structural design and performance of car bodies · 2018-12-02 · stiffness requirements in bending...

108
STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES Pierre Duysinx Research Center in Sustainable Automotive Technologies of University of Liege Academic Year 2018-2019 1

Upload: others

Post on 17-Feb-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES

Pierre DuysinxResearch Center in Sustainable Automotive

Technologies of University of Liege

Academic Year 2018-2019

1

Page 2: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Goals of the lesson

◼ Introduction to:

◼ Estimation of load cases and stress level applied to the chassis

◼ Different types and technologies of chassis and their major application domains

◼ Introduction to simplified structural analysis (SSA) approach of chassis

◼ Detailed structural analysis of chassis using numerical simulation tools (e.g. Finite Element Method) and structural optimization

◼ Different kinds of analysis carried out during design process of automobile structures

2

Page 3: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Design load cases

3

Page 4: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

DESIGN LOAD CASES

◼ We consider passengers cars and light duty vehicles

◼ Loads come from road roughness and from maneuvers

◼ Five major load cases:

◼ Bending: the chassis is loaded in the vertical plan xz due to the weight of the components along the chassis

◼ Torsion: The vehicle structure is subject to a torque by applying a couple of vertical forces at both end of the axles (at the knuckle)

◼ Combined bending / torsion: actually the gravity loads always act during the torsion and it is reasonable to consider simultaneous application of bending and torsion loads.

◼ …

4

Page 5: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

DESIGN LOAD CASES

Happian Smith: Bending load case Torsion load case

5

Page 6: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

DESIGN LOAD CASES

Happian Smith: Combined bending and torsion load case

6

Page 7: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

DESIGN LOAD CASES

Happian Smith: Lateral force load case Braking / Acceleration load case

7

Page 8: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

DESIGN LOAD CASES

◼ Five major load cases (cont’d):

◼ Lateral load cases: creation of loads in lateral direction y when the vehicle is turning or when it touches a curb

◼ Longitudinal loads (forward or rearward) : inertia loads of components onto the chassis when developing large acceleration / deceleration (braking)

◼ The most severe ones are: bending, torsion, and combined bending / torsion

◼ The lateral loads and severe acceleration / deceleration load cases are important for the design of suspension elements and for the sizing of the connection points between the chassis and the suspension parts

8

Page 9: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

DESIGN LOAD CASES

◼ Other local load cases (not considered hereunder):

◼ Efforts in hinges when opening doors and hood

◼ Load cases created by attachment of seats and seat belt during emergency braking and brutal decelerations due to crash

9

Page 10: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE 1: BENDING

◼ Principle:

◼ Considering the vehicle chassis as a beam in the car mid-plan xz, the vehicle being assumed to be symmetric about its mid-plane

◼ Determine the static distribution of the weight loads from the vehicle components along x axis.

◼ State the list of the main (heaviest) vehicle components

◼ Compute the vertical forces per unit distance along x

◼ Calculate the reaction forces under wheel axles (still assuming the vehicle structure as a beam)

10

Page 11: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE 1: BENDING

From Happian Smith: Computation of load per unit length along the chassis11

Page 12: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE 1: BENDING

◼ Principle:

◼ Establish the diagram of bending moments and shear efforts along the x axis of the vehicle

◼ Calculate the stress state and deformations of the car body and in the vehicle longitudinal beams

12

Page 13: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE 1: BENDING

From Happian Smith : The diagram of bending moments and shear efforts along the x axis of the vehicle

13

Page 14: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE 1: BENDING

◼ Dynamics loading should be better considered when the vehicle faces uneven road surface.

◼ For instance when the car overtakes a road bump, the front wheels mean leave contact with the ground. When touching the road again, the load under the wheels will increase severely.

◼ Following the expertise accumulated by car manufacturers, the static load should be replaced by equivalent static load with a magnification factor:

◼ 2,5 to 3 for road vehicles

◼ Up to 4 for all terrain operations.

14

Page 15: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE 2: TORSION

◼ One considers now the pure torsion load case applied under one the axle while reaction moment is developed by the other one.

◼ The base torque is calculated with the vertical forces under lightest axle. Its value is given by the vertical force under the lightest axle multiplied by the axle track:

◼ Generally tF and tR are different and the lightest axle is often the rear axle RR<RF.

2 2

F Rx F R

t tM R R= =

15

Page 16: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE 2: TORSION

'2 2

F Rx F R

t tM R R= =

16

From Happian Smith: Computation of torsion moment

Page 17: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE 2: TORSION

◼ Again one should consider dynamic loading instead of static loading.

◼ From car manufacturer experiment feedback, the static load have to be multiplied by a dynamics factor to estimate the equivalent static loads used for structural analysis:

◼ 1.3 for road vehicles,

◼ 1.8 for all terrain vehicles.

