structural analysisofan(aluminum(...

16
Structural Analysis of an Aluminum Spiral Staircase EMCH 407 Final Project Presented by: Marcos Lopez and Dillan Nguyen

Upload: phungnguyet

Post on 01-Feb-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Structural Analysisofan(Aluminum( Spiral’Staircasemarcosandreslopez.weebly.com/.../emch_407_final_project_rev_a.pdf · Structural!Analysisofan(Aluminum(Spiral’Staircase! EMCH407FinalProject%

               

Structural  Analysis  of  an  Aluminum  Spiral  Staircase  

EMCH  407  Final  Project  Presented  by:  Marcos  Lopez  and  Dillan  Nguyen  

 

 

 

               

Page 2: Structural Analysisofan(Aluminum( Spiral’Staircasemarcosandreslopez.weebly.com/.../emch_407_final_project_rev_a.pdf · Structural!Analysisofan(Aluminum(Spiral’Staircase! EMCH407FinalProject%

  1  

Abstract    

An  old  aluminum  spiral  staircase  at  Marcos’  home  has  been  feeling  really  

unstable  lately;  see  Figure  1.  This  raises  the  question  of  how  much  weight  one  step  

can  really  hold.  The  focus  of  this  design  project  is  to  model  a  single  step  in  CATIA  

and  Abaqus  and  inspect  how  structural  loads  are  handled  when  loaded  through  

finite  element  analysis,  particularly  examining  stress  concentrations.  This  project  

looks  at  loads  applied  in  both  programs  and  discerns  any  differences  between  the  

two  results.  We  expect  both  programs  to  show  more  stresses  at  the  end  of  the  step  

attached  to  the  center  pole  of  the  staircase  with  more  displacement  on  the  free  end.  

Since  the  railing  is  not  load  bearing,  we  decided  to  not  model  it,  as  it  was  not  

relevant  to  the  objective.  It  was  found  that,  however,  our  predictions  were  generally  

correct,  the  visualization  results  of  the  programs  showed  slight  differences.  

   

 

Figure  1:  Actual  staircase  to  be  analyzed  

Page 3: Structural Analysisofan(Aluminum( Spiral’Staircasemarcosandreslopez.weebly.com/.../emch_407_final_project_rev_a.pdf · Structural!Analysisofan(Aluminum(Spiral’Staircase! EMCH407FinalProject%

  2  

Introduction    

The  subject  of  our  research  is  the  aluminum  step.  An  object  that  has  to  

endure  varying  stresses  daily,  much  testing  and  dedication  in  perfecting  the  final  

model  has  to  be  assured.  As  one  step  will  need  to  hold  the  weight  of  one  person,  we  

will  analyze  the  stress  it  will  need  to  bear  due  to  the  load  from  the  person.  If  the  step  

does  not  hold  the  recommended  weight,  it  could  ruin  the  integrity  of  the  entire  

staircase,  holding  the  manufacturer  liable  for  any  injuries  or  even  death,  potentially  

costing  the  manufacturer  millions  of  dollars.  

Determining  in  our  research  what  loading  capacity  the  step  will  support  will  

answer  what  the  manufacturer  wants  to  set  as  the  maximum  weight  limit.  We  

figured  our  material  would  be  made  of  aluminum,  specifically  Al6061,  as  it  will  be  

strong  and  lightweight  and  the  most  inexpensive  for  the  manufacturer.  We’ll  strive  

to  have  a  single  step  support  up  to  650  lb,  which  we  believe  is  sufficient  to  support  

most  people  while  also  carrying  any  extra  loads.  It  could  also  support  three  people  

who  each  weigh  about  180  lb  for  those  special  cases.  

The  design  of  the  steps  of  the  staircase  will  be  analyzed  by  using  two  

different  CAD  software  tools,  CATIA  and  Abaqus.  By  performing  a  static  finite  

element  analysis  on  the  step,  the  Von  Mises  stresses  and  deflection  will  be  

determined  for  a  650  lb  load.  Furthermore,  the  results  of  this  study  could  lead  to  

design  modifications  that  can  be  implemented  upon  analysis  to  optimize  the  

structure  but  still  support  the  required  loads.  This  sort  of  optimization  would  cut  

down  on  material,  which  would  reduce  production  costs.    

