veline coefficient

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 5 10 15 20

CO

2 (g

/s)

Average Power (kW)

Normal-1

Normal-2

Smooth-Smooth

Rough-Rough

Smooth-Rough

Rough-Smooth

Driving style Veline coefficient

Normal-1 0.206Normal-2 0.204

Smooth-Smooth 0.205Rough-Rough 0.205

Smooth-Rough 0.202Rough-Smooth 0.205

The veline coefficient is identical with regardless of driving style

2.2. Test Results (CS condition)

2016/XX/XX

Japan Automobile Research Institute 8

Effects of Normalization method (4 phase)

Measured

data

CO2 ΔCO2 CO2 ΔCO2 CO2 ΔCO2 CO2 ΔCO2 CO2

(g/km) (g/km) (g/km) (g/km) (g/km) (g/km) (g/km) (g/km) (g/km)

Normal-1 98.74 -0.07 98.68 -0.03 98.65 -0.14 98.50 -0.09 98.41

Normal-2 98.36 -0.02 98.34 -0.02 98.32 -0.13 98.19 -0.21 97.97

Smooth-Smooth 93.41 0.07 93.47 2.95 96.42 -0.38 96.05 0.67 96.71

Rough-Rough 107.59 0.63 108.21 -3.68 104.53 0.61 105.14 0.76 105.90

Smooth-Rough 99.58 0.58 100.15 0.54 100.70 -0.10 100.60 0.40 100.99

Rough-Smooth 99.00 0.03 99.03 1.34 100.37 0.21 100.57 0.33 100.90

Standard Deviation (g/km) 4.6 - 4.8 - 2.8 - 3.1 - 3.3

Differenc between MAX and MIN (g/km) 14.2 - 14.7 - 8.1 - 9.1 - 9.2

Distance correction RL correction

LMHxH

Phase Test condition

SOC correction Speed correction

※used RL value after CD test

75

80

85

90

95

100

105

110

115

Measured SOC correction

Speed correction

Distance correction

Road load correction

CO

2(g

/km

)

Normal-1

Normal-2

Smooth-Smooth

Rough-Rough

Smooth-Rough

Rough-Smooth

Δ8.1 g/km

Δ14.7 g/km

Δ2.1 g/km Δ5.0 g/km

Δ6.0 g/km

Maximum deviation was

reduced from 14.7 to 8.1 g/km.

The deviation between normal

driving and smooth-smooth

driving was reduced from 5.0 to

2.1 g/km.

The deviation of two normal

driving data was 0.3 g/km.

2.2. Test Results (CS condition)

2016/XX/XX

Japan Automobile Research Institute 9

Effects of Normalization method (3 phase)

Measured

data

CO2 ΔCO2 CO2 ΔCO2 CO2 ΔCO2 CO2 ΔCO2 CO2

(g/km) (g/km) (g/km) (g/km) (g/km) (g/km) (g/km) (g/km) (g/km)

Normal-1 85.23 2.55 87.78 -0.01 87.77 -0.14 87.63 -0.04 87.60

Normal-2 84.79 2.70 87.49 0.03 87.52 -0.13 87.40 -0.15 87.25

Smooth-Smooth 77.80 3.63 81.43 3.16 84.59 -0.40 84.19 0.72 84.92

Rough-Rough 95.47 4.07 99.54 -3.49 96.05 0.58 96.63 0.77 97.41

Smooth-Rough 85.69 4.39 90.08 0.83 90.91 -0.14 90.78 0.49 91.27

Rough-Smooth 85.76 2.30 88.06 1.61 89.68 0.17 89.85 0.46 90.30

Standard Deviation (g/km) 5.6 - 5.9 - 3.9 - 4.2 - 4.4

Differenc between MAX and MIN (g/km) 17.7 - 18.1 - 11.5 - 12.4 - 12.5

Distance correction RL correction

LMH

Phase Test condition

SOC correction Speed correction

65

70

75

80

85

90

95

100

105

Measured SOC correction

Speed correction

Distance correction

Road load correction

CO

2(g

/km

)

Normal-1

Normal-2

Smooth-Smooth

Rough-Rough

Smooth-Rough

Rough-Smooth

Δ11.5 g/km

Δ18.1 g/km

Δ2.9 g/km

Δ6.0 g/km

Maximum deviation was

reduced from 18.1 to 11.5 g/km.

The deviation between normal

driving and smooth-smooth

driving was reduced from 6.0 to

2.9 g/km.

The deviation of two normal

driving data was 0.3 g/km.

Δ8.5 g/km

※used RL value after CD test

2.2. Test Results (CS condition)

2016/XX/XX

Japan Automobile Research Institute 10

Comparison with ICE (used only +/- 10% ASCR data)

Normalization method for CS condition works same level as ICE

(approximately 3g/km / 10% ASCR).

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0

ASCR

ΔC

O2

(g

/km

)

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0

ASCRΔ

CO

2 (

g/k

m)

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0

ASCR

ΔC

O2

(g

/km

)

OVC-HEV NOVC-HEV ICE

-10

-8

-6

-4

-2

0

2

4

6

8

10

Measured SOC

correction

Speed

correction

Distance

correction

CO

2 (

g/k

m)

Normal-1 Normal-2

Smooth-Smooth Rough-Rough

Smooth-Rough Rough-Smooth

-10

-8

-6

-4

-2

0

2

4

6

8

10

Measured SOC

correction

Speed

correction

Distance

correction

CO

2 (

g/k

m)

Normal-1 Normal-2 Smooth-1

Smooth-2 Rough-1

-10

-8

-6

-4

-2

0

2

4

6

8

10

Measured SOC

correction

Speed

correction

Distance

correction

CO

2 (

g/k

m)

Normal-1 Normal-2

Smooth-1 Smooth-2

SO

C c

orr

ecte

d

SO

C c

orr

ecte

d

Δ6.1 g/km

※SOC_corrected ※Measured

Δ2.1 g/km Δ5.0 g/km

Δ9.7 g/km

Δ2.4 g/km Δ5.2 g/km

Δ2.3 g/km

Δ2.3 g/km

Δ4.9 g/km Δ3.1 g/km

※SOC_corrected

2.2. Test Results (CS condition)

2016/XX/XX

Japan Automobile Research Institute 11

2.3 Summary (CS condition)

① Impact of driving style

• CO2 range : -5% to 10%.

