stress growth

13
Pergamon .I. Biomchanics, Vol. 21, No. 4, pp. 455-467, 1994 Copyright 0 1994 Ellevier Sciena Ltd Printed in Gnat Britain. All rights rescmd 0021-929oD4 s6.00+.00 STRESS-DEPENDENT FINITE GROWTH IN SOFT ELASTIC TISSUES EDWARDK. RODRIGUEZ, ANNE HOGER and ANDREWD. MCCULLOCH Institute for Biomedical Engineering, University of California, San Diego, La Jolla, CA 92093-0412, U.S.A. Abe&&-Growth and remodeling in tissues may be modulated by mechanical factors such as stress. For example, in cardiac hypertrophy, alterations in wall stress arising from changes in mechanical loading lead to cardiac growth and remodeling. A general continuum formulation for finite volumetric growth in sotI elastic tissues is therefore proposed. The shape change of an unloaded tissue during growth is described by a mapping analogous to the deformation gradient tensor. This mapping is decomposed into a transformation of the local zero-stress reference state and an accompanying elastic deformation that ensures the compatibility of the total growth deformation. Residual stress arises from this elastic deformation. Hence, a complete kinematic formulation for growth in general requires a knowledge of the constitutive law for stress in the tissue. Since growth may in turn be affected by stress in the tissue, a general form for the stressdependent growth law is proposed as a relation between the symmetric growth-rate tensor and the stress tensor. With a thick-walled hollow cylinder of incompressible, isotropic hyperelastic material as an example, the mechanics of left ventricular hypertrophy are investigated. The results show that transmurally uniform pure circumferential growth, which may be similar to eccentric ventricular hypertrophy, changes the state of residual stress in the heart wall. A model of axially loaded bone is used to test a simple stress-dependent growth law in which growth rate depends on the differencebetween the stress due to loading and a predetermined growth equilibrium stress. INTRODUCI’ION Growth and remodeling are fundamental mechanical processes both in the normal development of tissues and in various pathological conditions. Mechanical quantities such as the stress and strain in the tissue can modulate its growth. For example, cardiac and vascular hypertrophy are thought to be due, at least in part, to increased wall stress (Fung, 1990, Grossman, 1980). It is also well known that growth and remodel- ing in long bone are affected by the state of stress in the limb (Carter and Hayes, 1977; Cowin, 1983,1986; Guo and Cowin, 1992). Indeed, considerable progress has been made in developing models of growth and remodeling in bone and cartilage. Cowin (1985) de- veloped an analytical description of the microstruc- tural evolution of fibrous tissues and bone in terms of a fabric tensor. They made theoretical predictions for diaphyseal surface remodeling and internal remodel- ing of bones (Cowin and Firoozbakhsh, 1981). More recently, Firoozbakhsh and Aleyaasin (1989) studied the effects of stress concentrations in internal bone remodeling, and Guo and Cowin (1992) studied sur- face growth under torsional loading. Hart (1990) de- veloped a finite element analysis for adaptive elastic materials and studied the time course of strain-in- duced surface remodeling. Harrigan and Hamilton (1992) determined the conditions required for the Received in Jinal form 24 July 1993. Address correspondence to: Andrew D. McCulloch, Institute for Bibmedic Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, U.S.A. Tel. 619-534-2547. Fax. 619-534-5722. stability of strain energy based laws for bone remodel- ing. In contrast to the extensive work on bones, very little has been done on modeling the relationship between stress, strain and growth in soft tissues, prob- ably because they usually exhibit large elastic defor- mations under