17

Page 18: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE 3: BENDING + TORSION

◼ Combination of bending and torsion loads gives rise to the most critical situation in which one wheel of the lightest axle lifts off the ground and the vertical force under that one wheel vanishes.

◼ The vertical force of the axle is then totally withstood by a single wheel.

◼ It is usual to recommend to limit the lift off by 200 mm which corresponds to the maximal rebound of usual suspension devices

18

From Happian Smith: Combined bending – torsion load case

Page 19: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE 3: BENDING + TORSION

◼ Example:

◼ tF= 1450 mm and tR = 1400 mm

◼ Vertical load under the lightest axle: RR= 6184 N (RF= 7196 N)

◼ Torsion moment

◼ Loads under the front wheels

43282

Rx R

tM R Nm= =

2' 5971F x

F

R M Nt

= =

◼ Load under front right wheel

◼ Load under the front left wheel

' 7196 5971613

2 2 2 2

tot F FFR

R RR N= − = − =

' 7196 59716583

2 2 2 2

tot F FFL

R RF N= + = + =

19

Page 20: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE: LATERAL

◼ When taking a turn, tires develop lateral forces that counterbalance the centrifugal acceleration

◼ The most critical situation happens when the vehicle is close to turn over, because the whole vertical load is transferred on the external wheel.

◼ The structure is modelled as a beam in the horizontal plan xy

20

Page 21: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE: LATERAL

◼ The lateral acceleration leading for which the critical situation occurs is obtained by writing the equilibrium of the vehicle in this scenario

◼ The critical acceleration is given by:

◼ The centrifugal force is

◼ The lateral forces under the front and rear axle writes

²

2

MV th Mg

R=

²

2

V tg

R h=

²

2

MV tMg

R h=

2F

t cY Mg

h L=

2R

t bY Mg

h L=

21

Page 22: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE: LATERAL

◼ We can model the structure as a beam on two supports and loaded in the plane xy at the center of mass.

◼ A more detailed model can be carried out using a mass distribution along the x axis as it has been made for body bending under the self weight.

◼ In practice, the critical situation critique never occurs because the elevation of the CG and because of the limitation of the coefficient of adhesion

◼ h=0,51 m and t=1,45 m

◼ g t/2h = g 1,45/(2*0,51)= 1,42 g > µ g ~ 0,8 g

◼ So no safety margin is generally accounted in the configuration, the design being already very conservative.

22

Page 23: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE: LATERAL

◼ Conversely impacts on curbs or obstacles induce large loads and sometimes the vehicle turn over.

◼ The lateral loads are generally not a critical design case study because of the large bending moment inertia of the body in this plane.

◼ Nonetheless it is a severe design case for the attachment points of the suspension mechanisms, which have to be able to withstand these high load levels happening during the shocks.

◼ For safety reasons, one generally considers dynamic loads twice bigger than lateral and vertical static loads under the wheels.

23

Page 24: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE: LONGITUDINAL

◼ The longitudinal loads comes from the inertia forces during high acceleration and braking maneuvers.

◼ High acceleration and braking maneuvers lead to a large weight transfer between front and rear axle and vice-versa.

◼ To be fully rigorous, one should determine the horizontal and vertical position of each components along the axis of the vehicle and then calculate the acceleration loads.

◼ However this is general difficult because of the lack of information at different stages of the design procedure.

◼ So in the preliminary design phases, one uses a simplified model in which the full mass is concentrated at the Center of Gravity.

24

Page 25: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE: LONGITUDINAL

◼ In case of acceleration, one has the following weight on the front wheels:

◼ While for the rear wheels it comes:

◼ In case of braking on gets:

F

Mgc MhvR

L L= −

R

Mgb MhvR

L L= +

F

Mgc MhvR

L L= + R

Mgb MhvR

L L= −

25

Page 26: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE: LONGITUDINAL

◼ The braking and acceleration forces are limited by the saturation of the friction coefficient between the tire and the road.

◼ Other bending moments

◼ The traction and braking forces developed at the tire contact patches are transferred to the body through the suspension mechanisms and thus create some torques, which must be withstood by the body structure.

◼ Another effect is related to the vertical position of the CoG. It comes that acceleration loads produce an additional bending moment onto the structural members.

26

Page 27: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE: ASYMMETRIC LOADING

◼ One experiences an asymmetric loading onto the body when one wheel hits an object with a certain height at the ground level or when one wheel falls into a pot hole.

◼ This case leads to a vertical and an horizontal load along one side of the car. It results into a complex loading of the structure.

◼ The applied load depends on the initial vehicle speed, the suspension equivalent stiffness, the mass of the wheel and of the non suspended mass, etc.

◼ As the shock has a short duration, one can resonably assume that the wheel continues along its trajectory with the same speed and that the force is transmitted directly to the wheel center.