Page 4: Structural Analysisofan(Aluminum( Spiral’Staircasemarcosandreslopez.weebly.com/.../emch_407_final_project_rev_a.pdf · Structural!Analysisofan(Aluminum(Spiral’Staircase! EMCH407FinalProject%

  3  

Approach       We  will  be  mainly  testing  for  structural  failure  and  improving  from  there.  

The  2D  model  features  a  2.24  ft  cantilever  beam  with  a  distributed  load  of  at  least  

650  lb  in  the  downward  direction  at  the  free  end  of  the  beam  to  ensure  the  step  

meets  the  load  requirement.  For  the  sake  of  thoroughness,  we  will  create  one  finite  

element  model  for  testing  in  both  programs.  The  model  will  be  created  and  analyzed  

in  CATIA,  and  then  it  will  be  imported  into  Abaqus  for  another  analysis.  The  max  

load  the  stair  can  support  without  deforming  plastically  will  also  be  determined  by  

applying  the  material’s  yield  strength.  The  results  obtained  from  the  two  software  

tools  will  be  compared  in  order  to  determine  the  most  accurate  method.  

CATIA  Modeling  

The  exact  dimensions  of  a  single  step  from  the  staircase  were  measured  

using  a  ruler.  These  measurements  were  used  to  create  a  CAD  model  of  the  step  

using  CATIA.  The  step  has  a  length  of  26.8  in,  and  a  plate  thickness  of  0.1  in.  Material  

properties  of  aluminum  were  applied  to  the  entire  solid  model.  These  can  be  seen  in  

Table  1  below.  

Aluminum  Material  Properties  

Young's  Modulus   1.015e7  psi  

Poisson  ratio   0.346  

Density   0.098  lb*in^3  

Yield  Strength   34954.086  psi  

 Table  1:  Material  properties  of  aluminum  applied  to  the  solid  model  

Page 5: Structural Analysisofan(Aluminum( Spiral’Staircasemarcosandreslopez.weebly.com/.../emch_407_final_project_rev_a.pdf · Structural!Analysisofan(Aluminum(Spiral’Staircase! EMCH407FinalProject%

  4  

The  final  CAD  model  of  the  step  with  the  aluminum  material  applied  can  be  

seen  in  Figure  2.  Using  this  model,  a  static  finite  element  analysis  was  performed.  

   

Figure  2:  CAD  model  of  step  in  CATIA  

Abaqus  Modeling    

Choosing  to  remain  consistent  across  both  models,  we  imported  the  model  

into  Abaqus  as  an  .stp  file.  The  units  for  the  dimensions  of  the  model  were  in  mm,  so  

we  had  to  adjust  any  values  for  the  entered  properties.  We  also  created  and  

assigned  a  material  with  aluminum  properties  as  defined  in  Table  2.  Figure  3  shows  

the  assembled  model  in  Abaqus.  

Aluminum  Material  Properties  

Young's  Modulus   70000  MPa  

Poisson  ratio   0.346  

Density   2.71e-­‐9  tonne/mm^3  

Yield  Strength   34954.086  psi  

 Table  2:  Material  properties  of  aluminum  applied  to  the  solid  model  

Page 6: Structural Analysisofan(Aluminum( Spiral’Staircasemarcosandreslopez.weebly.com/.../emch_407_final_project_rev_a.pdf · Structural!Analysisofan(Aluminum(Spiral’Staircase! EMCH407FinalProject%

  5  

 

Figure  3:  Model  of  step  in  Abaqus  

CATIA  Finite  Element  Analysis  

A  linear  mesh  was  applied  to  the  entire  CAD  model,  having  an  element  size  of  

0.5  in.  This  element  size  resulted  in  13,348  finite  elements  for  the  model.  A  restraint  

was  also  applied  to  the  model  on  the  inner  surface  of  the  supporting  cylinder.  This  

“metal  ring”  is  physically  clamped  to  the  main  column  of  the  spiral  staircase,  

supporting  the  entire  load  placed  on  the  step.  This  restraint  can  be  seen  in  Figure  4.  