② Applicability of Normalization method

• It was observed that “normalization method” has an

effectiveness to reduce the deviation of the CS test,

although the deviation is still remain (approx.10 g/km)

• It seems that the effectiveness is same level as the

ICE vehicles.

• Further study is necessary on the other HEV systems

for final decision of “normalization method”

applicability.

• The vehicle specific veline coefficient in each driving

style is identical.

(additional data can be found in reference R2)

2016/XX/XX

Japan Automobile Research Institute 12

All Electric Range (AER)

15

.85

15

.87

15

.89

3.1

8

15

.95

3.1

0

0.0 0.0 0.2

-80.0

0.6

-80.4

-200

-150

-100

-50

0

50

100

150

200

0

10

20

30

40

50

60

Normal-1 Normal-2 Smooth-Smooth Rough-Rough Smooth-Rough Rough-Smooth

Ra

te o

f c

ha

ng

e c

om

pa

red

to

N

orm

al d

riv

ing

(%

)

All-e

lec

tric

ra

ng

e A

ER

(k

m)

AERs are dramatically varied according to the driving style.

(reduced by 80% when rough driving)

2.4. Test Results (CD condition)

2016/XX/XX

Japan Automobile Research Institute 13

78

.6

78

.7

75

.8

77

.6

82

.8

68

.1

-0.1

0.1

3.2

1.0

-3.8

11.0

-0.5

-0.7

-1.1

-0.6

-0.6

-1.5

-40

-20

0

20

40

60

80

100

Normal-1 Normal-2 Smooth-Smooth Rough-Rough Smooth-Rough Rough-Smooth

RE

EC

i(%

)

CD-1 CD-2 CD-3

Charge Depleting Cycle Range (RCDC)

Break-off criterion

%

E

E(%)REECi

cycle

i,REESS4100

3600

1

23

.23

23

.25

23

.16

23

.39

23

.25

46

.62

0.0 0.0 -0.4 0.6 0.0

100.6

-200

-150

-100

-50

0

50

100

150

200

0

10

20

30

40

50

60

Normal-1 Normal-2 Smooth-Smooth Rough-Rough Smooth-Rough Rough-Smooth

Ra

te o

f c

ha

ng

e c

om

pa

red

to

N

orm

al d

riv

ing

(%

)

Ch

arg

e-d

ep

leti

ng

cy

cle

ra

ng

e R

CD

C(k

m)

RCDC

The RCDC has a high possibility to be different due to SOC level and break-off

criteria.

Very near the criterion. There is possibility to

exceed the criterion if drive drove more extremely

2.4. Test Results (CD condition)

2016/XX/XX

Japan Automobile Research Institute 14

Equivalent all-electric range (EAER)

CDC

CS,

avg,CD,CS,R

CO

COCOEAER

2

22

17

.80

17

.75

17

.81

16

.10

17

.44

18

.86

0.2 -0.2 0.2

-9.4

-1.9

6.1

-20

-15

-10

-5

0

5

10

15

20

0

10

20

30

40

50

60

Normal-1 Normal-2 Smooth-Smooth Rough-Rough Smooth-Rough Rough-Smooth

Ra

te o

f c

ha

ng

e c

om

pa

red

to

N

orm

al d

riv

ing

(%

)

Eq

uiv

ale

nt a

ll-e

lec

tric

ra

ng

e

EA

ER

(k

m)

The EAERs are varied by -10% to +6% even though different Rcdc.

23

.1

23

.3

21

.6

33

.7

25

.0

59

.0

-0.4 0.4 -7.0

45.4

8.0

154.4

-200

-150

-100

-50

0

50

100

150

200

0

10

20

30

40

50

60

70

80

90

100

Normal-1 Normal-2 Smooth-Smooth Rough-Rough Smooth-Rough Rough-Smooth

Ra

te o

f c

ha

ng

e c

om

pa

red

to

N

orm

al d

riv

ing

(%

)

CO

2_

CD

,av

g (g

/km

)

EAER

CO2,CD,avg equation

2.4. Test Results (CD condition)

2016/XX/XX

Japan Automobile Research Institute 15

Actual charge-depleting range (RCDA)

RCDA is dramatically changed when the # of CD cycle is different.

n

n

c n,avg,CD,COCS,CO

cycle,n,COCS,CO

cCDA dMM

MMdR

1

1 122

22

17

.80

17

.75

17

.81

16

.10

17

.44

28

.83

0.2 -0.2 0.2 -9.4 -1.9

62.2

-200

-150

-100

-50

0

50

100

150

200

0

10

20

30

40

50

60

Normal-1 Normal-2 Smooth-Smooth Rough-Rough Smooth-Rough Rough-Smooth

Ra

te o

f c

ha

ng

e c

om

pa

red

to

N

orm

al d

riv

ing

(%

)

Ac

tua

l c

ha

rge

-de

ple

tin

g

cy

cle

ra

ng

e R

CD

A(k

m)

n is the number of applicable WLTP test cycles driven including the transition cycle

※When the Transition cycle was 1st cycle, then MCO2,CD,avg,n-1 was considered 0.

RCDA

2.4. Test Results (CD condition)

2016/XX/XX

Japan Automobile Research Institute 16

16

.9

17

.1

15

.8

27

.1

18

.4

42

.9

-0.5 0.5 -6.8

59.5

8.1

152.5

-200

-150

-100

-50

0

50

100

150

200

0

10

20

30

40

50

60

70

80

90

100

Normal-1 Normal-2 Smooth-Smooth Rough-Rough Smooth-Rough Rough-Smooth

Ra

te o

f c

ha

ng

e c

om

pa

red

to

N

orm

al d

riv

ing

(%

)

Th

e u

tility

fa

cto

r-w

eig

hte

d

ch

arg

e-d

ep

leti

ng

CO

2 (

g/k

m)

Utility factor-weighted charge-depleting CO2 (MCO2,CD)

Utility factor-weighted charge-depleting CO2 mass emission MCO2,CD

MCO2,CD of the smooth-Smooth driving is 7% lower than that of the

Normal driving.

If the transition cycle is varied, MCO2,CD was dramatically changed.