physiological loading and because soft tissues, unlike bones, may be residually stressed. One of the first applications of continuum mechan- ics to the study of growth in deformable tissues was a model of homogeneous stress-dependent growth for linearly elastic materials developed by Hsu (1968). Later, a continuum description of finite growth kin- ematics was formulated by Skalak (1981) and Skalak et al. (1982). They examined volumetric growth, growth by accretion on surfaces and growth fields with discontinuities. Skalak (198 1) pointed out that if the growth strain is incompatible, for example if the growth of the different cells comprising a body occurs in such a manner that the continuity of the body is compromised, continuity may be maintained by an elastic stress. Therefore, residual stress occurs as a re- sult of the elastic deformation required to keep all cells continuous with each other without introducing gaps or superpositions. The fundamental importance of residual stress in intact tissues was demonstrated by Fung (1990) in blood vessels. The presence of a resid- ual stress field can be identified if deformation occurs when cuts are ma& in the unloaded tissue. Using this experimental approach, Fung and coworkers have shown the existence of residual stress in arteries (Choung and Fung, 1986; Liu and Fung, 1988), veins (Xie et al., 1991), ventricular myocardium (Omens and Fung, 1990) and trachea (Han and Fung, 1991). The deformation that returns the cut state of the tissue to 455

Upload: sportingdan

Post on 18-Aug-2015

214 views

Category:

Documents


1 download

TRANSCRIPT

Pergamon .I. Biomchanics, Vol.21, No. 4, pp. 455-467,1994 Copyright01994 EllevierScienaLtd PrintedinGnatBritain.Allrightsrescmd 0021-929oD4s6.00+.00 STRESS-DEPENDENTFINITEGROWTHINSOFTELASTIC TISSUES EDWARDK.RODRIGUEZ,ANNE HOGER andANDREW D.MCCULLOCH Institute for Biomedical Engineering, University of California, San Diego,La Jolla, CA 92093-0412, U.S.A. Abe&&-Growthandremodeling in tissues maybe modulatedby mechanical factors such as stress. For example, in cardiac hypertrophy, alterations in wallstress arising from changes in mechanical loading lead tocardiac growthandremodeling. A general continuumformulation for finite volumetric growthinsotI elastic tissues is therefore proposed. The shape change of an unloadedtissue during growth is described by amappinganalogoustothedeformationgradienttensor.Thismappingisdecomposedinto atransformationofthelocalzero-stress reference stateandanaccompanyingelasticdeformationthat ensuresthecompatibilityofthetotalgrowthdeformation.Residualstressarisesfromthiselastic deformation. Hence, acompletekinematicformulation for growthingeneral requires a knowledgeof the constitutive law for stress in the tissue. Since growth may in turn be affected by stress in the tissue, a general formfor thestressdependentgrowthlawisproposedasarelationbetweenthesymmetric growth-rate tensor andthe stress tensor. Withathick-walledhollowcylinder of incompressible, isotropic hyperelastic material asanexample,themechanicsof left ventricular hypertrophy are investigated. Theresults show thattransmurallyuniformpurecircumferential growth,whichmaybesimilartoeccentricventricular hypertrophy, changes the state of residual stress in the heart wall. A model of axially loaded bone is used to test a simple stress-dependent growth law in which growth rate depends on the difference between the stress duetoloadingandapredetermined growthequilibrium stress. INTRODUCIION Growthandremodelingarefundamentalmechanical processesbothinthenormaldevelopmentoftissues andinvariouspathologicalconditions.Mechanical quantitiessuchasthestressandstraininthetissue canmodulateitsgrowth.Forexample,cardiacand vascularhypertrophyarethoughttobedue,atleastin part,toincreasedwallstress(Fung,1990, Grossman, 1980). Itis alsowellknownthatgrowthandremodel- inginlongboneareaffectedbythestateofstressin