27

Page 28: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE: ASYMMETRIC LOADING

◼ Longitudinal component of the load:

◼ Vertical component of the load:

◼ Angle:

◼ a increases for small diameter wheels

cosux uR R a=

sinuz uR R a=

arcsin d u

d

r h

ra

−=

28

Page 29: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE: ASYMETRIC LOADING

◼ The vertical component implies an additional load onto the axle, an inertia load applied on the CoG, and a torsion moment on the body structure.

◼ The horizontal load creates a bending moment in the xz plane and a moment about vertical direction ‘z’ on the body structure.

◼ The unsymmetrical load case can be decomposed into the superposition of for simple load cases.

29

Page 30: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

LOAD CASE: ASYMMETRIC LOADING

From Happian Smith: Asymmetric load case 30

Page 31: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Strength of the Body: Limit stresses

◼ The previous load cases leads to an estimation of the stress level all over the structure.

◼ For critical load cases, stress level, or the equivalent stress constraints must remain below the allowable stress limits, which are determined according to the usual rules.

◼ One also considers safety factors in connection with standards in the field

◼ Dynamic factor

◼ Safety margin: which is typically 1.5

◼ A similar approach is accounting for the fatigue resistance, even if the fatigue resistance is mostly investigated in the points where there is a high stress concentration, for instance in the connection joints of the suspensions.

31

Page 32: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Stiffness requirements in bending

◼ Up to now, we have investigated the loads and the related stress levels in the structural members, which assesses the strength of the structure and prevents the failure of the material.

◼ However, an important criterion, may sometimes the most important one, is the stiffness of the car body. A structure resists but it can be too compliant and so does not fullfill its mission, for instance for vehicle dynamics.

◼ The required stiffness can be determined by various specifications from tolerant gap for the assemblage, the vibration and noise transmission, road holding, or some empirical considerations elaborated by the car manufacturer.

32

Page 33: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Stiffness requirements in bending

◼ For a passenger car, the bending stiffness must be sufficient high because of multiple reasons.

◼ Dorr opening: if the body is too compliant, the doors when opened can not be closed again a good manner.

◼ The stiffness of the floor is necessary for passenger acceptance. One uses por instance some omega stiffeners which are pressed during the sheet metal forming or by using sandwich panels.

◼ Reduction of the vibration generation and transmission in the various panels.

◼ Stiffness of wings, doors, and car bonnet etc.

◼ One has to reinforce the members around the connection points with the seats, the seat belt, etc.

33

Page 34: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Stiffness requirements in torsion

◼ The torsion stiffness is an essential criteria that can be evaluated in a quantitative way.

◼ A very good car body will exhibit a torsion stiffness of at least 8.000 10.000 Nm/degree during a torsion test.

◼ A too low stiffness is detrimental:

◼ Difficulties for the doors opening and closure

◼ Difficulties for the vehicle dynamic performance.

◼ The torsion stiffness is strongly influenced by

◼ The wind shield contributes a lot the global torsion stiffness (around 40%)

◼ The presence and the stiffness carried out by the roof is one major pat of the torsion stiffness (counter examples see the loss of torsion stiffness of car bodies in convertibles) 34

Page 35: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Types de châssis

35

Page 36: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

TYPES DE CHASSIS

◼ Étude des différents types de châssis

◼ Appréciation

◼ de leur aptitude à supporter les charges

◼ des aspects de fabrication et des coûts de production

◼ Différents types de châssis:

◼ Châssis en échelle

◼ Châssis cruciforme

◼ Châssis avec tube de torsion

◼ Châssis tubulaire

◼ Châssis intégral ou monocoque

36

Page 37: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis échelle

◼ Historiquement, les voitures étaient construites à partir d’un châssis en échelle sur lequel on venait poser une superstructure et une carrosserie.◼ La résistance de la carrosserie était faible (bois) et

offrait peu de protection aux passagers.

◼ Le châssis devait offrir toute la résistance à la flexion et à la torsion.

◼ Avantage majeur: ◼ Il s’accommode d’une très grande variété de formes

et de types de carrosserie et de superstructure.

◼ Il est encore utilisé très couramment pour les véhicules utilitaires depuis les pick-up jusqu’aux camions.

37

Page 38: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis échelle

◼ Structure du châssis échelle

◼ Deux longerons courant le long de la structure

◼ Des traverses maintenant l’écartement des longerons

◼ Les longerons ont des sections ouvertes ou fermées (ces dernières ont unemeilleure raideur en torsion)

◼ Pour rechercher un rapport raideur /poids important, les longerons ont des sections avec des hauteurs importantes pour augmenter le moment d’inertie à section droite constante.

38

Page 39: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis échelle

◼ Les semelles contribuent au moment d’inertie et peuvent reprendre des contraintes élevées.

◼ Les sections ouvertes permettent un accès aisé pour la fixation d’attaches et des supports de composants.