   

Figure  4:  Applied  restraint  on  the  inside  of  the  "metal  ring"  

Page 7: Structural Analysisofan(Aluminum( Spiral’Staircasemarcosandreslopez.weebly.com/.../emch_407_final_project_rev_a.pdf · Structural!Analysisofan(Aluminum(Spiral’Staircase! EMCH407FinalProject%

  6  

A  distributed  load  with  a  magnitude  of  650  lbf  was  then  applied  to  the  top  

surface  of  the  step.  This  load  is  almost  equivalent  to  3  persons  with  an  average  

weight  of  180  lbf,  (540  lbf  total)  and  a  safety  factor  of  about  1.2.  The  final  element  

model,  with  all  of  the  restraints,  loads,  and  mesh  can  be  seen  in  Figure  5  below.  

   

Figure  5:  Linear  mesh  applied  to  the  CAD  model.  An  element  size  of  0.5  in  was  applied  to  the  model.  

Abaqus  Finite  Element  Analysis    

The  software  to  perform  and  run  these  experiments  was  Abaqus  version  6.7-­‐

5.  After  importing  the  model,  the  entire  step  was  considered  as  one  part.  Since  our  

model  will  be  made  of  one  material,  the  part  will  be  a  solid  homogenous  section  

assigned  with  the  material  properties  previously  defined.  

  We  instanced  the  part  as  independent  since  it  didn’t  depend  on  other  parts  to  

operate.  Then  we  applied  the  load  and  boundary  conditions.  The  cylindrical  object  

connected  at  the  end  of  the  step  is  supposed  to  be  connected  to  the  pole  at  the  

center  of  the  staircase,  so  we  will  encastre  it,  so  it  will  not  have  any  displacements  

Page 8: Structural Analysisofan(Aluminum( Spiral’Staircasemarcosandreslopez.weebly.com/.../emch_407_final_project_rev_a.pdf · Structural!Analysisofan(Aluminum(Spiral’Staircase! EMCH407FinalProject%

  7  

or  rotation  in  any  direction.  To  apply  the  load  of  a  person  stepping  on  the  step,  we  

applied  a  distributed  load  of  2891.34  N  across  the  surface  in  the  z-­‐direction.  Figure  

6  shows  these  loads  and  boundary  conditions.  We  then  assigned  global  seeds  with  

approximate  global  size  of  12.  

 

Figure  6:  Loads  and  boundary  conditions  

  We  initially  used  the  default  size  of  37  for  the  model,  and  after  running  

different  sizes,  we  found  12  demonstrated  less  than  5%  difference  in  results  than  

24,  so  we  decided  12  provided  accurate  enough  values.  The  element  type  is  

tetrahedron  as  there  are  round  elements  for  the  meshing.  There  were  14,524  

tetrahedral  elements.  Figure  7  displays  the  meshed  model.  

Page 9: Structural Analysisofan(Aluminum( Spiral’Staircasemarcosandreslopez.weebly.com/.../emch_407_final_project_rev_a.pdf · Structural!Analysisofan(Aluminum(Spiral’Staircase! EMCH407FinalProject%

  8  

 

Figure  7:  Meshed  model  

  We  then  ran  the  simulations  using  automatic  time  stepping.  The  CPU  was  an  

Intel  Core  i5-­‐2400  CPU  @  3.10  GHz  using  only  one  processor.  The  runtime  for  

analysis  for  the  model  varied  between  12-­‐15  seconds.  Limitations  include  not  taking  

into  account  outside  elements  like  creep.  

   

Page 10: Structural Analysisofan(Aluminum( Spiral’Staircasemarcosandreslopez.weebly.com/.../emch_407_final_project_rev_a.pdf · Structural!Analysisofan(Aluminum(Spiral’Staircase! EMCH407FinalProject%

  9  

Results  and  Discussion  

CATIA    

In  order  for  the  simulation  to  run,  CATIA  had  to  use  0.6  sec  of  CPU,  2.96  e3  

kilobytes  of  memory,  and  9.88  e3  kilobytes  of  disk.  The  simulation  ran  in  a  

computer  with  an  Intel®  Core  ™  i5-­‐2400  CPU  @3.10GHz.  

The  simulation  outputs  a  maximum  Von  Mises  Stress  of  12305.2  psi,  located  

on  the  sides  of  the  stair.  Because  bending  occurs  on  the  step,  compressive  stresses  

are  created  on  the  sides  of  the  steps  that  are  connected  to  the  clamped  metal  ring.  