thelimb(CarterandHayes,1977; Cowin,1983,1986; GuoandCowin,1992). Indeed,considerableprogress hasbeenmadeindevelopingmodelsofgrowthand remodelinginboneandcartilage.Cowin(1985)de- velopedananalyticaldescriptionofthemicrostruc- turalevolutionof fibroustissuesandboneintermsof afabrictensor.Theymadetheoreticalpredictionsfor diaphysealsurfaceremodelingandinternalremodel- ingofbones(CowinandFiroozbakhsh,1981). More recently,FiroozbakhshandAleyaasin(1989)studied theeffectsofstressconcentrationsininternalbone remodeling,andGuoandCowin(1992)studiedsur- facegrowthundertorsionalloading.Hart(1990)de- velopedafiniteelementanalysisforadaptiveelastic materialsandstudiedthetimecourseofstrain-in- ducedsurfaceremodeling.HarriganandHamilton (1992)determinedtheconditionsrequiredforthe Received in Jinal form24 July1993. Addresscorrespondenceto:AndrewD.McCulloch, InstituteforBibmedicEngineering,Universityof California,SanDiego,9500GilmanDrive,LaJolla,CA 92093-0412, U.S.A.Tel. 619-534-2547. Fax.619-534-5722. stabilityof strainenergybasedlawsforboneremodel- ing.Incontrasttotheextensiveworkonbones,very littlehasbeendoneonmodelingtherelationship betweenstress,strainandgrowthinsofttissues,prob- ablybecausetheyusuallyexhibitlargeelasticdefor- mationsunderphysiologicalloadingandbecausesoft tissues,unlikebones,mayberesiduallystressed. Oneof thefirstapplicationsof continuummechan- icstothestudyofgrowthindeformabletissueswas a modelof homogeneousstress-dependentgrowthfor linearlyelasticmaterialsdevelopedbyHsu(1968). Later,acontinuumdescriptionoffinitegrowthkin- ematicswasformulatedbySkalak(1981)andSkalak etal.(1982).Theyexaminedvolumetricgrowth, growthbyaccretiononsurfacesandgrowthfields withdiscontinuities.Skalak(198 1) pointedoutthatif thegrowthstrainisincompatible,forexampleifthe growthof thedifferentcellscomprisingabodyoccurs insuchamannerthatthecontinuityofthebodyis compromised,continuitymaybemaintainedbyan elasticstress.Therefore,residualstressoccursasare- sultoftheelasticdeformationrequiredtokeepall cellscontinuouswitheachotherwithoutintroducing gapsorsuperpositions.Thefundamentalimportance of residualstressinintacttissueswasdemonstratedby Fung(1990) inbloodvessels.Thepresenceof aresid- ualstressfieldcanbeidentifiedif deformationoccurs whencutsarema&intheunloadedtissue.Usingthis experimentalapproach,Fungandcoworkershave showntheexistenceofresidualstressinarteries (ChoungandFung,1986; LiuandFung,1988), veins (Xie etal.,1991), ventricularmyocardium(Omensand Fung,1990) andtrachea(HanandFung,1991). The deformationthatreturnsthecutstateofthetissueto 455 456E. K. RODRIGUEZ et al. theresiduallystressed,intactstatedefinestheresidual strain.Fung(1990) suggeststhatchangesintheresid- ualstrainrevealtheeffects of nonuniformgrowthand remodeling.Hemeasuredchangesinresidualstrainin bloodvesselsbymeasuringtheopeninganglesthat resultedwhenringsdissectedfrombloodvesselswere cutacrossthewallrelievingcircumferentialresidual stress.Remodelingafteri&arena1aorticbandingin theratcorrelatedwithsignificantchangesinresidual strain. Stressinatissuemaynotonlybecausedoraltered bygrowth,butitmayalsoaffectthegrowthitself. Grossman(1980)proposedthatcardiachypertrophy andnormalcardiacgrowthdevelopinresponseto increasedhemodynamicloadingandalteredsys- tolicanddiastolicwallstresses.Hesuggestedthatthe resultingpatternsof hypertrophyreflectthenatureof thestresschanges.Avarietyoflawsforgrowthas afunctionofstress,strainorstrainenergyhavebeen proposedforbone(Cowin,1983).Forsofttissues, Fung(1990) proposedanequationforthemassrateof growthasafunctionofsomesuitablemeasureofthe stress.Inhisformulation,growthorresorptionoccur so thatthestressduetoloadinginthetissuereturnsto oneofthreeequilibriumstates.Aroundoneofthese equilibriumstates,ifloadingstressishigh,then growthoccurstoreducestress.Ifthestressislower thantheequilibriumstate,thenresorptiontakes