◼ La fixation des attaches dans les âmes permet de ne pas diminuer la section des semelles soumises à des fortes contraintes.

◼ Le centre de cisaillement des sections ouvertes est extérieur à la section et à l’âme, ce qui permet de faire passer l’effort appliqué par le centre de cisaillement et de ne pas créer d’effort de torsion.

39

Page 40: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis échelle

◼ Par contre les sections ouvertes ont une mauvaise raideur en torsion. Or par la nature de la structure en échelle, la flexion de longerons sollicite les traverses en torsion et vice-versa. Dès lors le châssis en échelle a globalement une mauvaise raideur en torsion.

◼ Pour augmenter la raideur en torsion, il faut utiliser des longerons et des traverses à sections fermées.

◼ Par contre, la résistance des joints devient alors plus délicates.

◼ D’une part le moment maximum est localisé à cet endroit.

◼ D’autre part la fixation des attaches et composants nécessite des renforcements.

40

Page 41: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis cruciforme

◼ Pour augmenter la raideur en torsion, on peut concevoir une structure en croix dans laquelle aucun élément n’est soumis à torsion.

◼ Les deux poutres de la croix sont uniquement sollicitées en flexion.

◼ La raideur en torsion de l’ensemble est bonne pourvu que la raideur du joint central soit élevée. Le moment de flexion maximal apparaît à cet endroit qui est dès lors critique.

41

Page 42: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis cruciforme

◼ On combine généralement les avantages des châssis en échelle et des châssis en croix dans une structure en échelle renforcée par une croix.

◼ On obtient à la fois une bonne raideur en flexion et en torsion.

◼ Les traverses avants et arrières participent à la reprise des efforts latéraux et des moments de torsion.

42

Page 43: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis en tube de torsion

◼ Les sections fermées possèdent une raideur en torsion très importante. Cette propriété est utilisée dans les châssis en tube de torsion tels que ceux de la Lotus.

◼ La colonne vertébrale du châssis est un large tube unique à section fermée.

◼ L’arbre de transmission court à travers le tube vers l’essieu arrière.

◼ Des tubes à l’avant et à l’arrière étendent les points de montage de la suspension tandis que des traverses permettent de mieux résister aux efforts latéraux.

43

Page 44: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis en tube de torsion

◼ La colonne vertébrale est soumise à des charges de torsion et à flexion.

◼ Les colonnes de fixation des suspensions sont soumises à de la flexion.

◼ Les traverses travaillent en traction compression contre les efforts latéraux venant de la suspension.

44

Page 45: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis tubulaire

◼ Les structures précédentes étaient essentiellement bidimensionnelles excepté l’épaisseur des composants.

◼ En recourant à une structure tridimensionnelle on améliore les propriétés de flexion et de torsion en augmentant les moments d’inertie.

◼ Les structures en treillis 3D sont utilisées pour les voitures de course, les voitures à caractère sportif ou les voitures à faible volume de production.

◼ La structure 3D se marie aisément avec des carrosseries en matériaux composites

45

Page 46: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis tubulaire

◼ Les éléments des structures en treillis doivent impérativement travailler en traction compression au risque de voir la raideur diminuer fortement, car c’est alors la raideur des joints (qui est faible) qui est sollicitée.

◼ Il est donc impératif de trianguler toutes les surfaces pour bloquer les degrés de liberté adéquats.

◼ Toutefois le point faible vient des surfaces vitrées et des ouvertures qui déforcent la structure.

46

Page 47: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis intégral

◼ Les voitures modernes sont presque exclusivement des structures intégrales faites des tôles d’acier embouties et soudées par points.

◼ Les composants jouent à la fois une fonction structurale et d’autres fonctions (aérodynamique par exemple).

◼ La raideur de la structure (notamment en flexion et torsion) tire parti de tous les composants, spécialement les plus éloignés de la ligne neutre comme le toit.

47

Page 48: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis intégral

◼ L’analyse structurale d’une telle structure est évidemment compliquée et nécessite le recours à l’analyse numérique par éléments finis.

◼ Il s’agit d’une structure statiquement indéterminé et le chemin des efforts peut être redistribué sur les différents composants.

◼ La structure offre une plus grande raideur pour un poids donné par rapport à une solution avec un châssis et une carrosserie séparés.

◼ Le châssis peut être produit en grande série avec un coût maîtrisé.

◼ Le confort (particulièrement le confort acoustique) est supérieur.

48

Courtesy by SAMTECH

Page 49: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis intégral

◼ Le châssis intégral est formé de trois compartiments:

◼ Le compartiment du milieu, le plus grand, entre les essieux avant et arrière fournit un volume pour les passagers

◼ Le compartiment devant l’essieu avant pour le moteur et les unités de transmission

◼ Le compartiment arrière pour l’espace pour les bagages.