Given  that  the  maximum  stress  is  lower  than  the  material’s  yield  strength  

(34954.086  psi),  no  plastic  deformation  will  occur  on  the  part  with  this  applied  load.    

   

Figure  8:  Von  Mises  stress  distribution  on  the  step  CAD  model  

An  elastic  deformation  does  occur  to  the  step,  having  a  maximum  value  of  

0.153  in.  The  location  of  this  maximum  deformation  is  located  on  the  outer  edge  of  

the  step,  as  expected.  This  is  due  to  the  longer  moment  arm  relative  to  the  clamped  

Page 11: Structural Analysisofan(Aluminum( Spiral’Staircasemarcosandreslopez.weebly.com/.../emch_407_final_project_rev_a.pdf · Structural!Analysisofan(Aluminum(Spiral’Staircase! EMCH407FinalProject%

  10  

metal  ring.  The  longer  the  moment  arm,  the  larger  the  actual  moment  experienced  

at  that  point,  and  thus  a  greater  deformation  occurs.  A  representation  of  the  

deformation  that  occurs  on  the  step  can  be  seen  in  Figure  9.  

   

Figure  9:  Elastic  deformation  distribution  on  the  step  CAD  model  

The  maximum  load  that  the  step  could  support  was  also  determined  by  using  

CATIA’s  yield  strength  for  aluminum  (13,778.58  psi),  which  is  different  from  our  

reference  (34,954.086  psi).  [3]  The  load  was  increased  from  650  lbf  incrementally  by  

50  lbf  until  this  yield  strength  was  surpassed.  Using  CATIA’s  value  for  the  yield  

strength,  it  was  determined  that  the  maximum  load  the  step  could  sustain  was  730  

lbf,  creating  a  maximum  Von  Mises  stress  of  13,646.89  psi.  Our  actual  step  could  

sustain  a  much  higher  stress  since  it  has  a  higher  yield  strength  than  CATIA’s,  but  

we  figured  730  lbf  was  safe  enough  to  list  as  the  manufacturer’s  recommended  limit,  

rather  than  pushing  it  past  the  lower  bounds  of  the  yield  strength  range  in  case  a  

different  type  of  aluminum  is  used.    

Page 12: Structural Analysisofan(Aluminum( Spiral’Staircasemarcosandreslopez.weebly.com/.../emch_407_final_project_rev_a.pdf · Structural!Analysisofan(Aluminum(Spiral’Staircase! EMCH407FinalProject%

  11  

Abaqus    

   

     

Figure  10:  Abaqus  results  

  We  found  the  average  stress  to  range  between  72.28-­‐84.32  MPa.  The  

maximum  relative  stress  can  be  found  at  the  bottom  of  the  step  that  ranges  between  

96.37-­‐132.5  MPa.  We  can  see  the  stress  concentration  points  occur  where  the  wall  

of  the  step  meets  the  cylindrical  base.  This  makes  sense  because  these  are  the  areas  

where  the  step  is  connected  to  a  fixed  point,  and  the  downward  force  causes  

stresses  at  the  top  and  bottom,  with  most  of  it  in  the  bottom  region.  

Page 13: Structural Analysisofan(Aluminum( Spiral’Staircasemarcosandreslopez.weebly.com/.../emch_407_final_project_rev_a.pdf · Structural!Analysisofan(Aluminum(Spiral’Staircase! EMCH407FinalProject%

  12  

             

Figure  11:  Displacement  results  in  Abaqus  

When  examining  the  displacement  of  the  model,  we  can  see  the  largest  

displacements  occurred  at  the  free  end  where  there  is  no  support  from  the  center  

column.  We  observed  in  Abaqus  that  the  model  produced  a  maximum  displacement  

of  around  0.652  cm.  This  displacement  occurred  in  the  free  end  of  the  step  as  

illustrated  in  Figure  11.  The  deformation  is  exaggerated  to  magnify  the  displaced  

elements.  This  was  to  be  expected  since  there  is  no  load  bearing  support  in  this  area.  

The  end  of  the  step  that  is  connected  to  the  vertical  column  of  the  staircase  

experienced  minimal  to  no  displacement  at  all,  which  is  also  expected  since  the  

column  keeps  the  step  fixed  in  this  position.  