place.However,if thestressis toohighortoolow,one of theothertwoequilibriumstatesgovernsgrowth.In thiscase,highstressesmayleadtoresorptionas mayoccur,for example,arounda stressconcentration inbone.Similarideashavealsobeenproposedby Pauwels(1980) forbone.However,growthisathree- dimensionalprocesswhoserateis onlyfullydescribed byatensormeasureandnotasinglescalargrowth rate.Sincethestressisalsoatensorinthethree- dimensionalbody,ageneralformulationforstress- dependentgrowthrequiresatensorialconstitutive relation.Theformofthisrelationandtheconditions restrictingithavenotbeenpreviouslydescribed. Ageneralcontinuumformulationforgrowthmust thereforeallowforthepossibilityofresidualstress arisingfromgrowth,andshouldnotrelyontheexist- enceof aglobalzero-stressstate.Moreover,sincethe kinematicsofgrowthcannotalwaysbeseparated fromthestressinthetissue,theconstitutivelawfor stressinthetissuewillgenerallyberequired.The purposeofthispaperistodevelopageneralthree- dimensionaltheoryforthecontinuummechanicsof finitevolumetricgrowthinsoftelastictissues.This theorymaybeusefulforstudyingtherelationship betweenstressandnormaltissuegrowthorpatho- logicgrowthsuchascardiachypertrophy. METHODS Inthissection,thekinematicsoffinitegrowthare introducedusingthenotationoffinitedeformations. Ingeneral,theshapechangethatoccursduringthe growthof anunloadedbodyisduetotwoprocesses: (1) materialmaybeaddedorremoved,changingthe localstress-freereferencestateofthetissue;(2)an elasticdeformationmayberequiredtoaccommodate thischangeintissueconfigurationandvolumein ordertomakethetotalgrowthdeformationcompat- ible(i.e. sothatthematerialcanundergothegrowth withoutintroducingdiscontinuitiesin- thebody).Re- sidualstressarisesfromtheelasticpartofthetotal deformation.Therefore,inourdescriptionofgrowth kinematics,thetotalshapechangeduringgrowthis decomposedintothesetwoparts:thechangeintissue stress-freereferencestateandtheelasticdeformation. Thedependenceofthegrowthratetensoronthe stresstensorisalsoexaminedinthissectionand a generalconstitutivelawforstress-dependentgrowth isformulated.Finally,wegivetwoexamplesof finite growthinthree-dimensionalelasticbodieswithpos- sibleapplicationstoventricularhypertrophyandcon- nectivetissue. Toanalyzethekinematicsof growth,we definethe volumetricgrowthof a soft elastictissueas thechange inthelocalzero-stressstateofthebodywithout requiringthatthereexistsacorrespondingglobal zero-stressstate.LetB(t,)denotea stress-freebodyat timeto. Wewillseelaterthattheanalysisgeneralizes directlyforthecasewhenB(t,)isnotstress-freewhen itis unloaded.Thebodymaychangeinshape,density andmaterialpropertieswithtimeasitgrowsand remodelsintheabsenceofanyexternalloads.Letit growintoanewstress-freestate,B(t,). Themassrate ofgrowthperunittissuevolumeVatapointis definedby Ifp,themassdensity,isconstantwithtimethen dV tflpdt. Conservationofmass(Spencer,1980) requiresthat ti=$+div(pv), (3) wherevisthegrowthvelocityvector(Skalaketal., 1982),whichrepresentstherateanddirectionof motionateachpointinthetissueduringgrowth. Skalaksuggestedthatvelocityfieldsareusefulfor describinggrowthbecausetheyembodythecontinu- ousgrowthrateratherthandiscretechanges.Cowin (1983), CowinandFiroozbakhsh(1981)andLuoetal. (1991)usedgrowthvelocitiestodescribesurfacere- modelinginboneasafunctionofstrain.Ifdensityis constantwithtimeandpositionthen ti=pdivv. (4) Densityisconsideredheretobeconstantintimeand positionbecauseweassumethatmaterialproperties Growthinsoft tissues457 donotchangewithgrowthalone.Thisassumption wasalsoadoptedbyHsu(1968)andothers(Cowin andFiroozbakhsh,1981; GuoandCowin,1992; Mat- theckandHuber-Betzer,1991).Weconsiderthe growthtoconsistoftheadditionorremovalofthe sametissuematerial.Hence,fromequations(1)and (4), therateofunittissuevolumechangeis dV dt=divv=trD,, whereD,is therateof growthtensor,whichis analog- oustotherateofdeformationtensorincontinuum