49

Page 50: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis intégral

◼ Chaque compartiment est constitué par des membres structuraux qui travaillent

◼ En compression

◼ En traction

◼ En flexion

◼ En torsion

50From H. Heisler. « Advanced Vehicle Technology».

Page 51: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis intégral

◼ Les membres structuraux sont formés à partir de piècesmétalliques embouties ou pressées

◼ Leur forme est adaptée aux efforts à reprendre et à la position dans le véhicule

51From H. Heisler. « Advanced Vehicle Technology».

Page 52: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis intégral

◼ La rigidité de certains châssis modernes repose davantage sur la rigidité de la plateforme afin de réduire la taille des montants et du toit et de dégager de plus grands espaces de visibilité.

◼ La raideur en flexion dérive principalement de la raideur du tunnel et des longerons latéraux. Si un surcroît de rigidité est nécessaire, on peut introduire des longerons supplémentaires plus à l’intérieur.

◼ La raideur en torsion provient principalement de la paroi du tableau de bord, des jupes et du rehaussement des sièges arrières. Les tours de ressort de suspension participent également lorsqu’ils sont présents.

52From H. Heisler. « Advanced Vehicle Technology».

Page 53: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis intégral

◼ Pour accroître la raideur de la plateforme à la flexion, on ajoute des raidisseurs à section ouverte ou fermée (longitudinaux et transversaux) dont les sections sont formées dans les panneaux plans du plancher et des plateaux.

◼ On peut également presser des rainures dans les panneaux.

◼ De cette manière, on augmente également la charge de flambement local de ces panneaux et on augmente les fréquences de vibration ce qui est favorable pour les propriétés acoustiques.

53From H. Heisler. « Advanced Vehicle Technology».

Page 54: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis intégral

◼ On peut utiliser des sous châssis à l’avant et à l’arrière pour supporter les suspensions.

◼ Les sous châssis donnent un support adéquat aux bras inférieurs des deux demi essieux. Ils maintiennent l’écartement et empêchent de « losanger » le châssis.

◼ Il est habituel de monter sur le sous-châssis le berceau du moteur et de la boîte de vitesse de sorte que le châssis ne doit pas être renforcé dans son ensemble, puisqu’il ne reprend pas directement les couples de réaction du moteur.

54From H. Heisler. « Advanced Vehicle Technology».

Page 55: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

From H. Heisler. « Advanced Vehicle Technology».

Châssis intégral

◼ Un autre avantage des sous-châssis lorsqu’ils sont montés sur des attaches via des éléments en caoutchouc est de pouvoir isoler le châssis des vibrations du moteur et de la route, ce qui bénéficie au confort du véhicule.

◼ Pour les moteurs longitudinaux et propulsion à l’arrière, on adopte souvent des sous châssis en forme de poutres transversales (figure en dessous à droite).

◼ On peut employer un système similaire à l’arrière pour reprendre les efforts importants dans les joints des suspensions à bras tirés.

55

Page 56: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis intégral

◼ Pour les moteurs longitudinaux et une traction avant, un sous châssis en forme de fer à cheval, est souvent utilisé pour reprendre la forte concentration de poids (fig. du milieu).

◼ Cette forme combine deux fonctions: être le berceau du moteur et reprendre les points d’ancrage des bras de suspension et la barre anti roulis.

56From H. Heisler. « Advanced Vehicle Technology».

Page 57: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis intégral

◼ Enfin pour les moteurs transversaux et traction avant, un sous châssis en forme de cadre rectangulaire (fig du dessus) est tout indiqué pour reprendre et diffuser les efforts de propulsion et le poids de la motorisation.

◼ Cette forme de sous châssis permet également d’augmenter la rigidité en torsion sans solliciter trop le châssis principal.

57From H. Heisler. « Advanced Vehicle Technology».

Page 58: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Méthode des surfaces structurales simples

58

Page 59: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis intégral: analyse par la méthode des surfaces structurales simples (SSS)

◼ Malgré la puissance des méthodes numériques (e.g. méthodes des E.F.) il est souvent nécessaire de disposer de modèles simples pour comprendre les mécanismes de reprises des efforts par la structure.

◼ Méthode des Surfaces Structurales Simples (SSS) de Pawlowski(1964).

◼ Permet de décrire et estimer les charges et contraintes dans les éléments principaux de structures statiquement indéterminées.

◼ Hypothèses:

◼ Les panneaux ne résistent qu’à des charges dans leur plan.

◼ Les poutres (montants, longerons, etc.) reprennent des efforts de traction/compression, flexion.

59

Page 60: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis intégral: analyse par la méthode des surfaces structurales simples (SSS)

Analyse de la structure d’une camionnette par la méthode des surfaces structurales simples 60

Page 61: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Méthode des surfaces structurales simples

◼ Une surface structurale simple est un élément structural qui

◼ résiste dans son propre plan à des charges de tension, de compression, de cisaillement et de flexion,

◼ N’offre qu’une raideur négligeable à des efforts hors plan (flexion, torsion).