 

     

Figure  12:  Before  &  after  displacement  results    

Page 14: Structural Analysisofan(Aluminum( Spiral’Staircasemarcosandreslopez.weebly.com/.../emch_407_final_project_rev_a.pdf · Structural!Analysisofan(Aluminum(Spiral’Staircase! EMCH407FinalProject%

  13  

Conclusions  

  The  results  from  the  finite  element  models  prove  our  hypothesis  that  our  

biggest  concern  will  occur  at  the  points  where  the  step  connects  to  the  metal  

column,  specifically  towards  the  bottom.  According  to  the  Nanovea  document,  the  

yield  strength  of  aluminum  is  around  34,954.086  psi.  [3]  The  CATIA  analysis  says  our  

step  can  sustain  up  to  750  lb  before  yielding.  Our  stress  results  from  Abaqus  show  

that  650  lb  will  not  cause  any  plastic  deformation  in  the  structure,  and  it  will  

definitely  not  fracture.  Using  the  found  maximum  stress  values  and  the  actual  yield  

strength,  the  factor  of  safety  was  found  to  be  approximately  1.67.  This  conclusion  is  

what  we  expected.  

  Visually,  there  are  only  slight  differences  for  the  stress  concentration  points.  

CATIA  shows  a  larger  maximum  stress  area  near  the  lower  joint  where  the  step  

actually  connects  to  the  metal  ring.  The  Abaqus  model  has  a  smaller  maximum  

stress  area,  but  this  area  is  closer  to  the  joint.  Our  results  in  CATIA  and  Abaqus  show  

a  difference  in  stress  values  by  about  2000  psi.  The  initial  difference  value  was  much  

higher.  We  were  unsure  what  might  have  caused  this  difference  until  we  realized  

that  when  we  imported  the  model  into  Abaqus,  the  dimensions  were  in  mm.  With  

the  help  of  an  online  reference,  we  fixed  then  fixed  the  material  properties  from  SI  

to  SI  (mm)  to  reflect  this  change  in  units.  [4]  We  were  able  to  lower  the  difference  

after  the  conversion.  We  were  satisfied  that  these  stress  values  were  in  the  same  

range  and  of  the  same  order  of  magnitude.  

   

Page 15: Structural Analysisofan(Aluminum( Spiral’Staircasemarcosandreslopez.weebly.com/.../emch_407_final_project_rev_a.pdf · Structural!Analysisofan(Aluminum(Spiral’Staircase! EMCH407FinalProject%

  14  

Improvements  

  One  of  the  concerns  we  encountered  was  that  we  also  tested  our  model  using  

a  different  material  from  aluminum.  We  tested  the  model  in  Abaqus  using  steel  for  

the  material  properties.  We  expected  a  vast  difference  in  the  stress  magnitudes  from  

aluminum  to  steel  as  steel  has  three  times  the  elastic  modulus  of  aluminum’s.  This  

was  not  the  case  as  the  stresses  were  nearly  similar.  For  future  results,  we  will  use  

more  of  our  resources  by  determining  what  could  be  the  issue  with  the  course’s  TA.  

We  also  could’ve  looked  at  the  max  principal  stresses  for  the  model  for  more  

accurate  readings  in  determining  if  there  is  structural  failure.  As  for  the  differences  

in  values  from  both  programs,  we  could’ve  also  looked  into  exactly  why  that  

occurred.  We  hypothesize  that  each  program  has  different  methods/formulas  in  

calculating  the  stresses,  which  may  also  be  on  our  end  in  our  decision  of  element  

shapes,  the  number  of  elements,  and  whether  or  not  we  used  quadratic  geometric  

order  for  the  meshing.  

   

Page 16: Structural Analysisofan(Aluminum( Spiral’Staircasemarcosandreslopez.weebly.com/.../emch_407_final_project_rev_a.pdf · Structural!Analysisofan(Aluminum(Spiral’Staircase! EMCH407FinalProject%

  15  

References    Finite  element  model  analysis  using  computer  software:  

[1]   3DS’s  CATIA  V5  

[2]   3DS’s  Abaqus/CAE  6.7-­‐5  

Online  references:  

[3]     http://www.nanovea.com/Application%20Notes/yieldstrengthtesting.pdf    [4]   http://www.eng-­‐tips.com/viewthread.cfm?qid=296017