Impact of driving style to the MCO2,CD was the range from -7% to 153%

2.4. Test Results (CD condition)

2016/XX/XX

Japan Automobile Research Institute 17

61

.9

61

.8

58

.6

71

.6

63

.3

62

.3

0.1 -0.1

-5.2

15.8

2.5 0.7

-20

-15

-10

-5

0

5

10

15

20

0

10

20

30

40

50

60

70

80

90

100

Normal-1 Normal-2 Smooth-Smooth Rough-Rough Smooth-Rough Rough-Smooth

Ra

te o

f c

ha

ng

e c

om

pa

ret

ot

No

rma

l d

riv

ing

(%

)

Th

e u

tility

fa

cto

r-w

eig

hte

d

CO

2 fro

m C

D a

nd

CS

(g

/km

)

Utility factor-weighted CO2 mass emissions (MCO2,weighted)

Utility factor-weighted CO2 mass emissions MCO2,weighted

MCO2,weighted of the smooth-Smooth driving is 5% lower than that of the

Normal driving.

Rough-Smooth CO2 is well correlated to other driving style even

though huge CO2 deviation under CD condition.

2.4. Test Results (CD condition)

2016/XX/XX

Japan Automobile Research Institute 18

Recharged electric energy (EAC)

29

27

29

10

28

96

29

10

29

29

28

73

0.3 -0.3 -0.8 -0.3 0.4 -1.6

-20

-15

-10

-5

0

5

10

15

20

2000

2200

2400

2600

2800

3000

3200

Normal-1 Normal-2 Smooth-Smooth Rough-Rough Smooth-Rough Rough-Smooth

Ra

te o

f c

ha

ng

e c

om

pa

red

to

N

orm

al d

riv

ing

(%

)

Th

e r

ech

arg

ed

ele

ctr

icen

erg

y

fro

m th

e m

ain

EA

C(W

h)

EAC

Recharged electric energy (EAC) in each test is identical (within 2%)

2.4. Test Results (CD condition)

2016/XX/XX

Japan Automobile Research Institute 19

Electric energy consumption (EC)

The ECs are varied from -7% to +10% depends on driving style

EC EAER

EEC AC

16

4.4

16

4.0

16

2.6

18

0.7

16

8.0

15

2.3

0.1 -0.1 -1.0

10.0

2.3

-7.3

-20

-15

-10

-5

0

5

10

15

20

0

20

40

60

80

100

120

140

160

180

200

Normal-1 Normal-2 Smooth-Smooth Rough-Rough Smooth-Rough Rough-Smooth

Ra

te o

f c

ha

ng

e c

om

pa

red

to

N

orm

al d

riv

ing

(%

)

Th

e e

lec

tric

en

erg

y

co

ns

um

pti

on

EC

(W

h/k

m)

2.4. Test Results (CD condition)

2016/XX/XX

Japan Automobile Research Institute 20

2.5. Summary(CD condition)

① Impact of driving style

• CO2/Range/EC : -80% to 150%.

② Applicability of Normalization method

• Due to its unique test procedure(CD condition), it was

observed that “normalization method” doesn’t work on

most of parameters (AER, Rcdc, Rcda., CO2, EC,,)

③ New methodologies or Driving Index ?

• New methodologies are absolutely necessary.

• On the other hands, the practical lab. operation needs

to be kept.

• One of solutions is to apply “drive trace index”

(additional data can be found in reference R3)

2016/XX/XX

Japan Automobile Research Institute 21

3. Next Actions

① Asking other parties to conduct CS testing on

different type of HEV system.

② Seek whether an appropriate correction

method for CD testing exist or not.

③ Options to Proceed

Option1 : No correction algorithm but apply drive

trace index with criteria for all type of vehicles

Option2 : Apply correction algorithm on only

parameters which are well justified.

Option3 : Develop the methodologies to take care of

all parameters.

2016/XX/XX

Japan Automobile Research Institute 22

Reference

R1. Previous study by TUG

R2. Detailed data (CS testing)

R3. Detailed data (CD testing)

2016/XX/XX

Japan Automobile Research Institute 23

R1. Correction algorithm of Normalization by TUG

L M H

ExH

for OVC-HEV vehicle, apply

normal RCB correction (Not use

Willans factor)

Develop the regression line based on the relationship

between average power and CO2 in each phase

LMH

LMHxH

1. Correction for imbalance of battery SOC

correct in each phase

Two option for the correction

A) simple option: Wbat=ΣU(t) × I(t) × 0.001・dt [kWs]

B) detailed option: Wbat = Wbat_discharge – (Wbat_charge × ηbat) [kWs]

ΔCO2SOC [g] = Wbat / ηAlt × ke

ηbat: Pb 87%, Ni-Mh 90%, Li-Ion 97%,ηAlt: 67%,ke: Willans係数

2. Set up a Vehicle specific Veline function

Set up the vehicle specific veline function from the SOC corrected test data and average power

Calculate average Power (if P(j) < Poverrun, P(j)=Poverrun)

CO2 [g/s] = kv × Pwheel + D

Poverrun = Maximum power×0.02 (*) for OVC-HEV: Maximum rated power of Engine

3. Correction for the deviation of the vehicle speed

Correct the deviation against target speed

ΔCO2v [g] = ΔWwheel × kv

ΔWwheel = (Ww_pos - Wpos) × 0.001 [kWs]

Wpos = ΣP(t)・dt ( if P(j) < Poverrun, P(j)=Poverrun )

P = (R0 + R1×V + R2 × V2 + ma) × V

4. Correction for the deviation of the travelled distance

Correct the deviation against target distance

Consider that CO2 is not emit during deceleration (< Poverrun)

CO2 [g/km] = (CO2measured + ΔCO2SOC + ΔCO2v) / 23.27

5. Correction for the deviation of road load

Correct the deviation against target road load

ΔCO2 [g] = ΔWwheel × kv

ΔWwheel = Σ(Pp(t) – P(t))・dt

Pp(t) – P(t) = R0w – R0 + (R1w – R1) ×v(t) + (R2w – R2) ×v(t)2

Poverrun

CO2 = kv・Pwheel + D

CO

2 [

g/s

]

2016/XX/XX

Japan Automobile Research Institute 24

R1. Normalization method for ICE vehicle

• It was observed that the normalization method tend to reduce the deviation between the tests.