12

12

12

xx

xx yy

yy

zz yy

zz

I at

I II tb

I I

I bt

=

=

=

61

Page 62: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Méthode des surfaces structurales simples

◼ Exemple de surfaces structurales simples 62

Page 63: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Méthode des surfaces structurales simples

◼ Exemple de surfaces non structurales simples 63

Page 64: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Méthode des surfaces structurales simples

◼ Analyse d’une poutre raidie par un panneau de cisaillement.

◼ Panneau mince bordé de barres

◼ Le treillis est instable en cisaillement sans le panneau

◼ Avec une barre en diagonale, le panneau est statiquement déterminé tandis qu’il est indéterminé avec le panneau.

◼ On suppose que le panneau ne reprend que du cisaillement

◼ Pas de participation à la flexion de la section.

64

Page 65: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Méthode des surfaces structurales simples

◼ Equations d’équilibre:

◼ Barre verticale gauche:

◼ Rotation du panneau:

◼ Barre horizontale supérieure:

◼ Barre horizontale inférieure:

2 0zF Q− =

1 1 0Q K− =

1 2 0Q K− =1 2Q K=

1 1Q K=

2zF Q=

1 2 0Q b Q a− =1 2 z

a aQ Q F

b b= =

65

Page 66: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Méthode des surfaces structurales simples

◼ Equations d’équilibre:

◼ Diagramme des moments

1 2Q K=

1 1Q K=

2zF Q=

1 2 z

a aQ Q F

b b= =

66

Page 67: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Méthode des surfaces structurales simples

◼ Modélisation d’un panneau de plancher:

◼ Requiert une poutre auxiliaire pour supporter la charge verticale.

◼ Equilibre

◼ Panneau

◼ Poutre

67

Page 68: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Méthode des surfaces structurales simples

◼ Modélisation d’un panneau de plancher: charge de coin

◼ Comporte une poutre longitudinale et une traverse.

◼ Décomposition par superposition en deux cas de charges

◼ Déplacements (à rendre identiques)

68

Page 69: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Méthode des surfaces structurales simples

◼ Equilibre + compatibilité!

◼ Compatibilité

◼ Equilibre

69

Page 70: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Analyse SSS d’une structure caissonnée

Flexion

70

Page 71: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Analyse SSS d’une structure caissonnée

Torsion pure

'rR r− + 71

Page 72: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Analyse SSS d’une structure caissonnée

Torsion pure: sans toit

72

Page 73: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis intégral: modélisation par la méthode des surfaces structurales simples

◼ Modélisation de la structure d’un véhicule par la méthode SSS.

73

Page 74: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis intégral: modélisation par la méthode des surfaces structurales simples

◼ SSS 1, 2, 4: Support des charges des sièges, support de SSS 7

◼ SSS 6: Support du poids des bagages, des charges de la suspension arrière

◼ SSS 7: Support du poids du moteur, de la transmission, des suspensions avants

◼ SSS 8: Support de SSS 7

◼ SSS 9: Transfert de la charge vers SSS 10

◼ SSS 3, 4, 5, 8, 9, 11 12-16: Charges de cisaillement74

Page 75: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis intégral: modélisation par la méthode des surfaces structurales simples

◼ SSS 7: Support des charges de suspension arrière

◼ SSS 10 : Support des charges des suspensions avant

◼ SSS 8, 9 : Support de SSS 10

◼ SSS 2, 11: Support de SSS 8

◼ SSS 4, 6, 7, 11-15 : Charges de cisaillement75

Page 76: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Châssis intégral: modélisation par la méthode des surfaces structurales simples

◼ SSS 1-6: Supportent les charges de flexion

◼ SSS 5-10: Supportent les charges de torsion

76

Page 77: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Advanced Numerical Solution using the Finite Element Method (FEM) –Case study

77

Page 78: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Finite element analysis: a case study

◼ Goal of the study is to estimate the global behavior of the car body made of composites

◼ Materials:

◼ Carbone fibers

◼ Aluminum

◼ (Honeycomb)

Courtesy of Samtech France et PSA 78

Page 79: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Finite element analysis: a case study

Material properties◼ Face sheets: Carbone fibers

◼ MTM49-3/CF1103 for ‘hot’ parts

◼ VTM264FRB/CF1103 for ‘cold’ parts

◼ Core materials◼ Aluminum honeycomb

Considered load cases◼ Natural vibration frequencies◼ Body torsion◼ Opening parts under their self weight◼ Emergency braking impact of stress

level in attachment points

79

Page 80: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Finite element analysis: a case study

◼ Finite Element mesh◼ FE mesh with more than 95% of quadrangular elements◼ Front part: 30 000 nodes and 27 000 finite elements◼ Body: 217 000 nodes and 220 000 finite elements