mechanics(Spencer,1980); itisthesymmetricpartof thegradientofthegrowthvelocityfield.Thetraceof D,istherateofvolumetricgrowthordilation.The tensorD,hastheadvantagethatgrowthratefunc- tionscanbedescribedwithoutaninitialreference configuration,whichmaybedifficulttodefineexperi- mentally.Alternatively,thegrowthratemaybede- scribedbyanequivalentLagrangianmeasure,therate ofgrowthstretchtensorO,,whichisreferredto a definedreferencestate.ThegrowthstretchtensorU, canbeobtainedsimplybyintegrating0,intime.The relationbetweentheratetensorsD,and0,is givenin AppendixB. ThegrowthstretchtensorU,isrelatedtothe growthdeformationgradienttensorF,bytheright polardecomposition* Fs=RsUs,(6) whereR,istherotationpartofthegrowthdeforma- tion.ThegrowthdeformationgradientF,isanalog- oustothedeformationgradienttensorincontinuum mechanics(Spencer,1980). Itscomponentsaregiven inAppendixA.Toformulateaproblem,0,maybe specifiedandintegratedintimetoobtainUS. Itwillbe seenbelowthatR,maybechosentoequaltheident- itytensorsothatU,=F,withoutlossofgenerality. LettheCauchystresstensorTinthe_originalelastic bodyB(t,)be givenbythqfunctionT: T=?(C), (7) whereC =FT FistherightCauchyereendeforma- tiontensorreferredtomaterialcoordinatesinthe originalbody.Followingvolumetricgrowthwithno changeintheelasticresponseofthetissue,thestress inthegrownbodyisgivenintermsofdeformation componentsreferredtotheoriginalmaterialcoordin- atesby T=$(F;TCF;). (8) Theprecedingdescriptionestablishesthekin- ematicsof thelocalchangeinthezero-stressreference state.Wenowconsiderhowgrowthaffects thestateof stressinthebody.Evenintheabsenceofexternal loads,thestateofstressinagrownbodymaybe *Right as opposedtoleft because it leads naturally to the Lagrangian formulation. alteredbytheintroductionofresidualstressduring growth.Thisarisesbecausethereisnorequirement thatthegrowthdeformationgradientF,corresponds toacompatibledisplacementfield,i.e.thechangein localzero-stressstateduringgrowthneednotbe continuousfrompointtopoint.Forexample,acell maygrowindependentlyof itsneighbors.Laterwe see thattherearealsosmoothgrowthfieldsthatarenot compatible.Hence,ifwerequirethatthetissuere- mainsintactandcontinuousasitgrows,theobserved growthdeformationintheabsence.ofexternalloads maynotbethesameasF,definedabove.As shownin Fig.1,thedeformationdefinedbyF,describesthe growthfromtheoriginalzero-stressreferencestate B(t,)toanewlocallystress-freestateB(t,),which maydiffer fromtheobservedintactgrownstateB(t,). Thepartofthetotalgrowthdeformationthatmaps B(t,)totheunloadedstateB(t,)isanelasticdefor- mationF,thatensuresthecontinuityofthebody. Fromtheprecedingdiscussion,theoverallob- servedgrowthdeformationF,,thatmapsB(t,)to B(t,)isthengivenby Fes=F,F,. (9) Itis nowevidentwhyR,inequation(6) canbe chosen tobetheidentitywithoutlossof generality;anyrota- tionalpartofF,canbeincorporatedintotheelastic partofthetotalgrowthdeformation. SinceB(t,)isthenewzero-stressreferenceconfig- uration,thestateofstressinB(t,)mustbe T=?(F;F,). (10) If thebodyis inequilibriumintheabsenceof external loads,thenihestressgivenbyequation(10) is aresid- ualstressT.Therefore,incompatiblegrowthfields B(t,)BO,1 T=O 0 F, T-t \ -0 f WJ T=O Fig.1.Three states in finite growth of a stress-free tissue: (a) theoriginalzero-stress reference stateB(t,);(b) thegrown zero-stress B(t,k(c) the observedjntactand unloadedgrown stateB(t,)withresidual stress T.Thegrowthdeformation gradient F,mapsB(t,)intoB(tl).However, F,maynotbe compatible so B(t,) is shownas a collection of discontinuous andsuperimposedmaterial.Sothattheoverallgrowth deformationiscompatible,theelasticdeformationF.is required tomapB(t,)intotheointact grownstateB(t,).F. gives rise to the residual stress T in B(t,). The overall growth deformationisthenthecompositiongiven byequation(9). 