SOC correction

Speed & distance correction

Road load correction

Soak temperature correction

• The CO2 value for the aggressive driving style is reduced only if 10Hz speed signals are used for the correction of speed deviations

• It was hardly to correct the aggressive driving for the vehicle with automatic transmission.

• Driving index as defined in SAE J2951 seems to be helpful to eliminate improper driver behavior.

Test-A

Test-B

Test-C

Source: WLTP-08-37e – WLTP correction algorithms report

34

g/k

m

6 g

/km

3

g/k

m

5 g

/km

It is difficult to compensate

the test result of

aggressive driving.

Measured Corrected

Measured Corrected

Measured Corrected

2016/XX/XX

Japan Automobile Research Institute 25

R2. Normal driving (Low ~ Medium)

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450Time (s)

Ve

hic

le s

pe

ed

(km

/h)

Target [km/h]

Low limit [km/h]

High limit [km/h]

Normal km/h

0

10

20

30

40

50

60

70

80

450 500 550 600 650 700 750 800 850 900Time (s)

Ve

hic

le s

pe

ed

(km

/h)

Target [km/h]

Low limit [km/h]

High limit [km/h]

Normal km/h

Trace the target speed as match as possible

2016/XX/XX

Japan Automobile Research Institute 26

R2. Smooth-Smooth driving (Low ~ Medium)

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450

Time (s)

Ve

hic

le s

pe

ed

(km

/h)

Target [km/h]

Low limit [km/h]

High limit [km/h]

Smooth-Smooth km/h

0

10

20

30

40

50

60

70

80

450 500 550 600 650 700 750 800 850 900Time (s)

Ve

hic

le s

pe

ed

(km

/h)

Target [km/h]

Low limit [km/h]

High limit [km/h]

Smooth-Smooth km/h

Smooth acceleration and Smooth deceleration

2016/XX/XX

Japan Automobile Research Institute 27

R2. Rough-Rough driving (Low ~ Medium)

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450Time (s)

Ve

hic

le s

pe

ed

(km

/h)

Target [km/h]

Low limit [km/h]

High limit [km/h]

Rough-Rough km/h

0

10

20

30

40

50

60

70

80

450 500 550 600 650 700 750 800 850 900Time (s)

Ve

hic

le s

pe

ed

(km

/h)

Target [km/h]

Low limit [km/h]

High limit [km/h]

Rough-Rough km/h

large fluctuation & high acceleration

Rough acceleration and Rough deceleration

2016/XX/XX

Japan Automobile Research Institute 28

R2. Smooth-Rough driving (Low ~ Medium)

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450

Time (s)

Ve

hic

le s

pe

ed

(km

/h)

Target [km/h]

Low limit [km/h]

High limit [km/h]

Smooth-Rough km/h

0

10

20

30

40

50

60

70

80

450 500 550 600 650 700 750 800 850 900Time (s)

Ve

hic

le s

pe

ed

(km

/h)

Target [km/h]

Low limit [km/h]

High limit [km/h]

Smooth-Rough km/h

Smooth acceleration & large fluctuation during deceleration

Smooth acceleration and Rough deceleration

2016/XX/XX

Japan Automobile Research Institute 29

R2. Rough-Smooth driving (Low ~ Medium)

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450

Time (s)

Ve

hic

le s

pe

ed

(km

/h)

Target [km/h]

Low limit [km/h]

High limit [km/h]

Rough-Smooth km/h

0

10

20

30

40

50

60

70

80

450 500 550 600 650 700 750 800 850 900Time (s)

Ve

hic

le s

pe

ed

(km

/h)

Target [km/h]

Low limit [km/h]

High limit [km/h]

Rough-Smooth km/h

Rough acceleration and Smooth deceleration

Rough acceleration & smooth deceleration

2016/XX/XX

Japan Automobile Research Institute 30

R2. RCB correction coefficients

y = -0.6955x + 90.218

R² = 0.9984

y = -0.6601x + 86.241R² = 0.993

y = -0.701x + 101.71R² = 0.9976

0

20

40

60

80

100

120

-100 -50 0 50 100

CO

2[g

/km

]

ΔEREESSi [Wh/km]

Normal

Smooth-Smooth

Rough-Rough

DischargeCharge

4 phase (LMHxH)

y = -0.03x + 3.8865R² = 0.9984

y = -0.0303x + 4.3847

R² = 0.9971

y = -0.0284x + 3.7152R² = 0.9932

0.0

1.0

2.0

3.0

4.0

5.0

6.0

-75 -50 -25 0 25 50 75 Fu

el c

on

sum

pti

on

[L/1

00km

]ΔEREESSi [Wh/km]

Normal

Rough-Rough

Smooth-Smooth

NEC/Efuel = 1%

NEC/Efuel = 5%

DischargeCharge

4 phase (LMHxH)

CO2 Fuel consumption

KCO2 and Kfuel in each driving style is identical

Same coefficient can be used for RCB correction with regardless the

driving style.

Difference is remaining

2016/XX/XX

Japan Automobile Research Institute 31

R2. Relationship between Power and CO2

Normal-1 Normal-2 Smooth-Smooth

Rough-Rough Smooth-Rough Rough-Smooth

2016/XX/XX

Japan Automobile Research Institute 32

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15

CO

2 d

evi

atio

n t

o N

orm

al d

rivi

ng

(g/k

m)

EER

NormalSmooth-SmoothRough-RoughSmooth-RoughRough-Smooth

4 phase (LMHxH)

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15 C

O2

de

viat

ion

to

No

rmal

dri

vin

g (g

/km

)

ASCR

NormalSmooth-SmoothRough-RoughSmooth-RoughRough-Smooth

4 phase (LMHxH)

-10

-5

0

5

10

15

0.0 0.5 1.0 1.5 2.0

CO

2 d

evi

atio

n t

o N

orm

al d

rivi

ng

(g/k

m)

RMSSE (km/h basis)

NormalSmooth-SmoothRough-RoughSmooth-RoughRough-Smooth

4 phase (LMHxH)

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15

CO

2 d

evi

atio

n t

o N

orm

al d

rivi

ng

(g/k

m)