80

Page 81: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Finite element analysis: a case study

◼ Displacement restriction

◼ First eigen mode of vibration (torsion) ◼ Overall torsion stiffness

◼ Reinforcement of connection points with (front) suspensions81

Page 82: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Finite element analysis: a case study

◼ Design of car body is based on various design specifications:

◼ Maximize / bound the body stiffness in torsion / flexion

◼ Maximize / increase the natural frequencies

◼ Satisfy the strength restrictions in various critical points

◼ Minimize or limit the mass

◼ Minimize or limit the cost

◼ Account for the manufacturing constraints82

Page 83: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Application of structural optimization to vehicle body design

83

Page 84: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Formulating car body design as an optimization problem

◼ Constraints of car body design:

◼ Stiffness against several load cases

◼ Stress criteria under various global or local load cases

◼ Natural frequencies in order to give good road handling properties as well as the ride and comfort properties

◼ Weight and cost

◼ Manufacturing and assembly constraints

◼ How to cast design problem into the standard mathematical statement?

◼ How to select design variables?

◼ How to solve it efficiently?

min 1...

. . 1...

1...

l

j j

i i i

f (X) l L

s t g (X) g j M

X X X i N

=

=

=

?

84

Page 85: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Formulating car body design as an optimization problem

◼ Car body design lends itself naturally to illustrate the problem of well posed optimization problems:

◼ Design problem can be cast into the standard mathematical statement:

◼ Choice of the design variables, constraints, etc. requires some training.

min 1...

. . 1...

1...

l

j j

i i i

f (X) l L

s t g (X) g j M

X X X i N

=

=

=

85

Page 86: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

TOPOL, a topology optimization software tool

◼ Optimal material distribution approach

◼ Based on Samcef linear analysis codes (Asef, Dynam, Stabi)◼ Material effective model based on the SIMP model

◼ Implemented at the stiffness and mass matrix level so that 2D, 3D and shell elements can be used

◼ Solver: CONLIN optimizer

◼ Constraints:◼ Compliance (multiple load cases)◼ Displacements◼ Eigenvalues (vibration, stability)

◼ Additional features◼ Filtering techniques based on Sigmund’s filter◼ Symmetry planes◼ Prescribed density regions

0 0pE µ E µ = =

0 0p

e e e eµ µ= =K K M M

86

Page 87: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Boss Quattro, a parametric multidisciplinary optimization tool

◼ Complete open object oriented MDO environment

87

Page 88: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

NUMERICAL APPLICATIONS

◼ Design of the car body of a new prototype

◼ Design of the structure of the urban concept vehicle

88

Page 89: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

PROTOTYPE CAR BODY OPTIMIZATION

◼ Replace car bodies of 2004 and 2006

◼ Design criteria:◼ Stiffness under 2 major load cases:

◼ Bending + roll over

◼ Torsion + bending = curb impact

◼ Failure criteria in composite material

◼ Minimum weight = maximum fuel economy

◼ Room available for pilot and propulsion system

◼ Pilot visibility

Car body 2004

Car body 2006 89

Page 90: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

PROTOTYPE CAR BODY OPTIMIZATION

◼ At first a CAD model was built in agreement

◼ With Eco Marathon regulations,

◼ With aerodynamics considerations

◼ With space requirements for the pilot and the propulsion system

Aerodynamic shape Structural shape: wheel covers

are removed for maintenance 90

Page 91: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

PROTOTYPE CAR BODY OPTIMIZATION

◼ Load case 1: bending

◼ Self weight

◼ Components (20 kg)

◼ Pilot (50 kg)

◼ Roll over load (70 kg on top of roll cage)

◼ Load case 2: torsion + bending = curb impact

◼ Rear axle clamped

◼ Right front wheel free supported

◼ Left front wheel withstanding 3 times the weight of the axle

70 kg

weight x 3= 2700 N(Figures from Happian-Smith)91

Page 92: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

PROTOTYPE CAR BODY OPTIMIZATION

◼ Finite element model: 24113 shell elements

◼ Material: black metal [0°/90°/45°/-45°]s

◼ Topology optimization◼ SIMP with p=3

◼ Filtering

◼ Minimum density 0.0192

Page 93: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

PROTOTYPE CAR BODY OPTIMIZATION

◼ Topology optimization

◼ Minimum compliance

◼ Minimum density 0.01

◼ Load case 1: bending

SIMP with p=3

◼ Filtering

◼ Symmetry left/right

◼ Load case 2: curb impact

93

Page 94: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

PROTOTYPE CAR BODY OPTIMIZATION

◼ Optimal material distributions suggests clearly the following layout of the shell