458E. K.RODRIGUEZetal. leadtoresidualstressthatarisesasadirectresultof theelasticdeformationsrequiredtomaintaincontinu- ityofthebody.Clearly,theanalysisoffinitegrowth kinematicsinanelastictissuewill,ingeneral,require thattheconstitutivelawforstressinthetissuebe known.Whengrowthoccursunderconditionsofex- ternalloading,F,alsoincludestheelasticdeforma- tionduetotheload.Whentheoriginalundeformed referencestateisresiduallystressed,theaboveana- lysisgeneralizesdirectlyprovidedthatthemapping thatdescribesthelocalstress-freestateateachpoint inthereferencebodyisknown,eventhoughthat mappingwillnotbecompatible.Theproblemthen becomesthesameasthatofasubsequentgrowth deformationreferredtoapreviouslygrownstate.If thislocalstress-freeconfigurationofthereference residu;llystressedbodyis notknown,buttheresidual stressTis, thentheanalysiswillrequireaformforthe constitutivelawthatisvalidforaresidualstressfield. Forthecaseoffiniteelasticdeformations,avalid generalformisnotpresentlyknown.However,Hoger (1993)haspresentedaconstitutivelawforresidually stressedelasticbodiesthatundergosmallstrainsand arbitraryrotations. Ingeneral,growthmaydependonthestateof stress inthetissueateachpoint.Todescribestress-depend- entgrowth,werequireaconstitutivelawforthe mathematicalformof thegrowthtensorasafunction ofthestresstensor.SincethegrowthdeformationF, doesnotincludearotation,thegrowthlawmaybe formulatedbywritingthegrowthstretchU,asa func- tionoftheCauchystressT: U,=U&T),(11) where6,isatensor-valuedfunctionthatmapssym- metrictensorsintosymmetrictensors.Inmostcases detU,#1. Another,perhapsmorephysiological,approachto theformulationof stress-dependentgrowthfunctions istowritethegrowthrateasafunctionofthestress. Thiswouldadmitagrowthlawofthetypedescribed byFung(1990). Recallthattherateof volumechange atapointisgivenbythetraceofthegrowthrate tensorD,[equation(5)].However,acompletede- scriptionofthegrowthraterequiresallthecompo- nentsofD,.Thus,thegrowthfunctionmaytakethe form D,=&(T),(12a) whereD8 isasymmetricfunctionthatmapssymmet- rictensorsintosymmetrictensors.SinceU#andD, arerelatedbyequations(Bl)and(B2), equation(12a) canbewrittenas U,=&(T),(12b) whereU,isalsoasymmetricvaluedfunctionof sym- metrictensors. AformulationintermsofU,iseasiertointegrate thanoneintermsof D,sinceintegratingU,provides U,(=F,).ThegrowthstretchtensorU,isinvertible andpositive-definite. If, assuggestedbyFung,thereexistsa stressstate! correspondingtogrowthequilibrium,thenitiswell motivatedtodefinethegrowthratetensortobezero whenthestressisatthegrowthequilibriumstate,i.e. (13a) and U,=Q(T-R+R~). (I3b) Intheseequatio:s,therotationRisrequiredtoen- surethatTandTaremeasuredinthesameframeof reference,asrequiredbyobserverindependence(Gur- tin,1981). Twomodelswereusedtostudyindependentlyhow growthleadstoresidualstressandhowstressmay determinethegrowthpatternof atissue.Forthefirst case,agrowthdisplacementfieldisspecifiedinan unloadedcylindricaltubeandtheresidualstressfields thatresultfromdifferentgrowthfieldsareexamined. Inthesecondexample,aloadedspecimenisusedto studystress-dependentgrowthusingasimplelaw. Thebasicequationsofthisboundaryvalueproblem aregiveninAppendixC. Residualstressarisingfromgrowth Ahollowcylindricaltubemodelcomposedofan incompressibleisotropicelasticmaterialisusedto illustratehowcircumferentialgrowthgivesriseto a transmuraldistributionof residualstressthatwould causethecylindertochangeshapewhencut.Circum- ferentialgrowthservesasafirstapproximationfor eccentricventricularhypertrophy,aclinicaltermthat describesventricularenlargementinresponsetochro- nicvolumeoverload(elevatedfillingpressure).The residualstresspresentinthecylinderaftergrowthis calculatedassumingthatgrowthstrainsgenerate stressessimilartothoseof loadingsothataconstitut- iveequationforanisotropicmaterialcanbeused.To obtainthegrowthdeformationF,weprescribethe followinggrowthdisplacementfield: p=R,~P=&(R)O, [=Z. (14) ApointPintheoriginalstress-freeconfiguration B(t,)hasthecoordinates(R,0,Z).F,mapstheorig- inalstateB(t,-,) intothenewlocallystress-freestate