IWR

NormalSmooth-SmoothRough-RoughSmooth-RoughRough-Smooth

4 phase (LMHxH)

R2. Drive trace index

EER ASCR All Smooth-Smooth

driving data and

Rough-Rough driving

data were varied and

detected by all

indexes

Smooth-Rough driving

data were detected by

ASCR, RMSSE and

IWR

Rough-Smooth driving

data were detected by

only RMSSE

Good repeatability

was obtained when

the Normal driving

was performed Smooth Rough

Smooth Rough Smooth Rough

Normal

Smooth-Smooth

Rough-Rough

Smooth-Smooth

Rough-Rough

Smooth-Rough

Normal Normal

Smooth-Smooth

Rough-Rough

Smooth-Rough

Normal

Rough-Rough

Smooth-Smooth

Smooth-Rough

Rough-Smooth

RMSSE IWR

Rough-Smooth

Rough-Smooth Smooth-Rough Rough-Smooth

2016/XX/XX

Japan Automobile Research Institute 33

R2. Time ratio of Engine stop

78.4

58

.9

36.1

14

.2

60.0

51.8

78

.9

58

.4

37.4

14.0

60

.4

52.1

82.0

61

.8

40

.3

14

.3

63

.6

54.7

73

.7

53

.7

38

.1

15

.3

57.1

49

.6

80

.5

54

.0

40

.9

13.1

60

.7

52.2

77

.4

60

.6

44

.1

14

.5

62.5

53.9

0

10

20

30

40

50

60

70

80

90

100

Low Medium High Extra High LMH LMHxH

Tim

e r

ati

o o

f E

ng

ine

sto

p (%

)Normal-1 Normal-2

Smooth-Smooth Rough-Rough

Smooth-Rough Rough-Smooth

Engine stop duration of Smooth-Smooth driving is longer than that of

other driving styles.

Δ10%(60 sec)

Δ4%(72 sec)

2016/XX/XX

Japan Automobile Research Institute 34

R2. Charge balance 1

.48

7

1.3

39

1.1

31

0.6

71

3.9

57

4.6

28

1.5

12

1.3

15

1.1

59

0.6

67

3.9

86

4.6

53

1.4

61

1.1

99

0.9

41

0.4

76

3.6

01

4.0

77

1.50

1

1.6

74

1.2

49

0.8

01

4.4

24

5.2

25

1.4

89

0.9

97

0.8

75

0.4

43

3.3

61

3.80

4

1.2

59

1.4

77

1.1

53

0.7

61

3.8

89

4.6

50

0

1

2

3

4

5

6

7

8

9

10

Low Medium High Extra High LMH LMHxH

Cu

rre

nt

inte

grat

ion

-D

isch

arge

(Ah

)

Normal-1 Normal-2 Smooth-Smooth

Rough-Rough Smooth-Rough Rough-Smooth

-0.9

36

-1.4

51

-1.2

84

-0.9

44

-3.6

71

-4.6

15

-0.9

44

-1.4

51

-1.2

94

-0.9

48

-3.6

89

-4.6

37

-0.8

17

-1.3

14

-1.0

74

-0.8

41

-3.2

05

-4.0

46

-0.9

93

-1.5

45

-1.4

44

-1.1

24

-3.9

82

-5.1

06

-0.6

88

-1.2

30

-0.9

69

-0.8

06

-2.8

87

-3.6

93

-0.9

23

-1.4

60

-1.2

47

-0.9

96

-3.6

30

-4.6

26

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Low Medium High Extra High LMH LMHxH

Cu

rre

nt

inte

grat

ion

-C

har

ge (A

h)

Normal-1 Normal-2 Smooth-Smooth

Rough-Rough Smooth-Rough Rough-Smooth

0.5

50

-0.1

12

-0.1

53

-0.2

74

0.2

85

0.0

11

0.5

68

-0.1

36

-0.1

35

-0.2

82

0.2

97

0.0

15

0.64

3

-0.1

16

-0.1

32

-0.3

65

0.3

95

0.03

0 0.50

6

0.1

30

-0.1

94

-0.3

24

0.4

42

0.1

18

0.8

01

-0.2

34

-0.0

94

-0.3

63

0.47

3

0.1

10

0.3

35

0.0

17

-0.0

94

-0.2

35

0.2

58

0.0

23

-3

-2

-1

0

1

2

3

Low Medium High Extra High LMH LMHxH

Ch

arge

bal

ance

(Ah

)

Normal-1 Normal-2 Smooth-Smooth

Rough-Rough Smooth-Rough Rough-Smooth

Discharge

Charge

Discharge

Charge

Charge balance

The discharge electricity of

Smooth-Smooth driving is lower

than that of other driving styles.

The discharge electricity of Rough-

Rough driving is higher than that of

other driving styles.

The charge balance of whole

cycle in each driving style is

close to zero.

2016/XX/XX

Japan Automobile Research Institute 35

Effects of Normalization method (each phase)

40

50

60

70

80

90

100

110

120

Measured SOC correction

Speed correction

Distance correction

Road load correction

CO

2(g

/km

)

Normal-1

Normal-2

Smooth-Smooth

Rough-Rough

Smooth-Rough

Rough-SmoothLOW

60

70

80

90

100

110

120

Measured SOC correction

Speed correction

Distance correction

Road load correction

CO

2(g

/km

)

Normal-1 Normal-2

Smooth-Smooth Rough-Rough

Smooth-Rough Rough-Smooth

MEDIUM

60

65

70

75

80

85

90

95

100

Measured SOC correction

Speed correction

Distance correction

Road load correction

CO

2(g

/km

)

Normal-1

Normal-2

Smooth-Smooth

Rough-Rough

Smooth-Rough

Rough-SmoothHIGH

95

100

105

110

115

120

125

130

135

Measured SOC correction

Speed correction

Distance correction

Road load correction

CO

2(g

/km

)

Normal-1

Normal-2

Smooth-Smooth

Rough-Rough

Smooth-Rough

Rough-SmoothEx-HIGH

LOW MEDIUM

HIGH Ex-HIGH

R2. Test Results (CS condition)