◼ Low density regions → windows for the visibility

◼ High density regions → panels and stiffened regions

94

Page 95: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

PROTOTYPE CAR BODY OPTIMIZATION

◼ CATIA digital modeler is used to check

◼ The packaging feasibility for the fuel cell and motors

◼ The visibility and the lying position of the pilot

95

Page 96: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

PROTOTYPE CAR BODY OPTIMIZATION

◼ Strength verification was conducted in Samcef Field and Boss Quattro

◼ Laminate shell

◼ [0°/90°/45°/-45°]s

◼ ti=0,25 mm; t=2 mm

◼ Carbon epoxy

96

Page 97: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

PROTOTYPE CAR BODY OPTIMIZATION

◼ Strength verification was conducted in Samcef Field

◼ Laminate shell

◼ [0°/90°/45°/-45°]s

◼ ti=0,25 mm; t=2 mm

◼ Carbon epoxy

◼ Mass: 9,1 kg (-10%)

Displacements

Load case 2

Dmax= 28 mm

(-350%)

Tsai-Wu=0,47

Load case 2

97

Page 98: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

DESIGN OF A URBAN CONCEPT STRUCTURE

◼ For sake of simplicity for this first vehicle: separate function◼ Structure: aluminum truss reinforced with

composite panels◼ Aerodynamics: non structural shell

◼ Composite panels◼ Web separating engine (hydrogen!) and pilot

compartments ◼ Floor

◼ Truss layout and panel positions were determined with topology optimization

◼ Composite panels and beams cross sectionswere verified using Samcef Field

Shell for aerodynamics

Truss structure for stiffness

+

98

Page 99: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

DESIGN OF A URBAN CONCEPT STRUCTURE

◼ Load case 1: bending

◼ Structure + component + pilot weights

◼ Roll over load (FIA): 3*weight

◼ Load case 2: torsion + bending = curb impact

◼ Left front wheel withstanding 3 times the weight of the axle 99

Page 100: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

DESIGN OF A URBAN CONCEPT STRUCTURE

◼ Intuitive designs

◼ Target mass of 20 kg

◼ Stiffness and stress level mostly determined by load case 2 (torsion)

Convertible very bad

Stiffness!

Saloon car rather stiff

but overstressed Best intuitive design: 21,62 kg100

Page 101: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

DESIGN OF A URBAN CONCEPT STRUCTURE

◼ Topology optimization of the truss structure

◼ Target mass of 15 kg

◼ Minimum compliance

◼ Mostly determined by load case 2 (torsion)

◼ SIMP material with p=3

◼ Left / right symmetry of material distribution

◼ Filtering

101

Page 102: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

DESIGN OF A URBAN CONCEPT STRUCTURE

Convergence history 102

Page 103: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

DESIGN OF A URBAN CONCEPT STRUCTURE

Volume

= 20%

Volume = 60%

◼ Discretizatiton of the car using SSS (simple structural surface method) (Pawlowski, 1964)

◼ SIMP material with p=3

◼ Left / right symmetry of material distribution

◼ Filtering sensitivities

◼ Topology optimization of the truss structure

◼ Minimum max compliance of load case 1 & 2

◼ Volume constraint

Volume

= 40%

103

Page 104: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

DESIGN OF A URBAN CONCEPT STRUCTURE

◼ Detailed design

◼ Verification of von Mises stress and Tsai Wu criteria in the two load cases

◼ Samcef Field / composites

Load case 2 Load case 1 104

Page 105: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

DESIGN OF A URBAN CONCEPT STRUCTURE

105

Page 106: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

DESIGN OF A URBAN CONCEPT STRUCTURE

◼ The structure has been fabricated and is quite successful: the vehicle weight is 95 kg, while its closest competitors are over 140 kg!

106

Page 107: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Références bibliographiques

◼ J. C. Brown, A. J. Robertson, S. T. Serpento. “Motor Vehicle Structures: Concepts and Fundamentals”. Butterworth Heinemann 2002.

◼ J. Happian Smith. « An introduction to modern vehicle design ». Butterworth Heinemann 2002.

◼ H. Heisler. « Vehicle and Engine Technology ». 2nd edition. SAE, 1999.

◼ H. Heisler. « Advanced Vehicle Technology». 2nd edition, SAE, 2002.

◼ J. Pawlowski. “Vehicle Body Engineering”. Business Books. 1964.

◼ K. Boonchukosol. “vehicle structure analysis”. Site web http://www.tsae.or.th/

107

Page 108: STRUCTURAL DESIGN AND PERFORMANCE OF CAR BODIES · 2018-12-02 · Stiffness requirements in bending For a passenger car, the bending stiffness must be sufficient high because of multiple

Références bibliographiques

◼ Duysinx P., Louvigny Y., Lemaire E., & Van Miegroet L. (2007) “Application of optimization tools for the design of lightweight fuel cell powered prototype for the Eco Marathon race”. 7th World Congress on Structural and Multidisciplinary Optimization. COEX Seoul, Korea, May 21-25, 2007

108