B(t,),inwhichPhascoordinates(p,cp, 6).Theterm KB(R)isacircumferentialgrowthstretchratiothat dependsontheradius,butforsimplicitywe usea con- stantwhichissufficienttointroduceanonuniform residualstress.A valueK,>1.0 simulatesgrowth,and whenK,c1.0resorptionoccurs.Thisdisplacement fieldis incompatiblesincerp is notuniqueat0=0,2x. TheincompatibilitycanbeseeninFig.2,wherethe locallystress-freestateB(c,)isshownwhenKg=0.9 andKg=1.1. WhenKB=0.9thereisdiscontinuityin Growthinsofttissues459 A)KC) = 0.9 lacal ly dress-free state beforecircumferentialresorption Gr o wn unloadedstate with residualstress Loeallystress-freestate aftercircumferentialresorption Locallystress-freestate beforecircumferentialgrowth Grownunloadedstate with residualstress Local lystress-freestate aftercircumferentialgrowth Fig. 2.Cylindrical modelsof theleftventricleinthe zero-stressstateafteruniformcircumferentialgrowth: (A) resorption(K,=O.9k(B) growth($71.1).Theoriginalzero-stressis a hollowcylinder(B(t,)).Notethat thegrownstateB(t,)is stress-freeaaddrseontinuous inbothcases.Inthecaseof resorption,toachievean intactgrownstate,anelasticdeformationthattakesthegrownopenconfigurationintoa closedcylinderis required.Thiselasticdeformation,inturn,willgiverisetoresidualstress.Afteruniformcircumferential resorptiontheB(t,)statewillappearasshowninpanelB.Thisstateisstress-freebutitshows asuperpositionofmaterial.Toachieveanintactconfiguration,anelasticdeformationthatopensthe cylindertopreventanysuperpositionisrequired.Asbefore,thiselasticdeformationwillalsogiveriseto residualstressinthefinalgrownstate. thecylinderwhichisnotpermissibleifthetotal growthdeformationistobecompatible.When KI=1.1thereisasuperpositionofmaterialwhich shouldnotoccurinacompatibledeformation.The displacementfieldof equation(14) definesthefollow- inggrowthdeformationgradient: 10o- F,=0;Ko0 . (1% _o0l_ Inorderthattheoverallgrowthdeformationfieldis compatible,anadditionalelasticdeformationisre- quiredthatwillbeusedintheconstitutiveequation forthematerialtodeterminetheresidualstressthat mustsatisfyequilibriumandthezerotractionbound- arycondition.Adisplacementoftheform r=r(p),f9=t&)p,z=eZ,(16) whichmapsthestateB(t,)tothefinalgrownstateof theintactbodyB(t,)inwhichPhascoordinates (r,8, z),givesrisetotheelasticdeformation c9 W)oo dp F,=0 $II,0. L 0Oe 1 (17) 460 E. K.RODRIGUEZetal. Anappropriatechoice.ofq@(p) allowstheoverall growthdeformationF,F,tobecompatiblebyrestor- ingcontinuityofdisplacementsat0=0,2n.Forthe casewhenKB isaconstant,thesimplestchoiceis qe=l/KB.Theelasticdeformationalsoallowsfor someaxialchangeinlengthviatheparametera. Theincompressibilityconstraintisonlyappliedto F,sothatthethirdprincipalinvariantofCisunity, i.e. arr () 2. I,= ap-Ette=A(18) whichcanbeintegratedtoobtainanexpressionfor thenetgrownradius,r. Fromequation(7) withC=F&Fep,thestressbe- comesafunctionofF,.Lagrangianstraincompo- nentsreferredtothecoordinatesinstateB(t,)cal- culatedfromE =3(FfF,-I)aregivenby Epp=;[(y-l], E~q=&---l]? E,, = 4 (E-1). (19) Forthisexample,weadopttheformforthe stress-strainrelationshipusedbyGuccioneetal. (1991)forrestingpassiveventricularmyocardium. Theyusedthestrainenergyfunctionsuggestedby ChoungandFung(1986): W=i(eQ-1), (20) wherecisaconstantandQ isafunctionofthethree principalstraincomponentsthatdefinesthematerial symmetryofthetissueunderconsideration.Foran isotropicmaterial,Qis Q=2h(b+&p+~%(21) whereblisaconstant.Thestressisthenobtained from wherep is thehydrostaticpressurethatentersintothe constitutiveequationasaLagrangemultiplier. Theequilibriumequationsare dT,rr,-r,=, dr+ 1 r dT*2T, z+-=o, (24) r dT,zT,, x+7=0. However,sincethezerotractionboundarycondition attheinnerandouterwallswasused,onlyequation (23) hastobesolved.Integratingthisequationgives T,,= s T~e+Tzr -dr+T,,l,=,,,(26) 12 r whereT,atr=rzistheradialstressattheouter grownwallandwasspecifiedaszero.Theinternal