2016/XX/XX

Japan Automobile Research Institute 36

-7500

-6000

-4500

-3000

-1500

0

1500

3000

4500

-50

-25

0

25

50

75

100

125

150

0 200 400 600 800 1000 1200 1400 1600 1800

En

gin

e s

pe

ed

(m

in-1

)

Ve

hic

le s

pe

ed

(km

/h),

Po

we

r (k

W),

RC

B o

n p

rop

uls

ion

ba

tte

ry [*1

00

] (A

h)

Time (s)

Vehicle speed km/h Power (Driven) kW Power (Propulasion + 12V battery) kW IH3 Propulsion battery (200A) Engine speed min-1

-7500

-6000

-4500

-3000

-1500

0

1500

3000

4500

-50

-25

0

25

50

75

100

125

150

0 200 400 600 800 1000 1200 1400 1600 1800

En

gin

e s

pe

ed

(m

in-1

)

Ve

hic

le s

pe

ed

(km

/h),

Po

we

r (k

W),

RC

B o

n p

rop

uls

ion

ba

tte

ry [*1

00

] (A

h)

Time (s)

Vehicle speed km/h Power (Driven) kW Power (Propulasion + 12V battery) kW IH3 Propulsion battery (200A) Engine speed min-1

R2. Continuous data Normal-1

Smooth-Smooth

Rough-Rough

-7500

-6000

-4500

-3000

-1500

0

1500

3000

4500

-50

-25

0

25

50

75

100

125

150

0 200 400 600 800 1000 1200 1400 1600 1800

En

gin

e s

pe

ed

(m

in-1

)

Ve

hic

le s

pe

ed

(km

/h),

Po

we

r (k

W),

RC

B o

n p

rop

uls

ion

ba

tte

ry [*1

00

] (A

h)

Time (s)

Vehicle speed km/h Power (Driven) kW Power (Propulasion + 12V battery) kW IH3 Propulsion battery (200A) Engine speed min-1

Power – propulsion battery

Engine speed

Power – driven

Current integration – propulsion battery Vehicle speed

2016/XX/XX

Japan Automobile Research Institute 37

R3. The timing of first engine operation

Normal-1

Normal-2

Smooth-Smooth

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

-60

-40

-20

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800

En

gin

e s

pe

ed

(m

in-1

)

Ve

hic

le s

pe

ed

(km

/h)

Po

we

r (k

W)

Time (s)

Vehicle speed (Normal-1) km/h

Power_drive kW

Engine speed min-1

Engine ON

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

-60

-40

-20

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800

En

gin

e s

pe

ed

(m

in-1

)

Ve

hic

le s

pe

ed

(km

/h)

Po

we

r (k

W)

Time (s)

Vehicle speed (Normal-2) km/h

Power_drive kW

Engine speed min-1

Engine ON

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

-60

-40

-20

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800

En

gin

e s

pe

ed

(m

in-1

)

Ve

hic

le s

pe

ed

(km

/h)

Po

we

r (k

W)

Time (s)

Vehicle speed (Smooth-Smooth) km/h

Power_drive kW

Engine speed min-1

Engine ON

Engine speed

Power

Engine speed

Power

Engine speed

Power

2016/XX/XX

Japan Automobile Research Institute 38

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

-60

-40

-20

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800

En

gin

e s

pe

ed

(m

in-1

)

Ve

hic

le s

pe

ed

(km

/h)

Po

we

r (k

W)

Time (s)

Vehicle speed (Rough-Rough) km/h

Power_drive kW

Engine speed min-1

Engine ON Engine ON

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

-60

-40

-20

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800

En

gin

e s

pe

ed

(m

in-1

)

Ve

hic

le s

pe

ed

(km

/h)

Po

we

r (k

W)

Time (s)

Vehicle speed (Smooth-Rough) km/h

Power_drive kW

Engine speed min-1

Engine ON

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

-60

-40

-20

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800

En

gin

e s

pe

ed

(m

in-1

)

Ve

hic

le s

pe

ed

(km

/h)

Po

we

r (k

W)

Time (s)

Vehicle speed (Rough-Smooth) km/h

Power_drive kW

Engine speed min-1

Engine ON Engine ON Engine ON

R3. The timing of first engine operation

Rough-Rough

Smooth-Rough

Rough-Smooth

Engine speed

Power

Engine speed

Power

Engine speed

Power

2016/XX/XX

Japan Automobile Research Institute 39

k

j

CS,CO

k

j

jj,CD,COjweighted,CO M)UF(MUFM1

2

1

22 1

k

j j

k

j j,CD,COj

CD,CO

UF

MUFM

1

1 2

2

The utility factor-weighted charge-depleting

CO2 mass emission MCO2,CD

Utility factor-weighted CO2 mass emissions

MCO2,weighted

k is the number of phases driven up to the end of the transition cycle

Example of calculation

Cycle Phase CO2 UF CO2_CDCO2

weighted

Low 0 0.09

Medium 23 0.11

High 6 0.13

Extra High 78 0.12

Low 0 0.04

Medium 57 0.05

High 91 0.06

Extra High 124 0.06

CS LMHxX 99 - -

CD-1

CD-2

42.962.3

Cycle Phase CO2 UF CO2_CDCO2

weighted

Low 0 0.09

Medium 0 0.11

High 0 0.13

Extra High 65 0.12

CS LMHxX 99 - -

CD-1 16.961.9

Rough-Smooth

Normal

Rough-Smooth driving

0

20

40

60

80

100

120

140

160

0 1000 2000 3000 4000 5000 6000 7000 8000

Ve

hic

le s

pe

ed

(k

m/h

)

Time (s)

車速 km/h

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000 6000 7000 8000

Dri

vin

g d

ista

nc

e (

km

)

Time (s)

走行距離 km

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1000 2000 3000 4000 5000 6000 7000 8000

Uti

lity

fa

cto

r (-

)

Time (s)

UF -

-3000

-2500

-2000

-1500

-1000

-500

0

500

0 1000 2000 3000 4000 5000 6000 7000 8000

Ele

ctr

ic e

ne

rgy

ch

an

ge

(W

h)

Time (s)

RCB Wh

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000 6000 7000 8000

CO

2 (g

/s)

Time (s)

CO2 g/s

Transition cycle

(n)

Confirmation cycle

(n+1)

Initial cycle

(n-1)

UF1=0.09 UF2=0.11

UF3=0.13

UF4=0.12 UF5

UF6 UF7

UF8

Distance

UF

Power integration

Vehicle speed

R3. The utility factor-weighted CO2

2016/XX/XX

Japan Automobile Research Institute 40

p,CD,DC

k

j j,REESS

p,CS,CO

p,avg,CD,COp,CS,CO

pEC

E

M

MMEAER

1

2

22

26

.66

23

.66

20

.04

11

.39

26

.71

23

.67

20

.10

11

.19

28

.42

24

.90

20

.46

11

.02

21

.15

16

.70

17

.97

12

.24

24

.89

22

.02

20

.43

10

.81

26

.58

19

.77

20

.01

12

.46

0

5

10

15

20

25

30

EAERp,L EAERp,M EAERp,H EAERp,ExH

Th

e p

ha

se

-sp

ec

ific

e

qu

iva

len

t a

ll-e

lec

tric

ra

ng

e

EA

ER

p (k

m)

Normal-1

Normal-2

Smooth-Smooth

Rough-Rough

Smooth-Rough

Rough-Smooth

The EAERp,L are varied from -20% to +7% depends on driving style

The EAERp,M are varied from -30% to +5% depends on driving style

The EAERp,H are varied from -10% to +2% depends on driving style

The EAERp,ExH are varied from -4% to +10% depends on driving style

EAERp

R3. Phase specific EAERp

2016/XX/XX

Japan Automobile Research Institute 41

ECp p

AC

EAER

EEC

10

9.8

12

3.7

14

6.1

25

6.9

10

9.0

12

2.9

14

4.8

26

0.2

10

1.9

11

6.3

14

1.6

26

2.8

13

7.6

17

4.3

16

1.9

23

7.8

11

7.7

13

3.0

14

3.4

27

1.1

10

8.1

14

5.3

14

3.6

23

0.6

0

50

100

150

200

250

300

ECp,L ECp,M ECp,H ECp,ExH

Th

e p

ha

se

-sp

ec

ific

ele

ctr

ic

en

erg

y c

on

su

mp

tio

n E

Cp

(Wh

/km

)

Normal-1

Normal-2

Smooth-Smooth

Rough-Rough

Smooth-Rough

Rough-Smooth

The ECp,L was varied from -7% to +26% depends on driving style

The ECp,M was varied from -6% to +41% depends on driving style

The ECp,H was varied from -3% to +11% depends on driving style

The ECp,ExH was varied from -11% to +5% depends on driving style

R3. Phase specific Electric energy consumption (ECp)

2016/XX/XX

Japan Automobile Research Institute 42

k

j j

k

j j,CD,ACj

CD,AC

UF

ECUFEC

1

1

12

5.7

12

4.8

12

3.2

12

9.2

12

7.1

82

.0

0.4 -0.4 -1.7 3.1 1.5

-34.5

-200

-150

-100

-50

0

50

100

150

200

0

20

40

60

80

100

120

140

160

180

200

Normal-1 Normal-2 Smooth-Smooth Rough-Rough Smooth-Rough Rough-Smooth

Ra

te o

f c

ha

ng

e c

om

pa

red

to

N

orm

al d

riv

ing

(%

)

Th

e u

tility

facto

r-w

eig

hte

d

ch

arg

e-d

ep

leti

ng

ele

ctr

ic

en

erg

y c

on

su

mp

tio

n (

Wh

/km

)

ECAC,CD

The EC was varied from -35% to +3% depends on driving style

R3. Utility factor-weighted CD ECAC,CD

2016/XX/XX

Japan Automobile Research Institute 43

k

j j,CD,ACjCD,AC ECUFEC1

ECAC,weighted 5

6.6

56

.2

55

.3

58

.4

57

.2

53

.8

0.3 -0.3 -1.9

3.5 1.5

-4.6

-20

-15

-10

-5

0

5

10

15

20

0

20

40

60

80

100

120

140

160

180

200

Normal-1 Normal-2 Smooth-Smooth Rough-Rough Smooth-Rough Rough-Smooth

Ra

te o

f c

ha

ng

e c

om

pa

red

to

N

orm

al d

riv

ing

(%

)

Th

e u

tility

fa

cto

r-w

eig

hte

d

ele

ctr

ic e

ne

rgy

co

ns

um

pti

on

(Wh

/km

)

The EC was varied from -5% to +4% depends on driving style

R3. Utility factor-weighted ECAC,weighted

2016/XX/XX

Japan Automobile Research Institute 44

R3. Study of the normalization method for CD test

CDC

CS,

CDavg,CS,R

CO

COCOEAER

2

22

The equivalent all-electric range EAER

17

.80

17

.75

17

.81

16

.10

17

.44

18

.86

17

.80

17

.75

17

.98

15

.85

17

.47

19

.23

0.2 -0.2 0.2 -9.4 -1.9

6.1 0.2 -0.2 1.2

-10.8

-1.7

8.2

-20

-15

-10

-5

0

5

10

15

20

0

10

20

30

40

50

60

Normal-1 Normal-2 Smooth-Smooth Rough-Rough Smooth-Rough Rough-Smooth

Ra

te o

f c

ha

ng

e c

om

pa

red

to

N

orm

al d

riv

ing

(%

)

Eq

uiv

ale

nt a

ll-e

lec

tric

ra

ng

e

EA

ER

(k

m)

Equivalent all-electric range

EAER_Normalized

input the normalized value

The correction didn’t work appropriately.

CO2 on the CD test and RCDC should be corrected.