pressureisequalto-T,,atr=rl.Themodelis solvedbyspecifyingthegrowninnerradiusr,and solvingforthefinalvalueofinnerradiusthatgives zerotransmuralpressure.Transmuralresidualstress distributionsarethencalculatedforthegrownstate. Stress-dependentgrowth Inthisexample,weanalyzestress-dependent growthintheabsenceof residualstressbyconsidering asimplehomogeneousstress-field.Sincereliabledata onstress-dependentsofttissuegrowtharenotavail- able,wesolvearectangularmodelofbonetissue subjectedtocompressivestressandsmallstrainsbut withoutassuminginfinitesimallinearelasticity.The blockgrowsinexternaldimensionsasalinearfunc- tionofthedifferencebetweentheloadingstressand a preestablishedno-growthequilibriumstateof stress. Weassumeelasticpropertiesfortissuefromthe diaphysialregionofhumanfemurwithaYoungs modulusalongthelongaxis(z-axis)estimatedtobe 18.4 GPa(Cowin,1983).Theblockiscompressed alongitslongaxiswiththetwootherdimensions correspondingtotheradial(x-axis)andcircumferen- tial(y-axis)directions(Fig.3).Sincetheproblemis homogeneous,thereis noresidualstress(Hoger,1986; Hsu,1968). TheoriginalspecimenB(t,)wassubjected tocompressiveloadingthatgaverisetothedeformed statecharacterizedbytheelasticdeformationgradi- entF..Ifthecorrespondingaxialstressisdifferent fromthegrowthequilibriumstress,thenthetissue growsorresorbsalongitsxandydimensionsuntil equilibriumisrestored. Theelasticdeformationgradientthatarisesfrom compressiveloadingisgivenby ;;I F,=0 J;i; (27) 001s whereAs isthestretchratio(511. Spencer,A.J.M.(1980)ContinuumMechanics.Longman, London. Stalsberg,H.(1970)Mechanismofdextralloopingofthe embryonicheart.Am. J.Cardiol.25,265-271. Taber,L.A.,Hu,N.,Pexieder,T.,Clark,E.B. andKeller, B.B.(1993) Residualstrainintheventricleofthestage 16-24chickembryo.Circ.Res.72,455-462. Takamizawa,K.andHayashi,K.(1987) Strainenergyden- sityfunctionanduniformstrainhypothesisforarterial mechanics.J.BiomechanicsM,7-17. Terracio,L.,Tingstorm,A.,Peters,W.H.andBorg,T.K. (1990) Apotentialroleformechanicalstimulationincar- diacdevelopment.Ann.N.Y.Acad.Sci.S&48-60. Xie, J.P.,Liu,S. Q.,Yang,R. F.andFung,Y. C. (1991) The zero-stressstateofratveinsandvenacava.ASMEJ. biomech.Engng113,36,41 APPENDIXB RELATIONSBETWEENTHERATEOFDEFORMATION TENSORSD,AND0, TheratetensorsD,and0,arerelatedby DI=f(ti,U;+U,-0,). TheinverseisgivenbyHogerandCarlson(1984): (Bl) . f_J,-.!..- 1112-13 {-U:D,U:+I~(U:D,U,+U,D,U:) +(I:+I,)U,D,U,+Z(U:D,+D,U:) -I,(D,U,-U,D,)+II~~DIJ,(B2) whereII,I,andI,aretheprincipalinvariantsofU,. APPENDIXA APPENDIXC ConsiderabodyB withthethreestatesof growthdefined FORMULATIONOFABOUNDARYVALUEPROBLEM byB(t,), B(t,) andB(t,).A pointPinB(t,) hascoordinates {Xx},inB(t,)ithascoordinates{x.}andinB(t,)ithas Tousethepresentgrowthformulationinaboundary coordinates{xi}.Wecannowexplicitlywritethegrowth valueproblem,weassumethatB(t,)isknownandthe deformationgradientsdefinedinthepresentformulationas materialpropertiescanbeexperimentallydetermined. -AformforF.canthenbenostulated.anditmavbestress- CF,l=$=F,,R, R axiCR1=~=Ksn. II axi CF,,l=,=Fe,,. AR (Al)dependents&estressesa;ebelievedtoaffect&modeling andgrowthinsofttissues.InthiscaseF,= F,(T)wherethe dependence.ont,, is implicitandthestressinthisexpression 642) isrelatedtotheloadingthatthebodyexperiences.The grownstateB(t,) anditsresidualstressesmaynotbe known WV butmaybe. obtainablebyasglutionofaboundaryvalue problemfortheresidualstressT. Thisboundaryvalueprob- lemtakestheform Usingindicialnotationwe canwritethefinalcompositionof F,andF,givenbyequation(9) as div+=O. F %R =F,I_F,*R. (A4) Thestresstensorofequation(10) canbewrittenas Sincefromequation(lo),i=T(FzF,), tion(9) , (A5) ;= *(F;T F& F,,F; ) since (C2) (C3) axR axiax, axs F,=F,,F;. WI HereT=&)is subjecttothetraction-freeboundarycondi- Thegrowthratesgivenbyequations(12a), (12b), (13a) andtion (13b) are,respectively,giveninindicialnotationby n (Cl) thenfromequa- (A7) ?n=O0ndB. (C4)