The deviation of the normalized values

were bigger than that of measured value

2016/XX/XX

Japan Automobile Research Institute 45

R3. Impacts of driving style on the CS and CD test

Normal-1 Normal-2Smooth-

Smooth

Rough-

Rough

Smooth-

Rough

Rough-

SmoothNormal-1 Normal-2

Smooth-

Smooth

Rough-

Rough

Smooth-

Rough

Rough-

Smooth

AER km 15.9 15.9 15.9 3.2 16.0 3.1 0.0 0.0 0.2 -80.0 0.6 -80.4

EAER km 17.8 17.7 17.8 16.1 17.4 18.9 0.2 -0.2 0.2 -9.4 -1.9 6.1

EAER,L km 26.7 26.7 28.4 21.2 24.9 26.6 -0.1 0.1 6.5 -20.7 -6.7 -0.4

EAER,M km 23.7 23.7 24.9 16.7 22.0 19.8 0.0 0.0 5.2 -29.4 -6.9 -16.5

EAER,H km 20.0 20.1 20.5 18.0 20.4 20.0 -0.2 0.2 1.9 -10.5 1.8 -0.3

EAER,ExH km 11.4 11.2 11.0 12.2 10.8 12.5 0.9 -0.9 -2.4 8.4 -4.3 10.3

RCDA km 17.8 17.7 17.8 16.1 17.4 28.8 0.2 -0.2 0.2 -9.4 -1.9 62.2

RCDC km 23.2 23.2 23.2 23.4 23.2 46.6 0.0 0.0 -0.4 0.6 0.0 100.6

MCO2,CS g/km 98.7 98.3 93.5 108.2 100.2 99.0 0.2 -0.2 -5.1 9.9 1.7 0.5

MCO2,CS,L g/km 98.2 97.6 88.6 113.7 100.1 98.9 0.3 -0.3 -9.4 16.1 2.3 1.1

MCO2,CS,M g/km 81.9 82.0 74.8 100.3 87.3 83.8 0.0 0.0 -8.8 22.4 6.5 2.3

MCO2,CS,H g/km 87.1 86.8 82.7 92.9 87.6 86.2 0.2 -0.2 -4.9 6.8 0.7 -0.9

MCO2,CS,ExH g/km 118.5 118.1 115.3 124.0 118.4 119.0 0.2 -0.2 -2.5 4.8 0.1 0.6

MCO2,CD g/km 16.9 17.1 15.8 27.1 18.4 42.9 -0.5 0.5 -6.8 59.5 8.1 152.5

MCO2,weighted g/km 61.9 61.8 58.6 71.6 63.3 62.3 0.1 -0.1 -5.2 15.8 2.5 0.7

EC Wh/km 164.4 164.0 162.6 180.7 168.0 152.3 0.1 -0.1 -1.0 10.0 2.3 -7.3

EC,L Wh/km 109.8 109.0 101.9 137.6 117.7 108.1 0.4 -0.4 -6.9 25.8 7.6 -1.2

EC,M Wh/km 123.7 122.9 116.3 174.3 133.0 145.3 0.3 -0.3 -5.7 41.3 7.8 17.8

EC,H Wh/km 146.1 144.8 141.6 161.9 143.4 143.6 0.5 -0.5 -2.7 11.3 -1.4 -1.3

EC,ExH Wh/km 256.9 260.2 262.8 237.8 271.1 230.6 -0.6 0.6 1.7 -8.0 4.8 -10.8

ECAC,CD Wh/km 125.7 124.8 123.2 129.2 127.1 82.0 0.4 -0.4 -1.7 3.1 1.5 -34.5

ECAC,weighted Wh/km 56.6 56.2 55.3 58.4 57.2 53.8 0.3 -0.3 -1.9 3.5 1.5 -4.6

Range

CO2

EC

Test results Rate of change compared to the mean of Normal driving (%)

UnitItem

2016/XX/XX

Japan Automobile Research Institute 46

R3. Relationship between power and CO2 in CD test

y = 0.435x - 4.6381R² = 0.5979

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 5.0 10.0 15.0 20.0

Ave

rage

CO

2 (g

/s)

Average power (kW)

Normal-#1

Smooth-Smooth-#1

Rough-Rough-#1

Smooth-Rough-#1

Rough-Smooth-#1

y = 0.2179x - 0.0827

R² = 0.9955

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 5.0 10.0 15.0 20.0

Ave

rage

CO

2 (g

/s)

Average power (kW)

Normal-#3

Smooth-Smooth-#3

Rough-Rough-#3

Smooth-Rough-#3

Rough-Smooth-#3

CD cycle-#1

CD cycle-#3 (=CS)

There was no relationship between

average power and average CO2

during L~M~H phase in 1st cycle.

The vehicle specific veline concept

can’t use for CD test.

The coefficient of regression line of

Extra High phase of 1st cycle and

the coefficient of regression line of

3rd cycle is different. (can’t

substitute)

It seems difficult to compensate

the CO2 during CD cycle

Different coefficient

L M

H

ExH

L M H

ExH Unexpected engine

operation in rough

acceleration

2016/XX/XX

Japan Automobile Research Institute 47

R3. Drive trace Index of CD and CS test

0

20

40

60

80

100

120

-10.0 -5.0 0.0 5.0 10.0

CO

2 [g

/km

]

EER

Normal-1 Normal-2

Smooth-Smooth Rough-Rough

Smooth-Rough Rough-Smooth

0

20

40

60

80

100

120

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0

CO

2 [g

/km

]

ASCR

Normal-1 Normal-2

Smooth-Smooth Rough-Rough

Smooth-Rough Rough-Smooth

0

20

40

60

80

100

120

0.0 0.5 1.0 1.5

CO

2 [g

/km

]

RMSSE

Normal-1 Normal-2

Smooth-Smooth Rough-Rough

Smooth-Rough Rough-Smooth

0

20

40

60

80

100

120

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 20.0

CO

2 [g

/km

]

IWR

Normal-1 Normal-2

Smooth-Smooth Rough-Rough

Smooth-Rough Rough-Smooth

CD-1

0

20

40

60

80

100

120

-10.0 -5.0 0.0 5.0 10.0

CO

2 [g

/km

]

ER

Normal-1 Normal-2

Smooth-Smooth Rough-Rough

Smooth-Rough Rough-Smooth

0

20

40

60

80

100

120

-1.0 -0.5 0.0 0.5 1.0

CO

2 [g

/km

]

DR

Normal-1 Normal-2

Smooth-Smooth Rough-Rough

Smooth-Rough Rough-Smooth

CD-1,CD-2,CD-3 and CS test

CD-1 CD-1

CD-1

CD-1 CD-1

2016/XX/XX

Japan Automobile Research Institute 48

+

Energ

y

Energy supply to make up for shortage

Engine output energy with maximum efficiency

Recovery of braking energy

Storage of excess energy

Time

Deceleration

Engine turns off

-

REESS (Battery)

R5. Energy flow of HEV